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Abstract: A distribution for modeling survival data that accounts for flexibility in modeling data with upside-down
bathtub-shaped hazard rate functions is the inverse Xgamma distribution (IXG). The maximum likelihood method (MLE)
is the most often used technique for parameter estimation of the IXG distribution. Conversely, the MLE is infamously
biased for small sample sizes. This motivates us to produce almost unbiased estimators for IXG parameter. More precisely,
we minimize MLE biases to the second degree of bias using two techniques for bias correction: bootstrap and analytical
approaches. Two actual data applications and Monte Carlo simulations are used to compare the performances of these
methods.
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1. Introduction
Survival data analysis can be used to statistically analyze time-to-event data. In survival analysis, the primary

outcome of interest is the amount of time until an event of interest occurs. This could be anything from the period until
a patient relapse to the likelihood that a machine will malfunction or that a client will depart. The process of modeling
and assessing the amount of time until an event of interest using statistical techniques is known as statistical modeling of
survival data [1].

An essential component of survival analysis is selecting a statistical distribution to model survival data [2]. The
instantaneous failure rate at any given moment is represented by the underlying hazard function, about which different
distributionsmake different assumptions [3–6].The properties of the survival data and the underlying biological or physical
processes should direct the choice of distribution. Visual evaluations, domain expertise, and goodness-of-fit tests can all
be used to guide the selection of a model.

Applications for the inverse Xgamma distribution include extreme value theory, lifetime modeling, and reliability
analysis. It works especially well when modeling variables with big tails, skewness, and a positive value. Regarding the
field of survival analysis, the inverse Xgamma distribution was utilized for modeling survival data [7]. Yadav, Maiti and
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Saha [7] presented an inverse Xgamma distribution using the idea of inverse distribution to model upside-down bathtub-
shaped hazard rate function.

The XG distribution’s probability density function (PDF) and cumulative distribution function (CDF) are provided
as

F (y, θ) = 1−

(
1+θ +θy+

θ 2y2

2

)
1+θ

e−θy; θ > 0, y > 0. (1)

f (y, θ) =
θ 2

1+θ
(1+

θy2

2
)e−θy; θ > 0, y > 0 (2)

The random variable X = (1/Y ) is said to have an IXG distribution with PDF having the following form if a random
variable Y follows the XG (θ) distribution with PDF given in Eq. (1).

f (x) =
θ 2

x2(1+θ)

(
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x ; θ > 0, x > 0 (3)

It is denoted by X ∼ IXG (θ), The IXG distribution’s CDF is provided by

F (x) =
(

1+
θ

x(1+θ)
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)
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θ
x ; θ > 0, x > 0 (4)

2. Maximum likelihood estimation (MLE)
Suppose thatX = (x1, x2, ..., xn) be a random sample of size n from the IXG distribution. The log-likelihood function

of θ is given by

L(θ , α) = n ln(θ)−n ln(θ +1)−2
n
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2x2
i
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1
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(5)

Maximize Eq. (5) with respect to θ in order to obtain the MLE (θ̂ ) of θ . We have the following equations:

∂
∂θ

L(θ , α) =
n
θ
+

n
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1
2x2

i +θ
− n

1+θ
−

n
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1
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= 0 (6)

Since Eq. (6) are non-linear they cannot be solved analytically. As MLE will be biased for small sample sizes.
Findings in deceptive ways, which impacts how phenomena are interpreted in practical applications. This encourages us
to think about unbiased estimations, essentially lowering the MLE distribution of these parameters’ bias.
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3. Bias-corrected MLEs
A statistical method called bias-corrected maximum likelihood estimation (BC-MLE) is used to account for bias

in parameter estimations that are derived from MLE. When the average value of the estimates, computed across a large
number of samples, differs from the true parameter value, the concept of bias in MLE emerges. In order to give more
accurate parameter estimates, bias-corrected approaches try to minimize or completely remove this systematic mistake
[8–13].

To evaluate the bias and apply corrections, methods like corrective approach and bootstrap are frequently used [14–
17]. This method is useful when bias could compromise the validity of statistical conclusions. In the literature, inspired
by these two approaches, a large number of authors tackled BC-MLE issue. Among them are: [18–22].

3.1 A corrective approach

Let L(τ) be the log-likelihood function of a parameter with p dimensions τ = (τ1, τ2, ..., τn) based on a sample of
observations x. The derivatives of the log-likelihood function for i, j = 1, 2, 3, ..., p joint cumulants are given by

Mi j = E
[

∂ 2L(τ)
∂τi∂τ j

]
, (7)

Mi jl = E
[

∂ 3L(τ)
∂τi∂τ jdτl

]
, (8)

Mi j,l = E
[(

∂ 2L
∂τi∂τ j

)(
dL
dτl

)]
, (9)

where the derivatives of the joint cumulants are given by

M(l)
i j =

∂Mi j

∂τl
(10)

Up to the third order, the log-likelihood function exhibits regularity and good behavior for all derivatives [23].
Cox and Snell [24] demonstrated that the bias of the sth element of the MLE of is when sample data are independent

but not necessarily identically distributed

Bias(τ̂s) =
p

∑
i=1

p

∑
i=1

p

∑
i=1

MsiM jl
[

1
2

Mi jl +Mi j, l

]
+o(n−2)s = 1, 2, ..., p (11)

where Mi j is the Fisher information matrix’s (i, j)th inverse element. Then, Cordeiro and Cribari-Neto [8] noted that in
the event where the observations lack independence, the bias expression remains valid. In place of Equation (11) they
suggested the easy version that follows as appropriate

Bias (τ̂s) =
p

∑
i=1

Msi
p

∑
i=1

p

∑
i=1

[
M(l)

i j − 1
2
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]
M jl +o(n−2)s = 1, 2, ..., p (12)
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Given that the elements of the form defined in Equation (10), are absent from Eq. (12), Eq. (12) has a computational
advantage over Eq. (11).

Then, Let M =
{
−Mi j

}
It is Fisher’s information matrix of , and let a(l)i j = M(l)

IJ − 1
2

Mi jl they are elements A
(l)
= a(l)i j

matrix for i, j, l = 1, 2, 3, . . . , p. We have A =
[
A1

∣∣∣A2
∣∣∣A3

∣∣∣. . . ∣∣∣A(P)
]
, with A(l) =

[
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]
.

Consequently, the matrix representation of τ̂’s bias expression can be expressed as

Bias(τ̂) = M−1A · vec(M−1)+o(n−2). (13)

Thus, this shows that the BC-MLE of τ using the corrective approach (CA-MLE), τ̂CA−MLE , is given by

τ̂CMLE = τ̂ −M−1A · vec(M−1) (14)

where τ̂ is the MLE of τ , M̂ = M |τ=τ̂ , and Â = A |τ=τ̂ . Whereas the bias of τ̂CA−MLE is quadratic.
Related to IXG distribution, the derivatives are obtained as
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where Mi jl is defined as by assuming x = ey and dx = eydy
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Therefore, the bias MLE of IXG distribution is given by

Bias
(
θ̂
)
= M−1AVec(M−1)+o(n−2). (18)

And then,

θ̂CA−MLE = θ̂MLE −Bias(θ̂). (19)

4. Bootstrap approach
An alternative method based on the parametric bootstrap resampling methodology is used to produce second-order

bias-corrected estimators [3]. Let X = (x1, x2, x3, ..., xn) be a random sample of size n from the random variable X with
the distribution function F . By generating Bindependent bootstrap samples from distribution function F , the estimated
bias of the MLE of

⌢
τ is

Bias(τ̂MLE) =
1
B

B

∑
j=1

(τ̂∗j, MLE − τ̂MLE) (20)

Where τ̂∗j is theMLE of τ from the jth bootstrap sample generated from the IXG distribution. Then, the bias-corrected
bootstrap approach (BC-Boot) [9, 10] is defined as

τ̂BC−Boot = 2τ̂MLE − 1
B

B

∑
j=1

τ̂∗j, MLE . (21)

5. Simulation results
This simulation study’s objective is to assess how well the several estimators of the IXG distribution’s parameters:

MLE, CA-MLE, and BC-Boot perform. The IXG distribution was used to generate samples with sizes n = 10, 30, 50,
and 100, with parameters θ = 0.8, θ = 1.2, and θ = 3. Each case was generating under Monte Carlo samples with 5,000
times and 1,000 bootstrap samples in each time. The root mean square error (RMSE) and bias of the estimations, as well
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as their accuracy, are assessed, which they defined in Eq. (28) and Eq. (29), respectively, are reported. All results of the
averaged biases and RMSE are summarized in Tables 1-3.

Bias(τ̂) =
1
N

N

∑
i=1

(τ̂i, BC−MLE − τ̂MLE) (22)

RMSE(τ) =

√
1
N

N

∑
i=1

(τ̂i, BC−MLE − τ̂MLE)
2 (23)

From Tables 1-3, there are a few conclusions that can be reached.
For all the simulations considered, theMLE estimators of θ seem to be biased in the positive direction. This illustrates

how, in general, they overstate the parameter θ value, particularly in cases where the sample size is small. Furthermore,
when the real value of the parameter θ is equal to or larger than 0.8, the MLE estimators frequently exhibit a positive bias,
that is, they continuously overestimate the true value of the parameter θ for various sample sizes.

The BC-Boot and CA-MLE estimators outperformed the MLE estimators of θ in terms of Bias and RMSE in all
of simulations for different sample sizes. Further, the BC-Boot of θ outperformed the CA-MLE in terms of RMSE.
Conversely, CA-MLE attained better performance than BC-Boot for θ in terms of Bias.

Naturally, all of the analyzed estimators’ biases and RMSEs will decrease as sample size n increases. This is mostly
because most estimators in statistical theory perform better as sample size n increases. As previously stated, for small
sample numbers, both CA-MLE and BC-Boot show extremely significant reductions in bias and RMSE. For instance,
from Table 1, in the case of n = 10, it can be seen that the reduction in RMSE of both CA-MLE and BC-Boot was about
17.03% and 17.41% for θ lower than that of the MLE. On the other hand, the reduction for the same case of both CA-MLE
and BC-Boot in terms of Bias was 75.02% and 65.91% for θ lower than that of the MLE, respectively.

Finally, although the two approached, CA-MLE and BC-Boot, are equally efficient, the BC-Boot is computationally
easier than the CA-MLE.

Table 1. Average RMSE and Bias when θ = 0.8

n MLE CA-MLE BC-Boot

10 RMSE 0.3951 0.3278 0.3263
Bias 0.2138 0.0534 0.0729

30 RMSE 0.3349 0.2676 0.2661
Bias 0.2084 0.0594 0.0675

50 RMSE 0.3071 0.2385 0.237
Bias 0.207 0.0643 0.0658

100 RMSE 0.263 0.1959 0.1942
Bias 0.2061 0.0737 0.0781
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Table 2. Average RMSE and Bias when θ = 1.2

n MLE CA-MLE BC-Boot

10 RMSE 0.4512 0.3835 0.382
Bias 0.2695 0.0609 0.1285

30 RMSE 0.3906 0.3233 0.3218
Bias 0.264 0.0555 0.1232

50 RMSE 0.3628 0.2942 0.2929
Bias 0.2627 0.0541 0.1215

100 RMSE 0.3188 0.2516 0.2499
Bias 0.2618 0.0531 0.12

Table 3. Average RMSE and Bias when θ = 3

n MLE CA-MLE BC-Boot

10 RMSE 0.5045 0.4372 0.4357
Bias 0.3232 0.1146 0.1225

30 RMSE 0.4443 0.3772 0.3755
Bias 0.3178 0.1092 0.1169

50 RMSE 0.4165 0.3479 0.3464
Bias 0.3164 0.1078 0.1152

100 RMSE 0.3724 0.3053 0.3036
Bias 0.3155 0.1069 0.1122

6. Real data application
In this part, we use two real datasets with a small sample to demonstrate the usefulness of the suggested bias-corrected

estimators for the IXG distribution. The first dataset representing the life time failure of 18 electronic device [10]. This
data was further analyzed by M. Wang andWang [10]. The second dataset represents the tubes to show leak under 120 psi
stress level [11]. The sample size of this data is 30.This data was further analyzed by Çetinkaya and Bulut [17, 25–27].

The estimated values for the IXG distribution’s parameters are shown in Table 4. Table 4 shows that the MLE
technique overestimates this parameter since the estimates of from the CA-MLE and BC-Boot are smaller than the MLE
estimate.

The analysis of the IXG distribution pdf in relation to Table 4 for θ values of both datasets is shown in Figures 1 and
2, respectively. We suggest using CA-MLE and BC-Boot estimates for both datasets because the density shape based on
the MLE method may be deceptive, as this Figure illustrates.
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Table 4. Point estimates of the θ of IXG distribution for both data set used

Electronic device Show leak data

θ θ

MLE 1.1021 0.6841
CA-MLE 1.0446 0.6722
BC-Boot 1.0359 0.6536

Figure 1. Fitted density functions estimated of the first dataset

Figure 2. Fitted density functions estimated of the second dataset

7. Conclusion
In order to obtain straightforward closed-form equations for the second-order biases of the MLE of the parameters of

the IXG distribution, the corrective method was proposed in this paper. Namely: CA-MLE and BC-Boot. Comparing the
newly suggested estimators to the MLE, they converge to their genuine value much more quickly, as evidenced by their
biases being of order O(n−2)as opposed to O(n−1)for the MLE. in terms of bias and RMSE, the suggested approaches
exceed the MLE, as demonstrated by the numerical data, making them highly appealing. The suggested bias-corrected
estimators are highly advised, particularly in cases when the sample size is not large.
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