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Abstract: We have presented a study on the far-field behavior of weak nonlinear waves in magnetogasdynamics. An 
asymptotic analysis is carried out for the study. An evolution equation is obtained by using an asymptotic method which 
helps in learning the far-field behavior of a hyperbolic quasilinear system governing the propagation of nonlinear waves in 
a non-ideal gas. A numerical technique MVIM is employed to obtain the approximate solution of the evolution equation. 
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1. Introduction
The present paper deals with the study of weak nonlinear wave motion described by the hyperbolic system in the 

far-field, i.e., the field far away from the piston location. As we know that in the far-field any nonlinear convection is 
associated with the low frequency characteristic, therefore, the study of wave motion in the low frequency domain becomes 
a topic of one’s great interest. The plasma is taken to be of non-ideal gas with an infinite electrical conductivity in which 
the viscosity is neglected along with the effects of the heat conduction. It is also assumed to be permeated by the azimuthal 
magnetic field.

In the study of nonlinear physical phenomena, the evolutive or asymptotic equation, which is derived from the 
hyperbolic system of partial differential equations, plays an important role because it represents the character of its parent 
system, (for references see Sharma et al. [1], Germain [2], Radha and Sharma [3] and Hunter and Keller [4]). And, since, we 
do not have the liberty to always obtain an exact analytical solution for partial differential equations, we have to rely on 
numerical methods to obtain approximate solutions. Asymptotic analysis of nonlinear waves has been the subject of great 
interest from both physical and mathematical points of views to understand the behavior of nonlinearity.

Our analysis is based upon the work of Jena and Sharma [5], and Manickam et al. [6]. Jena and Sharma have studied the 
far-field behavior of waves in an inviscid relaxing gas by making use of the method of matched asymptotic expansions to 
find an approximate solution; whereas Manickam et al. incorporated certain modifications first and then used a different 
numerical scheme called as the semidiscrete collocation method, to find the numerical solutions. A number of problems 
relating to the wave propagation in MGD have been studied previously in which the works of Oliveri and Speciale [7], Bira 
and R. Shekhar [8], Sharma et al. [9], Gupta et al. [10], Kumar et al. [11] and Arora [12] are worth-mentioning.

In our work, we have first derived the asymptotic equation from the governing equations, which is found to be a 
generalized inviscid Burgers’ equation, by considering a formal expansion procedure which slowly varies the solution 
through the stretched coordinates. The Burgers’ equation is assumed to be one of the most important equations in studying 
the nonlinearity of the propagation of the planar and the cylindrical waves in the medium. This asymptotic equation 
describes the far-field behavior of the hyperbolic system of governing equations of magnetogasdynamics. And then 
we have applied the MVIM method Abassy [13, 14] on it to obtain its approximate solution. We have two different initial 
conditions to study the problem. The numerical solutions, absolute errors and the graphs are shown at the end of this paper, 
highlighting the effects of nonlinearity and non-ideal parameter b.

2. Derivation of asymptotic equation
Let us consider plasma of non-ideal gas with an infinite electrical conductivity in which the effects of heat

conduction and viscosity are neglected. We assume that an azimuthal magnetic field exists initially in the plasma and this 
magnetic field in the plasma remains azimuthal due to the assumption of infinite conductivity. We consider the following 
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hyperbolic system for an unsteady one-dimensional planar (m = 1) and cylindrically (m = 2) symmetric motion of 
magnetogasdynamics [15, 16]
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where u, ρ, p and γ are the gas velocity, gas density, gas pressure and the constant specific heat ratio, respectively; t is the 
time, r is the spatial coordinate which is either axial for planar flows (m = 1) or radial for cylindrically symmetric flows      
(m = 2), a is the speed of sound in an equilibrium medium given by a2 = γρ / ρ(1 - bρ), h is the magnetic pressure defined by 
h = μH 2 / 2 with μ being the magnetic permeability and H being the transverse magnetic field. We consider the following 
equation of state 

( )1 ,p b RTρ ρ− =

where R is the gas constant and T is the translational temperature.
Here, we are interested in studying the behavior of the wave motion described by the hyperbolic system (1) in the far-

field, i.e., far away from the piston location. So, we begin by considering a solution when a wave is propagating with a 
constant speed U into a homogeneous quiescent gas. We seek a progressive wave-type solution of the system (1) which is a 
function of t and variable ξ, given by ξ = r - Ut. When this new coordinate system (ξ, t) is introduced into the system (1), it 
changes into the following system:
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Let us now introduce a small parameter ε which represents the ratio of the attenuation length of the medium to the 
characteristic length of the medium. The low-frequency wave process is determined when ε2 ﹤﹤ 1. We, now, consider a 
formal expansion procedure which slowly varies solution of system (2) through the stretched coordinates (ζ, η), where       
ζ = εξ and η = ε2t. On introducing the stretched coordinates (ζ, η) into the system (2), it is transformed into the following 
system
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We look for an asymptotic solution of this system which exhibits the property of a progressive wave, of the form:
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where ρ0, p0 and h0 are the values of ρ, p and h, respectively, in the undisturbed region. Now, we introduce the equations 
(7)-(10) into the system of equations (3)-(6) with the initial conditions ρ = ρ0, u = 0, p = p0 and h = h0. We obtain equations 
in various powers of ε. Out of which we equate the coefficients of ε and ε2 to zero, and obtain the following sets of partial 
differential equations for the first and second-order variables:
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The first set of equations (11)-(12) yields a non-trivial solution provided
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and, thus, gives the following relations satisfied by the first order variables: 
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We obtain the values for second order variables )2()2( , ζζρ p  and )2(
ζh  from equations (13)-(16), which on using the 

equation (18), give us the following transport equation for p(1): 
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The equation (19), on simplification, yields the following equation:
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The equation (20) is called a generalized inviscid Burgers’ equation or evolution equation. This equation is 
considered to be one of the most important equations to study in detail the nonlinear behavior of the propagation of waves 
both in the planar (m = 1) and cylindrically (m = 2) symmetric waves in magnetogasdynamics.

0pγ

0pγ
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We introduce the non-dimensional parameters as follows:
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where xc, ac and ρc are some appropriate constants, which do not contain any parameter b.
This transformation reduces the equation (20) into the following form as:
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The equation (22) is called the transport equation, which describes the far-field behavior of the propagation of wave. 
The second term in it represents the effects of nonlinear convection and the third term represents the geometrical spreading. 
It may be noticed, here, that the equation (22) does not possess an exact solution, so here we use the Modified Variational 
Iteration Method (MVIM), to study the nonlinear behavior of the waves.

3. Basic concept of MVIM
To illustrate the basic concepts of MVIM, let us consider the following general non-linear initial value problem:
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where ,s

s

t
A

∂
∂

= , s = 1, 2, 3, ..., is the highest order partial derivative with respect to t, B is a linear operator and CV(x, t) is 
the nonlinear term. BV(x, t) and CV(x, t) are free of partial derivatives with respect to t and f (x, t) is the non-homogeneous 
term.

To use the Modified Variational Iteration Method for solving the nonlinear partial differential equation (23), the 
following iteration formula is used 
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where λ is a Lagrange multiplier [17] which can be optimally obtained by variational theory and given by equation (25); the 
subscript “n” denotes the n-th approximation, BVn and CVn are considered to have restricted variations, i.e.
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Fn(x, t) is a polynomial of degree (s(n + 1) -1) and is obtained from CVn(x, t) = Fn(x, t) + O(t s(n + 1)) and f n(x) is 
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to obtain an approximate power series solution for equation (23).
The second term on the right-hand side of equation (24) is called the correction term, and the equation (24) is 

called as correction functional. This modification of variational iteration method yields approximate power series solutions 
which converge to closed form solution of the equation (23) in a neighbourhood of initial point.

4. Application of the MVIM to the problem
Now, we shall use two different initial conditions to solve equation (22) by using the Modified Variational Iteration

Method (MVIM).
Case-I: Let us first consider the equation (22) with initial condition:

( , 1) 1 cos .P ζ η ζ= = −

To proceed further, we first use the transformation η - 1 = η* in above equations, which yields the following initial  
value problem on omitting the star sign,
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1 00,  1 cos ,V V ζ− = = −

and Fn(ζ, η) is the polynomial of degree n, which is obtained from the following formula: 
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Therefore, the Modified Variational Iteration Method yields the following iterative results:
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The higher approximations such as P4,  P5 and P6 are not shown here due to their large sized expressions. We 
computed the initial six iterations. The numerical results obtained by the MVIM 6th-approximation is shown in Table 1.

Table 1. The 6th-approximation of P obtained by the MVIM for m = 1 for different values of  ζ and η

η ζ 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1 0.004837 0.018722 0.040767 0.070155 0.106138 0.148036 0.195226

0.2 0.004691 0.017678 0.037614 0.063463 0.094503 0.130384 0.171142

0.3 0.004555 0.016767 0.035044 0.058677 0.088711 0.129422 0.188896

0.4 0.004428 0.015972 0.033157 0.057789 0.101355 0.194744 0.391873

0.5 0.004310 0.152972 0.032571 0.067674 0.171512 0.474369 1.200102

Table 2. The 6th-approximation of P obtained by the MVIM for m = 2 for different values of ζ and η

η ζ 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1 0.004635 0.018029 0.039488 0.068401 0.104240 0.146559 0.194920

0.2 0.004354 0.016676 0.036292 0.063514 0.099954 0.147375 0.205350

0.3 0.004129 0.015780 0.035737 0.068324 0.114980 0.168999 0.228682

0.4 0.003949 0.015528 0.038944 0.075924 0.118889 0.174043 0.210918

0.5 0.003813 0.016167 0.042506 0.077016 0.120099 0.120099 -2.212934
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(a) Initial Profile, η = 0
 

   

(b) m = 1, η = 0.15                                                                               (c) m = 2, η = 0.1

Figure 1. Effects of non-ideal parameter b on the solutions of 
the Burgers’ equation (22) for different values of “b” along with the initial profile

Case-II: Let us consider the transformations t = αη and x = βζ in the equation (22), which change it to 
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This equation (31) is called the inviscid Burgers’ equation which has an exact solution, found by Sachdev et al. [18] and 
Oliveri [19], and given by
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We shall consider the planar case, i.e., when m = 1, then the equation (33) along with the initial condition obtained 
from the exact solution (34), is reduced to the following equation
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Here, the equation (35) is the reduced form of the equation (22).  
Now, we shall apply the MVIM to solve the initial value problem given by equations (35) and (36).
Here, BV(x, t) = 0, CV(x, t) = PPx,  f (x, t) = 0. Also, s = 1 which gives λ(ζ ) = -1. For solving (35) along with (36) by 

the MVIM, the following iteration formula is used:
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We computed the iterations till the tenth-approximation. We then compare the results obtained by the MVIM with the 
exact solution given in (34) to illustrate the efficiency of the MVIM. The absolute errors between the 10th-approximation 
value obtained by the MVIM and the exact solution, for m = 1 and m = 2, are shown in Tables 3 and 4, respectively.

Table 3. Absolute error between the tenth-approximation solution by the MVIM and the exact solution for m = 1

t x -15 -10 1 5 12

0.05 7.105427 E-14 4.796163 E-14 4.551914 E-15 2.398082 E-14 5.684352 E-14

0.1 1.363638 E-10 9.091039 E-11 9.090950 E-12 4.545520 E-11 1.090914 E-10

0.15 1.128229 E-8 7.521525 E-9 7.521526 E-10 3.760762 E-9 9.025831 E-9

0.2 2.560000 E-7 1.706667 E-7 1.706667 E-8 8.533333 E-8 2.048000 E-7

0.25 2.861023 E-6 1.907349 E-6 1.907349 E-7 9.536743 E-7 2.288818 E-6

Table 4. Absolute error between the tenth-approximation solution by the MVIM and the exact solution for m = 2

t x -15 -10 1 5 12

0.05 1.196231 E-2 7.974874 E-3 7.974874 E-4 3.987437 E-3 9.569850 E-3

0.1 4.125232 E-2 2.750155 E-2 2.750155 E-3 1.375077 E-2 3.300186 E-2

0.15 8.091142 E-2 5.394095 E-2 5.394095 E-3 2.697047 E-2 6.472914 E-2

0.2 1.265676 E-1 8.437850 E-2 8.437850 E-3 4.218925 E-2 1.012542 E-1

0.25 9.674374 E-1 1.169464 E-1 1.169464 E-2 5.847323 E-2 1.403357 E-1

   
(a) Exact solution for m = 1                                                    (b) Exact solution for m = 2

   
(c) Approximate solution for m = 1                                              (d) Approximate solution for m = 2

Figure 2. The solutions of the Burgers’ equation (35) with initial condition (36) with varying “t ” with values from 0.05 to 1.0
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5. Results and conclusion
In the present paper we used an asymptotic method to derive a far-field evolution equation of the governing 

hyperbolic system of the equations describing planar and cylindrically symmetric flows in magnetogasdynamics. We 
studied the behavior of propagation of waves in the far-field of the original system with the help of the so-obtained 
asymptotic equation, i.e., Burgers’ equation. This asymptotic equation describes the characteristics of its parent system. 
The MVIM numerical scheme is used to obtain the analytical solution for the asymptotic equation, and numerical results 
are also compared with the exact analytical solution for the symmetric flows. These absolute errors may be improved by 
increasing the number of iterations. It is observed that due to the geometrical spreading, the flattening in amplitude of the 
profile takes place. The effect of the parameter b is exhibited through the Figure 1.
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