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Abstract: The Whittaker-Henderson (WH) graduation of order 1 is a smoothing/filtering method for equally spaced
one-dimensional data. Inspired by Phillips and Shi, this paper introduces the boosted version of the WH graduation of
order 1. We show that it is a graph spectral filter using the discrete cosine transform, and then provide a simple formula
for the (i, j) entry of its smoother matrix. We also show that it is a linear smoother such that the filter weights sum to
unity and the smoother matrix is bisymmetric, i.e., symmetric and centrosymmetric. GNU Octave user-defined functions
based on the obtained results are also provided.
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1. Introduction
The Whittaker-Henderson (WH) graduation of order 1, or WH(1) graduation for short, is a smoothing/filtering

method for equally spaced one-dimensional data. The filter has a long history, and its origin can be traced back to
Bohlmann [1] at least. For the history of the WH graduation, see Weinert [2]. The WH graduation of order 2 is called
the Hodrick-Prescott (HP) [3] filter in the field of econometrics and it is a prominent method for trend estimation of
macroeconomic time series data. Roughly speaking, the HP filter is suitable for smoothing data with a linear trend, while
the WH(1) graduation is suitable for smoothing data without a trend.

Recently, Phillips and Shi [4] made a major improvement to the HP filter. By adapting the L2-boosting procedure
in machine learning to the HP filter, they developed a boosted HP (bHP) filter. The new filter is designed to recover the
trend elements retained in the trend residuals. Several studies concerning the bHP filter have since emerged, including
Knight [5], Biswas et al. [6], Hall and Thomson [7], Mei et al. [8], Tomal [9], Widiantoro [10], and Lu and Pagan [11].

Inspired by Phillips and Shi [4], as the bHP filter was developed from the HP filter, in this paper, we introduce a
boosted version of the WH graduation of order 1. We shall call it boosted WH (1) graduation or bWH (1) graduation for
short. Roughly speaking, as before, the bHP filter is suitable for smoothing data with a linear trend, while the bWH(1)
graduation is suitable for smoothing data without a trend. After defining it, we show that it is a graph spectral filter
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Shuman, et al. [12] using the discrete cosine transform (DCT) Ahmed et al. [13]. Then, we provide a simple formula for
the (i, j) entry of its smoother matrix. We also show that it is a linear smoother such that the filter weights sum to unity
and the smoother matrix is bisymmetric, i.e., symmetric and centrosymmetric. GNU Octave user-defined functions based
on the obtained results are also provided.

Here, we mention related studies. Yamada and Jahra [14] studied the WH(1) graduation and derived a formula for
the (i, j) entry of its smoother matrix. Subsequently, Yamada [15, Proposition 4.10 (iv)] provided a simpler formula for
it. In addition, Yamada [16, Theorem 2.2] showed that the smoother matrix of the WH(1) graduation is bisymmetric. This
paper includes generalized results from Yamada [15, 16].

The organization of the paper is as follows. In Section 2, we introduce the bWH(1) graduation and provide some
remarks about it. In Section 3, we present the main results. In Section 4, we give some reasons why the bWH(1) graduation
is required. Section 5 concludes the paper. In the Appendix, we provide proofs and GNU Octave user-defined functions.

Table 1. List of acronyms

WH graduation Whittaker-Henderson graduation

WH(1) graduation Whittaker-Henderson graduation of order 1

HP filter Hodrick-Prescott filter
bHP filter boosted Hodrick-Prescott filter

bWH(1) graduation boosted Whittaker-Henderson graduation of order 1

DCT discrete cosine transform
OLS ordinary least squares

2. The boosted WH(1) graduation
The WH(1) graduation is defined by the following minimization problem:

min
x1, ..., xn

f (x1, . . . , xn) =
n

∑
i=1

(yi − xi)
2 +λ

n

∑
i=2

(xi − xi−1)
2, (1)

where λ ∈ [0, ∞) is a smoothing parameter that controls fidelity, ∑n
i=1(yi − xi)

2, and smoothness, ∑n
i=2(xi − xi−1)

2. Let
yyy = [y1, . . . , yn]

⊤, xxx = [x1, . . . , xn]
⊤, IIIn be the identity matrix of order n, and DDD be the (n− 1)× n matrix such that

DDDxxx = [x2 − x1, . . . , xn − xn−1]
⊤. In addition, for a vector ξξξ = [ξ1, . . . , ξl ]

⊤, let ∥ξξξ∥2 = ∑l
i=1 ξ 2

i . Then, (1) can be
represented in matrix form as

min
xxx

f (xxx) = ∥yyy− xxx∥2 +λ∥DDDxxx∥2 = xxx⊤(IIIn +λDDD⊤DDD)xxx−2yyy⊤xxx+ yyy⊤yyy. (2)

Since f (xxx) is a quadratic function of xxx whose Hessian matrix, 2(IIIn +λDDD⊤DDD), is positive definite, there exists x̃xx such
that f (xxx)> f (x̃xx) for all xxx ∈ Rn\{x̃xx}. Explicitly, it is given by x̃xx = SSSyyy, where SSS = (IIIn +λDDD⊤DDD)−1, which is the smoother
matrix of the WH(1) graduation.

Let us define the bWH(1) graduation. It is defined by

x̂xx(m) = SSS(m)yyy. (3)
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Here, SSS(m) = IIIn − (IIIn −SSS)m, where m is a positive integer. Note that since x̂xx(1) = SSS(1)yyy = {IIIn − (IIIn −SSS)}yyy = SSSyyy = x̃xx,
it is a generalization of the WH(1) graduation.

3. The main results
In this section, we show that the bWH(1) graduation is a type of graph spectral filter such that its graph Fourier

transform is the DCT. Then, we provide an explicit formula for the (i, j) entry of SSS(m). We also show that the bWH(1)
graduation is a linear smoother whose filter weights sum to unity and SSS(m) is bisymmetric.

Consider the undirected graph G = (V, E) such thatV = {v1, . . . ,vn} and E = {{v1, v2}, . . . , {vn−1, vn}}, which is
a path graph, and denote its graph Laplacian by LLL. Then, LLL is an n×n tridiagonal symmetric matrix (e.g., Nakatsukasa et
al. [17], Strang andMacNamara [18, Eq. (9.1)]). Since DDD⊤ is an incidence matrix ofG = (V, E), it follows that LLL = DDD⊤DDD.
Then, the smoother matrix of the WH(1) graduation, SSS, can be represented in term of LLL as

SSS = (IIIn +λLLL)−1. (4)

LetQQQ = diag(q1, . . . , qn) and PPP = [ppp1, . . . , pppn], where (qi, pppi) for i = 1, . . . , n are the eigenpairs of a real symmetric
matrix LLL such that q1, . . . , qn are in ascending order and ppp1, . . . , pppn are orthonormal eigenvectors. Then, from, e.g., von
Neumann [19], qi for i = 1, . . . , n are explicitly represented as

qi = 2−2cos
{
(i−1)π

n

}
= 4sin2

{
(i−1)π

2n

}
, i = 1, . . . , n. (5)

In addition, we can let ppp1 =
1√
n

ιιι , where ιιι is the n-dimensional vector of ones, and

pppi =

√
2
n
[cos{(i−1)θ1} , cos{(i−1)θ2} , . . . , cos{(i−1)θn}]⊤ , i = 2, . . . , n,

where θh =

(
h− 1

2

)
π

n
for h = 1, . . . , n.

Remark 1We give three remarks on the eigenpairs.
(i) PPPQQQPPP⊤ is a spectral decomposition of LLL.
(ii) PPP⊤yyy is the DCT of yyy (e.g., Strang [20], Yamada, [21]).
(iii) It follows that 0 = q1 < q2 < · · ·< qn < 4. Accordingly, q2 is the Fiedler eigenvalue and the rank of LLL is n−1,

which is consistent with that the number of connected components of G = (V, E) is unity (see, e.g., Bapat [22], Gallier
[23]).

Let ΦΦΦ = diag(ϕ1, . . . , ϕn), where ϕi = 1−
(

λqi

1+λqi

)m

for i = 1, . . . , n. Here, given that λ > 0, 0 = q1 < q2 <

· · ·< qn, and m is a positive integer, it follows that

1 = ϕ1 > ϕ2 > · · ·> ϕn > 0. (6)

For a proof of (6), see Appendix A.1.
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Given that LLL = PPPQQQPPP⊤ and PPP is an orthogonal matrix, it follows that SSS = (IIIn + λLLL)−1 = (PPPPPP⊤ + λPPPQQQPPP⊤)−1 =

PPP(IIIn +λQQQ)−1PPP⊤. Accordingly, the smoother matrix of the bWH(1) graduation SSS(m) can be represented in term of PPP and
ΦΦΦ as follows.

SSS(m) = IIIn − (IIIn −SSS)m = PPPPPP⊤−
{

PPPPPP⊤−PPP(IIIn +λQQQ)−1PPP⊤
}m

= PPPPPP⊤−PPP
{

IIIn − (IIIn +λQQQ)−1}m
PPP⊤

= PPP
[
IIIn −

{
IIIn − (IIIn +λQQQ)−1}m

]
PPP⊤ = PPPΦΦΦPPP⊤.

(7)

Here, the last equality in (7) follows because ΦΦΦ = IIIn −
{

IIIn − (IIIn +λQQQ)−1
}m. Note that PPPΦΦΦPPP⊤ in (7) is a spectral

decomposition of SSS(m).
Consequently, we obtain the following result.
Proposition 1 The boosted WH(1) graduation is a graph spectral filter such that it is given by x̂xx(m) = PPPΦΦΦPPP⊤yyy.
Proof. It immediately follows from (7) .
Remark 2 Concerning Proposition 1, we give three remarks.
(i) The calculation of PPPΦΦΦPPP⊤yyy can be decomposed as the following three steps:
Steps 1 PPP⊤yyy: DCT of yyy.
Steps 2 ΦΦΦ(PPP⊤yyy): low-pass filtering of (PPP⊤yyy).
Steps 3 PPP(ΦΦΦPPP⊤yyy): inverse DCT of (ΦΦΦPPP⊤yyy).
Note that we can also see the same structure in the WH(1) graduation and in the filter considered by Garcia [24].

Here, Garcia’s [24] filter is given by xxx† = (IIIn +λLLL2)−1yyy.
(ii) Let η(yyy) denote the von Neumann’s [19] ratio of yyy:

η(yyy) =
∑n

i=2(yi − yi−1)
2/(n−1)

∑n
i=1(yi − ȳ)2/n

=
n

n−1
yyy⊤LLLyyy
yyy⊤MMMyyy

, (8)

where ȳ =
1
n

n

∑
i=1

yi and MMM = IIIn − ιιι(ιιι⊤ιιι)−1ιιι⊤. Then, given that (a) ppp⊤i LLLpppi = qi and ppp⊤i MMMpppi = 1 for i = 2, . . . , n and (b)

0 < q2 < · · ·< qn, it follows that

0 < η(ppp2)< · · ·< η(pppn), (9)

which implies that pppi is smoother than pppi+1 for i = 2, . . . , n−1. Incidentally, the von Neumann’s ratio η(yyy) in (8) can be
regarded as a type of Geary’s c, which is a prominent spatial autocorrelation measure. Accordingly, denoting the Geary’s
c of yyy by c(yyy), it follows that 0 < c(ppp2)< · · ·< c(pppn). For details on the Geary’s c, see, e.g., Yamada [25], [26] and the
references therein.

(iii) A GNU Octave user-defined function to calculate x̂xx(m) based on Proposition 1, calc_xhat_dct, is provided in
Appendix B. 1. It utilizes dct and idct functions.

Given that ϕ1 = 1 and ppp1 ppp⊤1 =
1
n

ιιιιιι⊤, it follows that
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SSS(m) = PPPΦΦΦPPP⊤ =
n

∑
k=1

ϕk pppk ppp⊤k =
1
n

ιιιιιι⊤+
n

∑
k=2

ϕk pppk ppp⊤k . (10)

Consequently, we obtain the following result.
Proposition 2 Denote the (i, j) entry of SSS(m) by s(m)

i, j . Then, it follows that

s(m)
i, j =

1
n
+

2
n

n

∑
k=2

ϕk cos{(k−1)θi}cos{(k−1)θ j}, i, j = 1, . . . , n. (11)

Proof. It immediately follows from (10).
From Proposition 2, we have the following results.
Corollary 1 The row/column sum of SSS(m) equals unity.

Proof. Given that ppp⊤1 pppk = 0 for k = 2, . . . , n, it follows that
√

2
n

n

∑
j=1

cos{(k−1)θ j}= 0. Then, from Proposition 2,

we obtain

n

∑
j=1

s(m)
i, j =

n

∑
j=1

1
n
+

2
n

n

∑
k=2

ϕk cos{(k−1)θi}
n

∑
j=1

cos{(k−1)θ j}= 1.

Given that SSS(m) is symmetric, ∑n
j=1 s(m)

i, j = 1 implies ∑n
i=1 s(m)

i, j = 1.
Corollary 2 SSS(m) is bisymmetric.
Proof. From (11), it immediately follows that s(m)

i, j = s(m)
j, i for i, j = 1, . . . , n. Thus, SSS(m) is symmetric. Next, we

show that SSS(m) is centrosymmetric. Given that θh =

(
h− 1

2

)
π

n
, it follows that

cos{(k−1)θn−i+1}= cos

(k−1)

(
n− i+1− 1

2

)
π

n

= cos{(k−1)π − (k−1)θi}

= cos{(k−1)π}cos{(k−1)θi}+ sin{(k−1)π}sin{(k−1)θi}

= cos{(k−1)π}cos{(k−1)θi}.

Accordingly, given that cos2{(k−1)π}= 1, we have

cos{(k−1)θn−i+1}cos{(k−1)θn− j+1}= cos2{(k−1)π}cos{(k−1)θi}cos{(k−1)θ j}

= cos{(k−1)θi}cos{(k−1)θ j}, i, j = 1, . . . , n.
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Thus, it follows that

s(m)
n−i+1, n− j+1 =

1
n
+

2
n

n

∑
k=2

ϕk cos{(k−1)θn−i+1}cos{(k−1)θn− j+1}

=
1
n
+

2
n

n

∑
k=2

ϕk cos{(k−1)θi}cos{(k−1)θ j}= s(m)
i, j i, j = 1, . . . , n,

which proves that SSS(m) is centrosymmetric. Therefore, SSS(m) is bisymmetric.
Remark 3 Concerning Proposition 2 and Corollaries 1-2, we give five remarks.
(i) Proposition 2 (resp. Corollary 2) can be regarded as a generalization of Yamada [15, Proposition 4.10 (iv)] (resp.

a part of Yamada [16, Theorem 2.2]).
(ii) Denote the i-th entry of x̂xx(m) by x̂(m)

i .
Then, from Corollary 1, it follows that

x̂(m)
i = s(m)

i, 1 y1 + · · ·+ s(m)
i, n yn, (12)

where ∑n
j=1 s(m)

i, j = 1 for i = 1, . . . , n. That is, the bWH(1) graduation is a linear smoother whose filter weights sum to
unity.

(iii) Since SSS(m) is centrosymmetric, it can be represented as in Abu-Jeib [27, Lemma 2.3]. Since SSS(m) is also
symmetric, the computational effort is further reduced. Thus, it is sufficient to compute about a quarter of the total
entries.

(iv) Let JJJn be the n× n exchange matrix. Explicitly, it is defined by JJJn = [eeen, . . . , eee1], where eee j denotes the j-th
column of IIIn for j = 1, . . . , n. Then, we can provide another proof of Corollary 2 using JJJn, which is given in Appendix
A. 2.

(v) A GNUOctave user-defined function to calculate x̂xx(m) based on Proposition 2 and Corollary 2, calc_xhat_bisy
mmetry, is provided in Appendix B. 2.

4. Supplementary
In Section 1, we stated that (i) the bWH(1) graduation is suitable for smoothing data without a trend and (ii) the

bHP filter developed by Phillips and Shi [4] is designed to recover the trend elements retained in the trend residuals.
This section provides additional information about those issues, which give some reasons why the bWH(1) graduation is
required. In Section 4.1, we present one of the reasons of the first issue. In Section 4.2, we illustrate how the bWH(1)
graduation recovers the smooth elements retained in the residuals of the WH(1) graduation, yyy− x̃xx.

4.1 On the first issue

Since ϕi = 1−
(

λqi

1+λqi

)m

→ 0 as λ → ∞ for i = 2, . . . , n, from (10), it follows that

SSS(m) =
1
n

ιιιιιι⊤+
n

∑
k=2

ϕk pppk ppp⊤k → 1
n

ιιιιιι⊤, (λ → ∞). (13)
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In addition, given ϕ1 = 1, since ϕi = 1−
(

λqi

1+λqi

)m

→ 1 as λ → 0 for i = 2, . . . , n, from (7), it follows that

SSS(m) = PPPΦΦΦPPP⊤ → PPPPPP⊤ = IIIn, (λ → 0). (14)

Accordingly, we have the following results.
Proposition 3 (i) x̂xx(m) = SSS(m)yyy → ιιι(ιιι⊤ιιι)−1ιιι⊤yyy = ȳιιι as λ → ∞ and (ii) x̂xx(m) = SSS(m)yyy → yyy as λ → 0.
Proof. (i) and (ii) immediately follow from (13) and (14), respectively.
Remark 4We give two remarks on Proposition 3.
(i) An n×nmatrix ιιι(ιιι⊤ιιι)−1ιιι⊤ is the orthogonal projectionmatrix onto the space spanned by ιιι and ȳ=(ιιι⊤ιιι)−1ιιι⊤yyy=

argminµ∈ ∥yyy−µιιι∥2.
(ii) The bHP filter does not have the property (i) in Proposition 3. For this reason, the bWH(1) graduation is more

suitable for smoothing data without a trend than the bHP filter.

4.2 On the second issue

Since SSS(2) = IIIn − (IIIn −SSS)2 = IIIn − (IIIn −2SSS+SSS2) = SSS+SSS(IIIn −SSS), it follows that

x̂xx(2) = SSS(2)yyy = SSSyyy+SSS(IIIn −SSS)yyy = x̃xx+SSS(yyy− x̃xx). (15)

Given that SSS = (IIIn +λDDD⊤DDD)−1 is a low-pass filter, SSS(yyy− x̃xx) in (15) represents recovered smooth elements retained
in the residuals of the WH(1) graduation. It is the gain of the boosting. Incidentally, such a gain occurs because SSS is not
orthogonal to yyy− x̃xx. This is in contrast to OLS regression, where the hat matrix is orthogonal to the residual vector.

5. Concluding remarks
In this paper, after defining the boosted WH graduation of order 1, we obtained some results on it. Specifically,

we showed that it is a graph spectral filter using the DCT, and then provided a simple formula for the (i, j) entry of its
smoother matrix. We also showed that it is a linear smoother such that the filter weights sum to unity and the smoother
matrix is bisymmetric. They were summarized in Propositions 1-2 and Corollaries 1-2. In addition, we gave some reasons
why the bWH(1) graduation is required and provided GNU Octave user-defined functions based on the results obtained.

Finally, we give a remark. To apply the bWH(1) graduation, the values of the two parameters in (3), m and λ , must
be specified. To specify m in the bHP filter, Phillips and Shi [4] suggested using an information criterion, and we can
consider a similar one:

IC(m) =
∥yyy− x̂xx(m)∥2

∥yyy− x̃xx∥2 + log(n)
tr(SSS(m))

tr(IIIn −SSS)
. (16)

Here, tr(SSS(m)), which equals tr(ΦΦΦ) = ∑n
i=1 ϕi, denotes the effective degrees of freedom Hastie et al. [28] of the

bWH(1) graduation. Specifying these parameters is an important research topic, but is beyond the scope of this paper. We
are researching this issue and will report our findings in the future.
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Appendix A: Proofs
A.1 Proof of (6)

(i) Given q1 = 0, ϕ1 = 1 immediately follows. (ii) Given that both λ and qn are positive, it follows that 0<
λqn

1+λqn
<

1. Then, given that m is a positive integer, we obtain 0 <

(
λqn

1+λqn

)m

< 1, which yields ϕn = 1−
(

λqn

1+λqn

)m

>

0. (iii) For i = 2, . . . , n, it follows that ϕi−1 − ϕi =

{
1−

(
λqi−1

1+λqi−1

)m}
−
{

1−
(

λqi

1+λqi

)m}
=

(
λqi

1+λqi

)m

−(
λqi−1

1+λqi−1

)m

. Here, it follows that
λqi

1+λqi
− λqi−1

1+λqi−1
=

λqi(1+λqi−1)−λqi−1(1+λqi)

(1+λqi)(1+λqi−1)
=

λ (qi −qi−1)

(1+λqi)(1+λqi−1)
,

from which, given that λ > 0 and qi > qi−1 ≥ 0, we obtain
λqi

1+λqi
>

λqi−1

1+λqi−1
≥ 0. Thus, given that m is a positive

integer, it follows that ϕi−1 − ϕi =

(
λqi

1+λqi

)m

−
(

λqi−1

1+λqi−1

)m

> 0, which yields ϕ1 > · · · > ϕn. Combining (i)-(iii)

yields (6).

A.2 Another proof of Corollary 2

We prove that SSS(m) is centrosymmetric by showing JJJnSSS(m)JJJn = SSS(m). From Yamada [16, Theorem 2.2], it follows that
JJJnSSSJJJn = SSS. In addition, JJJ2

n = IIIn. Then, JJJn(IIIn−SSS)JJJn = JJJ2
n−JJJnSSSJJJn = (IIIn−SSS). Suppose that JJJn(IIIn−SSS)r−1JJJn = (IIIn−SSS)r−1,

where r is an integer greater than or equal to 2. Then, it follows that

JJJn(IIIn −SSS)rJJJn = JJJn(IIIn −SSS)r−1(IIIn −SSS)JJJn = JJJn(IIIn −SSS)r−1JJJnJJJn(IIIn −SSS)JJJn

= (IIIn −SSS)r−1(IIIn −SSS) = (IIIn −SSS)r.

Thus, by mathematical induction, JJJn(IIIn −SSS)mJJJn = (IIIn −SSS)m. Consequently,

JJJnSSS(m)JJJn = JJJn{III − (IIIn −SSS)m}JJJn = JJJ2
n − JJJn(IIIn −SSS)mJJJn = IIIn − (IIIn −SSS)m

= SSS(m).

Thus, SSS(m) is centrosymmetric. Therefore, given that SSS(m) is symmetric, SSS(m) is bisymmetric.

Appendix B: GNU octave user-defined functions
In this section, we provide some GNU Octave user-defined functions. Among them, calc_xhat_dct is a function

to calculate x̂xx(m) based on Proposition 1. It utilizes dct and idct functions. calc_xhat_bisymmetry is a function to
calculate x̂xx(m) based on Proposition 2 and Corollary 2.

B.1 calc_xhat_dct

1 function [xhat] = calc_xhat_dct (y, lambda, m)
2 pkg load signal;
3 n = length (y);
4 [phivec] = calc_phivec (n, m, lambda);
5 xhat = idct (phivec.∗ dct (y));

Contemporary Mathematics 2036 | Ruoyi Bao, et al.



6 end

B.2 calc_xhat_bisymmetry

1 function [xhat] = calc_xhat_bisymmetry (y, lambda, m)
2 n = length (y); Sm = zeros (n, n); Tm = zeros (n, n);
3 I = eye (n); J = I (:, n: -1: 1);
4 for i = 1: n
5 for j = 1: n
6 if i > = j
7 if i + j < n + 1
8 Sm(i, j) = calc_sm_ij (n, m, lambda, i, j);
9 elseif i + j == n + 1
10 Tm (i, j) = calc_sm_ij (n, m, lambda, i, j);
11 end
12 end
13 end
14 end
15 Sm = Sm + Sm’-diag (diag (Sm));
16 Sm = (Sm + J ∗ Sm ∗ J) + (Tm + J ∗ Tm ∗ J);
17 xhat = Sm ∗ y;
18 end

B.3 Subroutines

1 function [phivec] = calc_phivec (n, m, lambda )
2 iota = ones (n, 1) ; tau = (1: n)’;
3 lamqvec = 2∗ lambda ∗(iota-cos ((tau-iota) ∗ pi/n));
4 phivec = iota-(lamqvec./(iota + lamqvec)).^m;
5 end

1 function [sm_ij ] = calc_sm_ij (n, m, lambda, i, j)
2 [phivec] = calc_phivec (n, m, lambda);
3 theta_i = (i-1/2) ∗ pi/n; theta_j =(j-1/2)∗ pi/n;
4 psi = 0;
5 for k = 2: n
6 psi = psi+phivec (k)∗ cos ((k-1)∗ theta_i )∗ cos ((k-1)∗ theta_j);
7 end
8 sm_ij = (1/n) +(2/n)∗ psi;
9 end
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