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Abstract: A theoretical analysis is conducted on the electrochemical behaviour of micro disk electrodes coated with
thin coatings of electroactive polymers. The main focus of efforts to characterize the planar diffusion chemical reaction
within polymer-modified ultra-microelectrodes is the creation of a theoretical model that explicitly takes into account the
potential for the polymer film to cover the inlaid micro disc support surface. Approximate formulae for the steady-state
amperometric response and formulation of the boundary value problem are given. The impact of substrate concentration,
mediator concentration and current responsiveness in the solution besides the polymer film is also investigated. Akbari-
Ganji Method (AGM) and Differential Transformation Method (DTM), two adequate and widely available analytical
methods, were utilized to determine the steady-state non-linear diffusion equation. The approximate analytical solution
for the substrate concentration and mediator concentration and the current for the small experimental kinetic values and
diffusion coefficients are presented. We additionally determine the problem’s numerical solution using the MATLAB tool.
A satisfactory agreement can be seen when the numerical outcomes verify with the analytical findings.

Keywords: Nonlinear Differential Equation, Akbari-Ganji Method and Differential Transformation Method, Modified
Polymer Ultra-Microelectrodes
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Nomenclature
S∞ The substrate’s bulk concentration, µM
A The electrode’s radius, µm
CΣ The total amount of oxidised and reduced mediator species, µM

DS Substrate’s diffusion coefficient,
µm2

s

DE Coefficient of diffusion of the oxidised mediator,
µm2

s
r Radial unit, µm
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b Oxidised mediator concentration, µM
s Substrate concentration, µM
k The mediator-substrate reaction’s bimolecular rate constant, ms
A Area of the hemispherical electrode, µm2

F Faraday constant, C/mol
u Dimensionless substrate concentration
v Dimensionless mediator concentration
u(0) Dimensionless substrate concentration at electrode surface
ρ =

γE

γS
Dimensionless parameter

γS Substance diffusion in the film contrasted with catalytic reaction (Dimensionless diffusion parameters)
γE Electron diffusion in the film contrasts with catalytic reaction (Dimensionless reaction parameters)
ψ Normalized steady-state current
K Partition coefficient
I Net current, none
x Radial distance without dimensions emitted from the Polymer hemisphere’s source, none
n Number of electrodes, none

1. Introduction
Throughout the previous fifteen years, two main areas have received the majority of electrochemistry research

effort; the first focuses on researching and creating chemically modified electrode materials for specific technological
uses domains like energy, electro catalysis, and chemical sensing conversion and storage [1–3]. The second area being
studied is the creation of tiny electrode structures. The dimensions of these voltammetry ultra-microelectrodes are usually
micrometres, ranging from 0.5 to 50 mm [4–6]. In this study, we provide an analytical model that explains the behaviour
of the catalyst thin coatings of electronically conducting organic polymers on micro disk electrodes that have undergone
chemical modification.

To create an electroactive thin film, oxidative electrochemical species-to-monomer polymerization deposits the
macromolecular chemical microstructure onto a support electrode’s surface. There is a sequence of ionic and electronic
conductivity in the deposited coating.

Electrodes modified with polymers are especially appealing for applications involving chemical sensing [7–11]. A
polymer sensor that functions under amperometric conditions has a simple concept; instead of reacting at the underlying
support electrode, within the polymer film matrix, active receptor sites immobilised in three dimensions interact with the
redox-active substrate of interest. In general, the polymer layer mediates substrate oxidation or reduction. The charge
can pass through the polymer’s chains and across the contact between the polymer and the support electrode because the
polymer film is electroactive, which allows current to flow. The concentration of the substrate will have a direct bearing
on this current flow. The kinetics of the substrate/product transition are inextricably governed by the properties of the
mediating electroactive polymer film because electron transfer occurs between the substrate and the catalytic/receptor site.
The polymer film’s degree of conductivity, the mediating sites’ catalytic properties, the interaction between the site and
substrate, and the polymer film’s structure will all be significant.

It is demonstrated that planar diffusion of the substrate within the layer may be used in place of planar diffusion when
the radius of the inlaid micro disc is significantly larger than the thickness of the polymer film. This theoretical analysis
considers simple planar diffusion and chemical reaction within a polymer-modified electrode. The precise geometrical
pattern that an electrodeposited conducting polymer layer on microelectrode support will adopt is impossible to predict
with any degree of accuracy. An effect known as the “spill over” layer will be seen. Without significantly spilling over into
the nearby sheath, the layer may develop in an approximate pattern from the conductive ultra-micro-disc surface below,
or it may extend onto and partially cover the latter region, which will be flush with the embedded micro-disc. When
the equations describing transport and kinetic processes within the layer are solved, it is evident that any geometrical
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arrangement will result in a distinct set of mathematical boundary conditions and will need the employment of distinct
distance normalization schemes.

Albery, Hillman [12], and Andrieux et al. have contributed fundamentally to enhanced electron transport in
electroactive polymer films positioned on large electrode surfaces explained theoretically [13]. Although the latter
methods are detailed differently, they provide similar results. Each technique considers the planar diffusion substrate
inside the polymer matrix. When polymer sheet deposition over a microelectrode, many concepts can be applied to
facilitate electron transfer utilising polymer-modified macro-sized electrodes. For example, the assumption that the
response of net current is influenced by substrate diffusion through polymer matrix pores, charge percolation along the
polymer strands, immobilised redox group and substrate will be subject to bimolecular chemical interaction.

We review the characteristics of ultramicrodisc electrodes with thin poly (pyrrole) coatings applied to them to change
their electrical conductivity. We are concentrating on that materials as potential amperometric electrochemical sensors.
No approximate analytical results were previously done for planar-modified polymer-coated ultra-micro electrodes. This
connection aims to give approximate analytical formulas for the steady-state substrate and mediator concentration and the
current for an ultra-microelectrode modified with polymer for all values of γS and γE using the Akbari-Ganji method and
differential transformation method.

2. Formulation of the problem
The nonlinear reaction-diffusion equations contain nonlinear chemical reaction components; they are challenging to

solve using traditional analytical techniques combined with initial and boundary conditions. As a result, approximations
must be found. The solution layer close to the microelectrode is expected to have a significant substrate diffusion. This
work aims to electrodeposit a conductive polymer coating with little spill over. The following is an expression for the
nonlinear equations governing the steady-state conditions [14].

DEb′′ (r)− ks(r)b(r) = 0 (1)

DSb′′ (r)− ks(r)b(r) = 0 (2)

where s stands for the substrate concentration in the polymer film, while b stands for the oxidised mediator concentration,
k is the bimolecular rate constant of the mediator-substrate reaction. Furthermore, r stands for the radial coordinate.
Boundary conditions for this equation can be elucidated as follows:

r = 0, b =CΣ,
ds
dr

= 0, (3)

r = a,
db
dr

= 0, s = ks∞ (4)

WhereCΣ = s+b represents the overall mediator concentration, both oxidised and reduced, electrode radius is a and
s∞ denotes the substrate concentration.

In Figure 1, the shape chosen by an electroactive polymer film placed over an inlaid micro disc electrode is
represented diagrammatically. It is anticipated that the spill over of polymer onto the nearby insulating layer.
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Figure 1. Diagrammatic depictions of the polymer-coated microelectrode onto an ultra-micro disc

Figure 2 illustrates the chemical interaction between the substrate and the species will be bimolecular, and radical
substrate diffusion will occur inside the thin film. We also handle the deposited film as a homogeneous medium. r denotes
the distance coordinator. The substrate splits into the layer with a partition coefficient of K and corresponding DS and DE .
Electron hopping diffusion coefficient and substrate diffusion coefficient, respectively.

Figure 2. The model of the reaction system, where r is the radius from the polymer radical centre

The net current ′I′ can be articulated as

I =
i

nFA
=−DE

(
db
dr

)
r=0

= DS

(
ds
dr

)
r=a

(5)

F stands for the Faraday constant. A denotes the electrode area and the electrode reaction’s charge number by n. We
introduce dimensionless variables [15, 16] to make the non-linear differential equations described in Equations (1) and
(2) dimensionless
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u =
s

ks∞ , v =
b

CΣ
, x =

r
a
, γE =

kKs∞a2

DE
, γS =

kCΣa2

DS
(6)

The chemical reaction/diffusion parameters γE and γS estimate the proportion of charge percolation rates to chemical
reaction rates. The subsequent nonlinear system of equations has the following expression.

d2u(x)
dx2 − γS u(x)v(x) = 0 (7)

d2v(x)
dx2 − γE u(x)v(x) = 0 (8)

at

x = 0,
du
dx

= 0, v = 1 (9)

x = 1, u = 1,
dv
dx

= 0 (10)

The normalized current is given by

ψ = ia/nFADsks∞ =

(
du
dx

)
x=1

(11)

3. Analytical solution of the concentrations using Akbari Ganji Method
Recently some asymptotic methods such as the Adomian decomposition method [17], Variational iteration method

[18], Homotopy perturbation method [19, 20], Taylor series method [21], differential transformation method [22] and
Akbari-Ganji’s method [23, 24]. Among all these method simplest approach for solving non-linear differential equations
is Akbari-Ganji method and differential transformation method are used to solve the nonlinear equations.

Akbari Ganji method is a numerical technique for solving nonlinear differential equations, particularly boundary
value problems. It is named after its developers, Akbari and Ganji, who introduced this method in 2014. It is initially
assumed to be a solution function with an unknown constant coefficient that satisfies the initial condition and differential
equation. The values of the unknown function are then found using the derivatives of the algebraic equations obtained
from the initial conditions. This effective method makes it possible to solve complex non-linear differential equations
without using any challenging process [25–33]. Approximate analytical solution of the non-linear differential equation
(7), (8) is (Appendix A):

u(x) =
cosh(mx)
cosh(m)

(12)
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v(x) =
γE

γS

(
cosh(mx)
cosh(m)

−m tanh(m)+
γS

γE
− 1

cosh(m)

)
(13)

Where

m =
√

γS (14)

3.1 Analytical solution of the concentration using Differential Transformation Method

A semi-analytical technique for solving differential equations is the Differential Transform Method (DTM). The
differential transform concept, utilised to solve linear and nonlinear boundary value problems in electric circuit analysis,
was first proposed by Zhou. Using DTM, differential equations yield an empirical polynomial solution, and it is possible
to precisely find the nth derivative of an analytical function at a given position regardless of the knowledge of the
boundary conditions. Unlike the usual high-order Taylor series procedure, which necessitates the symbolic computing of
the data functions, this method is different. The primary benefit of this approach is that it can be used directly without
the need for Discretization and linearization. The differential transformation method offers a combination of simplicity,
accuracy, versatility, and efficiency, making it a valuable tool for solving differential equations in various scientific
and engineering applications. A different iterative method for generating analytical solutions to differential equations
is the DTM. The following approximate analytical expressions of concentrations obtained with the DTM approach are
recognised (Appendix B):

u(x) =
2+ γSx2

γS +2
(15)

v(x) =
γE

γS

(
2+ γSx2

γS +2

)
+

γE

γS

(
2+ γS

γS +2

)
x+1−

(
2
(

γE

γS

))
γS +2

(16)

From Equations (12) and (13) the current can be expressed as follows

Ψ =
2γE

2+ γS
(17)

4. Validation of analytical results
This scholarly work has placed considerable focus on the validation methodology. The numerical solution of the

non-linear differential equations (7) and (8), along with the boundary conditions given by the equations (9) and (10), is
carried out using the MATLAB program.

Figures 3-5 present a numerical comparison of substrate and mediator concentration obtained from Akbari-Ganji
method equations (12) and (13) and differential transformation methodologies.

Tables 1 and 2 compare the analytical and numerical concentration of substrate and mediator by the Akbari-Ganji
method and the differential transformation method for various parametric values. The table indicates that the average
relative errors are less than 1%.
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Figure 3. (a-d): Profile of steady state substrate concentration u versus dimensionless distance x for different parametric values γS and γE

Table 1. Comparison of the substrate concentrations obtained by AGM and DTM for the parameters γS and γE between their numerical and analytical
expressions

γS = 0.04, γE = 0.04 γS = 0.06, γE = 0.06 γS = 0.08, γE = 0.08

X NUM AGM DTM
AGM
ERR
%

DTM
ERR
%

NUM AGM DTM
AGM
ERR
%

DTM
ERR
%

NUM AGM DTM
AGM
ERR
%

DTM
ERR
%

0 0.980 0.980 0.980 0 0 0.971 0.971 0.971 0 0 0.962 0.962 0.962 0 0
0.25 0.987 0.982 0.982 0 0 0.973 0.973 0.973 0 0 0.964 0.964 0.964 0 0
0.5 0.986 0.984 0.982 0 0 0.979 0.978 0.979 0 0 0.972 0.972 0.972 0 0
0.75 0.992 0.992 0.992 0 0 0.988 0.988 0.988 0 0 0.983 0.984 0.983 0.001 0
1 1 1 1 0 0 1 1 1 0 0 0.999 1 0.999 0.001 0

Error % 0 0 Error % 0 0 Error % 0.002 0

Our analytical findings exhibit satisfactory substrate concentration and mediator consistency for small parametric
values. Compared with these two methods, the differential transformation method provides more accurate results than the
Akbari Ganji method.
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Figure 4. (a-d): Profile of steady state mediator concentration v versus dimensionless distance x for different parametric values γS and γE

Table 2. Comparison of the mediator concentrations obtained by AGM and DTM for the parameters γS and γE between their numerical and analytical
expressions

γS = 0.04, γE = 0.04 γS = 0.06, γE = 0.06 γS = 0.08, γE = 0.08

X NUM AGM DTM
AGM
ERR
%

DTM
ERR
%

NUM AGM DTM
AGM
ERR
%

DTM
ERR
%

NUM AGM DTM
AGM
ERR
%

DTM
ERR
%

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0
0.25 0.991 0.991 0.991 0 0 0.987 0.987 0.987 0 0 0.983 0.982 0.983 0.001 0
0.5 0.986 0.986 0.986 0 0 0.978 0.977 0.978 0.001 0 0.971 0.970 0.971 0.001 0
0.75 0.982 0.982 0.982 0 0 0.973 0.971 0.973 0.002 0 0.964 0.963 0.964 0.001 0
1 0.980 0.980 0.980 0 0 0.971 0.971 0.971 0 0 0.962 0.963 0.962 0.001 0

Error % 0 0 Error % 0.003 0 Error % 0.004 0
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Figure 5. (a) & (b): Normalised steady state current Ψ for different values of γS and γE

5. Result and discussion
The solution to theNon-Linear Differential equation in theModified PolymerUltraMicroelectrode indicates a unique,

closed form of an analytical expression for the concentration of mediator and substrate.
Figure 3 clearly shows that normalised Concentration of substrate u(x) vary with Reaction Diffusion parameter γS and

γE from the graph it is notice that γS increases the substrate concentration of u decreases at the electrode surface. At x = 0,
u attains the minimum value denoted by u(0), and when x = 1, u attains the maximum value. In Figure 3(a), it is noted that
when the diffusion parameter γS = 0.01 and γE increases from 0.01, 0.04, 0.06 and 0.08, then the substrate concentration
of u(x) decreases and in Figure 3(b-d) diffusion parameter increases form γS = 0.04, 0.06, 0.08 and the reaction parameter
carries the same constant values γE = 0.01, 0.04, 0.06, 0.08 then the substrate concentration u(x) decreases.

Figure 4 shows the oxidised Mediator concentration v(x) for all values of γS and γE , it can be noticed that minimal
value of v attains at x = 0 and attains its maximal when x = 1, γE increases the mediator concentration of v(x) decreases.
Concentration of v(x) decreases as γS and γE increases. In Figure 4(a) shows that reaction parameter γE = 0.01 and γs

takes the values 0.01, 0.04, 0.06, 0.08 then the oxidised mediator concentration of v(x) decreases and in Figure 4(b-d)
states that reaction parameter increases from γE = 0.04, 0.06, 0.08 and the diffusion parameter takes the same constant
values γS = 0.01, 0.04, 0.06, 0.08 then the oxidised mediator concentration v(x) decreases.

Figure 5 display shows the study state current plotted against substrate concentration on the electrode surface for
different parametric values, illustrating the influence of various factors on current. The graph shows the normalised current
response for different substrate and electron diffusion values. Figure 5(a) shows that increase in γE leads to decrease in
current, Figure 5(b) shows that increase in γS leads to increase in current.

6. Conclusion
This paper offers an in-depth theoretical examination of the mathematical model of polymer-coated ultra-micro

electrodes. Approximate analytical expressions have been derived for the substrate concentration and mediator concentra-
tion for different parametric values. The Akbari Ganji and Differential Transformation methods are straightforward,
featuring a simple solution process and yield precise outcomes when contrasted with other analytical techniques. The
numerical results obtained from MATLAB were compared with the derived approximate analytical results. The research
includes an examination of the steady-state concentration of substrate and mediator and steady-state current. Additionally,
we assessed the transport and kinetics by considering the fundamental reaction/diffusion parameter of the polymer
denoted by γS and γE . These techniques are also applicable to addressing non-steady state scenarios. The versatility
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and capabilities of ultra-microelectrodes make them indispensable tools in numerous scientific and technological fields,
driving innovations and discoveries across various applications. This analytical approach can be expanded to encompass
other spill over models for diverse electrode geometries, among other applications beyond the scope of the amperometric
biosensor research.
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Appendix I
Relation between substrate and mediator concentration

The second order non-linear differential equation is as follows

d2u(x)
dx2 − γS u(x)v(x) = 0 (A1)

d2v(x)
dx2 − γE u(x)v(x) = 0 (A2)

Boundary conditions are

du
dx

= 0, v = 1 when x = 0 (A3)

u = 1,
dv
dx

= 0 when x = 1 (A4)

subtracting (A1) and (A2) we get

d2v(x)
dx2 =

γE

γS

d2u(x)
dx2 (A5)

Integrating (A5) twice we get

v(x) =
γE

γS
u(x)+ c1 (x)+ c2 (A6)

Analytical solution of the equation (A1) and (A2) using AGM

d2u(x)
dx2 − γS u(x)v(x) = 0 (A7)

d2v(x)
dx2 − γE u(x)v(x) = 0 (A8)

Boundary conditions are
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du
dx

= 0, v = 1 when x = 0 (A9)

u = 1,
dv
dx

= 0 when x = 1 (A10)

Using boundary conditions (A7) and (A8) in (A3), (A4)

u(x) =
cosh(mx)
cosh(m)

(A11)

u′ (x) =
msinh(mx)

cosh(m)
(A12)

u′′ (x) =
m2 cosh(mx)

cosh(m)
(A13)

v(x) =
γE

γS

cosh(mx)
cosh(m)

−mtanh(mx)+
1
γE

γS

− 1
cosh(m)

 (A14)

By using Akbari Ganji Method, the value of m can be obtained as follows,

m2cosh(mx)
cosh(m)

− γS

(
cosh(mx)

coshm

)γE

γS

cosh(mx)
coshm

−m tanh(mx)+
1
γE

γS

− 1
coshm


= 0

Solving for m, we get

m =
√

γS (A15)
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Appendix II
Analytical solution of the equation (A1) and (A2) using DTM

d2u(x)
dx2 − γS u(x)v(x) = 0 (A16)

u = l, when x = 0 (A17)

Transformed version of equation (A16) and (A17) are respectively

(n+2)(n+1)u(n+2)− γS

n

∑
r=0

u(n)v(n− r) = 0 (A18)

letting n = 0

2u(2)− γS(u(0)v(0) = 0

u(2) =
γSl
2

(A19)

The differential inverse transforms of u(n) is defined as

s(x) =
2

∑
n=0

u(n)(x− x0)
n (A20)

Letting x0 = 0, we get the second order closed form solution

u(x) =
2

∑
n=0

u(n)(x)n = l +
lγS
2

x2 (A21)

By using the boundary conditions u = 1 when x = 1, we get l value

l =
2

2+ γS
(A22)

Hence the approximate analytical solution for the concentration of the substrate is

u(x) =
2+ γSx2

γS +2
(A23)
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