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Abstract: In this paper, we have secured new optical solitons for the concatenation model with power-law nonlinearity.
The traveling wave hypothesis serves as the starting point. To retrieve optical soliton solutions, we have implemented two
powerful techniques into the model: the Sardar Sub-Equation Method (SSEM) and the Tanh-Coth method. For power-law
nonlinearity, we derived through the balancing principle that solitons would exist for different values of the power-law
parameter. Therefore, we have secured a large variety of new soliton solutions for the model. This paper derives dark,
bright, and singular soliton solutions for the value of n, as the first case was already covered in a previous report dedicated
to addressing the model with Kerr law nonlinearity. Lastly, all the parametric existence conditions of the solitons and all
solutions have been constructed.
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1. Introduction
In the last ten years or so, the concatenation model has emerged in the field of nonlinear optics [1–3]. Following

its launch, a plethora of results from numerous publications is apparent everywhere, covering a broad range of topics.
Both results applicable to fiber-optic systems and several results with a strong mathematical component have emerged.
Conservation laws, Painleve analysis, magneto-optic solitons, quiescent solitons for nonlinear chromatic dispersion,
numerical analysis, bifurcation analysis, and birefringent fibers are only a few of the subjects that have been discussed in
relation to themodel [4–6]. Although the Kerr law of self-phasemodulation (SPM)was used in the last round of bifurcation
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analysis of the model, the current study is a generalized version of the earlier counterpart [7]. This work focuses on the
bifurcation analysis of the concatenation model with power-law SPM [8–10].

Our work builds on a decade of concatenation model research, making it important in the realm of nonlinear optics
[11–13]. Numerous publications on subjects including conservation laws, solitons, and fiber-optic systems have been
produced by this approach [14–16]. A more comprehensive analysis is provided by our work, which focuses on the
concatenation model with the SPM power-law [17–19]. We also investigate the chaotic dynamics of the model and obtain
soliton solutions [20–22]. This work advances the subject by providing fresh perspectives and possible uses in nonlinear
optics [23–25].

Although it has limits, our investigation improves understanding of the concatenation model with power-law SPM
[26–28]. It involves simplifications and theoretical emphasis, concentrating on a particular feature of the model [29–31].
We believe that this applies practically to fiber-optic systems. These limitations should be taken into account by researchers
applying our findings to practical scenarios.

This paper introduces novel optical solitons in the concatenation model with power-law nonlinearity. Utilizing the
traveling wave hypothesis, we employ the Sardar Sub-Equation Method (SSEM) and the Tanh-Coth method to extract
soliton solutions. While these techniques offer valuable insights into nonlinear equations, they also have limitations.
SSEM’s effectiveness depends on the equation’s specific form, which limits its applicability. It may struggle with certain
nonlinearities or boundary conditions, leading to inaccuracies. Similarly, the Tanh-Coth method requires appropriate trial
functions, which may not capture highly nonlinear behavior accurately. Convergence can be sensitive to initial guesses,
posing challenges in obtaining reliable solutions, particularly in complex scenarios.

2. Governing model
The concatenation model with power nonlinearity is formulated as follows [11]:

iΦt +aΦxx +b |Φ|2n Φ

+ c1

[
σ1Φxxxx +σ2 (Φx)

2 Φ∗+σ3 |Φx|2 Φ+σ4 |Φ|2n Φxx +σ5Φ2Φ∗
xx +σ6 |Φ|2n+2 Φ

]

+ ic2

[
σ7Φxxx +σ8 |Φ|2n Φx +σ9Φ2Φ∗

x

]
= 0.

(1)

As indicated by Equation (1), the concatenation model is a composite representation of the renowned Lakshmanan-
Porsezian-Daniel (LPD) model, the Sasa-Satsuma equation (SSE), and the nonlinear Schrödinger’s equation (NLSE)
[3–10]. In this formulation, the NLSE with power-law nonlinearity serves as the foundation for the initial three terms
in Equation (1), with n representing the parameter governing power-law nonlinearity, and the coefficients c1 and c2

originating from the LPD model and SSE, respectively. Equation (1) simplifies to the familiar SSE when c1 equals zero,
and to the LPD model when c2 is zero. Nevertheless, Equation (1) transforms into the well-established NLSE with power-
law nonlinearity when both c1 and c2 are zero.

The physical reason for considering the model presented in Equation (1) is to construct a flexible and adaptable
framework that integrates components from multiple equations, thereby offering an invaluable resource for investigating
various aspects of nonlinear optics and examining the influence of different parameters on system behavior.

3. Travelling wave solution
The soliton solutions of Equation (1) are assumed to be:
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Φ(x, t) = u(ξ ) ei θ(x, t). (2)

In this context, the wave variable is defined as ξ = x−γ t, where γ represents the speed of the soliton. Furthermore,
u(ξ ) denotes the amplitude component of the soliton. Additionally, the phase component of the soliton is expressed as
θ (x, t) =−kx+ω t +θ0, where k represents the soliton frequency, ω stands for the wavenumber, and θ0 represents the
phase constant. By utilizing Equation (2) and its derivatives, Equation (1) undergoes transformation to:

[
−i γu′−ωu

]
+a
[
u′′−2 iku′− k2 u

]
+bu2n+1

+ c1σ1

(
u
′′′′ −4iku′′′−6k2u′′+4ik3u′+ k4u

)
+ c1 (σ2 +σ3)

(
uu′2 −2u′kiu2 − k2u3)

+ c1σ4u2n (u′′−2 iku′− k2u
)
+ c1σ5

(
u2u′′−2iku2u′− k2u3)+ c1σ6u2n+3

+ c2σ7
(
iu′′′+3ku′′−3ik2u′− k3u

)
+ c2σ8u2n (iu′+ k u

)
+ c2σ9u2 (iu′+ ku

)
= 0.

(3)

Equation (3) can be decomposed into real and imaginary parts, which are respectively expressed as:

c1σ1u(4)+[a+3c2σ7k−6k2c1 σ1]u′′+ c1σ5u2u′′+ c1σ4u2nu′′

+ c1 (σ2 +σ3)uu′2 +[c1σ1k4 −ak2 − c2σ7k3 −ω]u+bu2n+1 + kc2σ8u2n+1

+[kc2σ9 − c1 (σ2 +σ3 +σ5)k2]u3 − c1σ4u2n+1 + c1σ6u2n+3 = 0,

(4)

and

[(c2σ7 −4kc1σ1)u′′′]+ [4k3c1σ1 −3k2c2σ7 − γ −2aku′]

+ [c2σ9 −2kc1 (σ2 +σ3 +σ5)]u′u2 +[c2σ8 −2kc1σ4]u′u2n = 0.

(5)

From Equation (5), the soliton speed can be determined as follows:

γ =−2k
(
4k2c1σ1 +a

)
, (6)

whenever

c2σ9 = 2kc1 (σ2 +σ3 +σ5) , (7)
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c2σ8 = 2kc1σ4, (8)

c2σ7 = 4kc1σ1. (9)

From Equations (8) and (9), we obtain the following restriction:

σ7 = 2σ8. (10)

Equation (4) can be expressed as:

c1σ1u(4)+β1u′′+ c1σ5u2u′′+ c1σ4u2nu′′+ c1 (σ2 +σ3)uu′2

+β2u+β3u3 +β4u2n+1 + c1σ6u2n+3 = 0,

(11)

where

β1 = a+6k2c1σ1, (12)

β2 =−[ak2 +3c1σ1k4 +ω], (13)

β3 = k2c1 (σ2 +σ3 +σ5) , (14)

β4 = (b+ kc2σ8 − c1σ4) . (15)

Setting

u = v
1
n , (16)

Equation (11) undergoes transformation to:
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c1σ1


v3v

′′′′
+3
(

1−n
n

)
v2v′v′′′+2

(
1−n

n

)
v2v

′′2

+5
(

1−2n
n

)(
1−n

n

)
v v′′v

′2 +

(
1−3n

n

)(
1−2n

n

)(
1−n

n

)
v
′4



+β1[v3v′′+
(

1−n
n

)
v2v

′2]+ c1σ5v5v′′+ c1σ5

(
1−n

n

)
v

2
n+2v

′2

+ c1σ4[v5v′′+
(

1−n
n

)
v4v

′2]+
c1 (σ2 +σ3)

n
v

2
n+2v

′2 +n2β2v4

+n2β3v
2
n+4 +n2β4v6 +n2c1σ6v

2
n+6 = 0.

(17)

For integrability, the coefficients of v
2
n+2, v

2
n+4, and v

2
n+6 in Equation (17) must vanish. Consequently, we derive

the following nonlinear ordinary differential equation:

c1σ1[v3v
′′′′
+3M3v2v′v′′′+2M3v2v

′′2 +M1vv′′v
′2 +M2v

′4]

+β1[v3v′′+M3v2v
′2]+ c 1σ4v5v′′+ c1σ4M3v4v

′2 +n2β2v4 +n2β4v6 = 0,

(18)

where

σ5 = 0, σ6 = 0, (σ2 +σ3) = 0, (19)

M1 =
5
n2

(
1−3n+2n2) , (20)

M2 =
1
n3

(
1−6n+11n2 −6n3) , (21)

M3 =

(
1−n

n

)
. (22)

4. Sardar sub-equation method (SSEM)
The main advantage of the SSEM is its ability to generate various forms of soliton solutions, ranging from dark,

bright, and singular to more intricate forms such as mixed dark-bright, dark-singular, bright-singular, and mixed singular.
Additionally, it offers rational, periodic, trigonometric, and other solutions.
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In this method, to solve Equation (18), we assume that the solution takes the form, as proposed in references [12, 13]:

v(ξ ) =
N

∑
n=0

, λnΨn (ξ )λN ̸= 0, (23)

where λn (for n = 0, 1, . . . , N) is a constant to be calculated later. The integer number N is determined by means of
the homogeneous balance method principle between the nonlinear term and the highest-order derivative in Equation (18).
Additionally, the function Ψn (ξ ) in Equation (20) must satisfy the following equation:

Ψ′ (ξ ) =
√

η2Ψ(ξ )4 +η1Ψ(ξ )2 +η0, (24)

where ηl , with l = 0, 1, 2, represents constants. Correspondingly, depending on the values of the parameters ηl , Equation
(1) has various known solutions, as outlined below [12, 13]:

Case 1When η0 = 0, η1 > 0, and η2 ̸= 0, then we get

Ψ±
1 (ξ ) =±

√
−pqη1

/
η2

sechpq (
√

η1ξ ) , η2 < 0, (25)

Ψ±
2 (ξ ) =±

√
pqη1

/
η2

cschpq (
√

η1ξ ) , η2 > 0, (26)

where

sechpq (
√

η1ξ ) =
2

pe
√η1ξ +qe−

√η1ξ ,

cschpq (
√

η1ξ ) =
2

pe
√η1ξ −qe−

√η1ξ .

(27)

Case 2When η0 =
1
4

η2
1

η2
, η2 > 0, and η1 < 0, then one obtains

Ψ±
3 (ξ ) =±

√
−η1

/
2η2

tanhpq

(√
−η1

2
ξ
)
, (28)

Ψ±
4 (ξ ) =±

√
−η1

/
2η2

cothpq

(√
−η1

2
ξ
)
, (29)

Ψ±
5 (ξ ) =±

√
−η1

/
2η2

(
tanhpq

(√
−2η1ξ

)
± i

√
pqsechpq

(√
−2η1ξ

))
, (30)
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Ψ±
6 (ξ ) =±

√
−η1

/
2η2

(
cothpq

(√
−2η1ξ

)
±√

pqcschpq

(√
−2η1ξ

))
, (31)

Ψ±
7 (ξ ) =±1

2

√
−η1

/
2η2

(
tanhpq

(√
−η1

8
ξ
)
± cothpq

(√
−η1

8
ξ

))
, (32)

where

tanhpq (
√

η1ξ ) =
pe

√η1ξ −qe−
√η1ξ

pe
√η1ξ +qe−

√η1ξ ,

cothpq (
√

η1ξ ) =
pe

√η1ξ +qe−
√η1ξ

pe
√η1ξ −qe−

√η1ξ .

(33)

4.1 Application of the Sardar sub-equation method

We initiated our analysis by applying the principle of the homogeneous balance method between the nonlinear term
v3v

′′′′and the nonlinear term v6 from Equation (18). This yields the equation 3N +N +4 = 6N, from which we obtain N
= 2. Therefore, Equation (23) transforms into:

v(ξ ) =
(
λ0 +λ1Ψ(ξ )+λ2Ψ2 (ξ )

)
. (34)

By substituting Equation (34) into Equation (18) and taking into account Equation (24), we obtain:
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c1σ1
[
(λ0 +λ1Ψ+λ2Ψ2)3{(λ1η1 +8λ2η1Ψ+6λ1η2Ψ2 +24λ2η2Ψ3)(2η2Ψ3 +η1Ψ

)
+
(
8λ2η1 +12λ1η2Ψ+72λ2η2Ψ2)(η2Ψ4 +η1Ψ2 +η0

)}

+3M3


(
λ0 +λ1Ψ+λ2Ψ2

)2
(λ1 +2λ2Ψ)

×
(
λ1η1 +8λ2η1Ψ+6 λ1η2Ψ2 +24λ2η2Ψ3

)(
η2Ψ4 +η1Ψ2 +η0

)


+2M3

{(
λ0 +λ1Ψ+λ2Ψ2 (ξ )

)2 [
2λ2η0 +λ1η1Ψ+4λ2η1Ψ2 +2λ1η2Ψ3 +6λ2η2Ψ4]2}

+M1


(
λ0 +λ1Ψ+λ2Ψ2

) (
2λ2η0 +λ1η1Ψ+4λ2η1Ψ2 +2λ1η2Ψ3 +6λ2η2Ψ4

)
×(λ1 +2λ2Ψ)2 (η2Ψ4 +η1Ψ2 +η0

)


+M2

{
(λ1 +2λ2Ψ)4 (η2Ψ4 +η1Ψ2 +η0

)2
}]

+β1

{(
λ0 +λ1Ψ+λ2Ψ2)3 (

2λ2η0 +λ1η1Ψ+4λ2η1Ψ2 +2λ1η2Ψ3 +6λ2η2Ψ4)

+ M3
(
λ0 +λ1Ψ+λ2Ψ2)2

(λ1 +2λ2Ψ)2 (η2Ψ4 +η1Ψ2 +η0
)}

+ c1

{
σ4
(
λ0 +λ1Ψ+λ2Ψ2)5 (

2λ2η0 +λ1η1Ψ+4λ2η1Ψ2 +2λ1η2Ψ3 +6λ2η2Ψ4)}

+ c1σ4M3

{(
λ0 +λ1Ψ+λ2Ψ2)4

(λ1 +2λ2Ψ)2 (η2Ψ4 +η1Ψ2 +η0
)}

+n2β2
(
λ0 +λ1Ψ+λ2Ψ2)4

+n2β4
(
λ0 +λ1Ψ+λ2Ψ2)6

= 0.

(35)

By gathering and equating the coefficients of the independent functions Ψ j (ξ ) to zero, we arrive at the following set
of algebraic system equations:

Family I (η0 = 0, λ0 = 0, λ1 = 0)
Equation (35) is reduced to the following equation:
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c1σ1
[{

120η1η2Ψ10 +16η1
2Ψ8 +120η2η2Ψ12}

+3M316
(
4η1η2Ψ10 +η1η1Ψ8 +3η2η2Ψ12)

+2M34
[
η1

2Ψ8 +η13η2Ψ10 +9η2
2Ψ12]

+M18
(
5η1η2Ψ10 +2η1η1Ψ8 +3η2η2Ψ12)

+M216
(
η2

2Ψ12 +2η2Ψ10η1 +η1
2Ψ8)]

+2
(
2η1Ψ8 +3η2Ψ10)+4M3

(
η2Ψ10 +η1Ψ8)

+2c1σ4 λ2
2 (2η1Ψ12 +3 η2Ψ14)+4c1σ4M3 λ2

2 (η2Ψ14 +η1Ψ12)
+n2β2Ψ8 +n2β4λ2

2Ψ12 = 0.

(36)

We derive the following set of algebraic system equations for the same Ψ j, where j = 8, 10, 12:

Ψ8 : c1σ1[16 η1
2 +56M3η1

2 +16M1η1
2]+16M2η1

2 +4η1 +4M3η1 +n2β2 = 0,

Ψ10 : c1σ1[120+192M3 +24M3 +40M1 +32M2]η1 +6+4M3 = 0,

Ψ12 : c1σ1[120+144M3 +72M3 +24M1 +16M2]η2
2

+
(
4c1σ4η1 +4c1σ4M3η1 +n2β4

)
λ2

2 = 0.

(37)

Solving the set of algebraic system equations (37) yields:
Case I (η1 > 0 and η2 ̸= 0)

η1, 1 =
−n2

2c1σ1 (3n3 −n2 −2n+2)
, η1, 2 =− (n+2)n2

4c1σ1[14n3 −4n2 +n+4]
, σ4 = 0,

λ2 =∓2η2

n2

√
−c1σ1[12n3 +7n2 +6n+4]

nβ4
,

(38)

where
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β2 = 0, ω =−k2 (1+3c1σ1k2) .
The solutions of Equation (1) corresponding to Equation (38), along with solutions (25) and (26), are:

Φ1(x, t) =

[
∓2η2

n2

√
−c1σ1 [12n3 +7n2 +6n+4]

nβ4
sech2

pq
(√

η1, jξ
)] 1

n

× exp [i(−κx+ωt +θ0)] , j = 1, 2

(39)

and

Φ2(x, t) =

[
∓2η2

n2

√
−c1σ1 [12n3 +7n2 +6n+4]

nβ4
csch2

pq
(√

η1, jξ
)] 1

n

× exp [i(−κx+ωt +θ0)] , j = 1, 2

(40)

where β4 < 0.
Solutions (39) and (40) represent the bright and singular soliton solutions, respectively.
Figure 1 illustrates the 2D and surface plots of a bright optical soliton (39), displaying the results under the following

parameter settings: η2 = 1, β4 = 1, c1 =−1, σ1 = 1, γ = 1, η1, 1 = 1, and η1, 2 = 1.

Figure 1. Analysis of the individual properties showcased by a bright optical soliton

4.2 Tanh-coth method

Assuming v = v(ξ ), we utilize the ansatz proposed in reference [14]:
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Y = tanh(µξ ) . (41)

This leads to the change of variables:

dv
dξ

= µ
(
1−Y 2) dv

dY
, (42)

and

d2v
dξ 2 = µ2[−2Y

(
1−Y 2) dv

dY
+
(
1−Y 2)2 d2v

dY 2 ]. (43)

For the next step, let’s assume that the solution for Equation (18) is expressed in the form:

v(Y ) =
p

∑
i=0

aiY i +
p

∑
i=1

biY−i. (44)

Applying the principle of the homogeneous balance method between the nonlinear term v3v
′′′′and the nonlinear term

v6 from Equation (18), we have 3N +N +4 = 6N, which results in N = 2. Therefore, Equation (44) becomes:

v(Y ) =
(

a0 +a1Y +a2Y 2 +
b1

Y
+

b2

Y 2

)
. (45)

Here a0, a1, a2, b1, and b2 are constants to be determined. Next, substitute Equation (45) with their derivatives into
Equation (18). For simplicity, let’s assume a0 = a1 = b1 = 0. We then obtain the following:

c1σ1

[(
a2Y 2 +

b2

Y 2

)3(
−16a2 +120a2Y 2 −120a2Y 4 +

120b2

Y 6 − 108b2

Y 4 +
12b2

Y 2

)

+3M3

(
a2Y 2 +

b2

Y 2

)2(
2a2Y −2

b2

Y 3 −2a2Y 3 +
2b2

Y

)

×
(
−16a2Y +40 a2Y 3 −24a2Y 5 − 24b2

Y 5 +
36b2

Y 3 − 12b2

Y

)
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+2M3

(
a2Y 2 +

b2

Y 2

)2(
2a2 +2b2 −8a2Y 2 +6a2Y 4 +

6b2

Y 4 − 6b2

Y 2

)2

+M1


a2Y 2

(
2a2 +2b2 −8a2Y 2 +6a2Y 4 +

6b2

Y 4 − 6b2

Y 2

)

+
b2

Y 2

(
2a2 +2b2 −8a2Y 2 +6a2Y 4 +

6b2

Y 4 − 6b2

Y 2

)


×
(

2a2Y −2
b2

Y 3 −2a2Y 3 +
2b2

Y

)2

+M2

(
2a2Y −2

b2

Y 3 −2a2Y 3 +
2b2

Y

)4
]

+β1

[(
a2Y 2 +

b2

Y 2

)3(
2a2 +2b2 −8a2Y 2 +6a2Y 4 +

6b2

Y 4 − 6b2

Y 2

)

+M3

(
a2Y 2 +

b2

Y 2

)2(
2a2Y −2

b2

Y 3 −2a2Y 3 +
2b2

Y

)2 ]

+ c1σ4

(
a2Y 2 +

b2

Y 2

)5(
2a2 +2b2 −8a2Y 2 +6 a2Y 4 +

6b2

Y 4 − 6b2

Y 2

)

+ c1σ4M3

(
a2Y 2 +

b2

Y 2

)4(
2a2Y −2

b2

Y 3 −2a2Y 3 +
2b2

Y

)2

+n2β2

(
a2Y 2 +

b2

Y 2

)4

+n2β4

(
a2Y 2 +

b2

Y 2

)6

= 0.

(46)

Let a2 = b2, we obtain the following equation:

µ4c1σ1

[
64
(
−2
(
−4Y +17Y 3 −30Y 5 +15Y 7 +17

1
Y
−30

1
Y 3 +15

1
Y 5

)

+5
(

17Y −4Y 3 +17Y 5 −30Y 7 +15Y 9 −30
1
Y
+15

1
Y 3

)

−3
(
−30Y +17Y 3 −4Y 5 +17Y 7 −30Y 9 +15Y 11 +15

1
Y

)
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−2
(

17Y −30Y 3 +15Y 5 −4
1
Y
+17

1
Y 3 −30

1
Y 5 +15

1
Y 7

)

+5
(
−30Y +15Y 3 +17

1
Y
−4

1
Y 3 ++17

1
Y 5 −30

1
Y 7 +15

1
Y 9

)

−3
(
−4

1
Y 5 +17

1
Y 3 −15

1
Y
−15Y +17Y 3

))

−72


−20+16Y 2 −3Y 4 −8Y 6 +10Y 8 −8Y 10 +3Y 12

+16
1

Y 2 −3
1

Y 4 −8
1

Y 6 +10
1

Y 8 −8
1

Y 10 +3
1

Y 12



−12


8Y 12 −24Y 10 +46Y 8 −88 Y 6 +119Y 4 −144Y 2

+164−144
1

Y 2 +119
1

Y 4 −88
1

Y 6 +46
1

Y 8 −24
1

Y 10 +8
1

Y 12



+8M1


3Y 12 −10Y 10 +10Y 8 −2Y 6 −3Y 4

+4Y 2 −20+4
1

Y 2 −3
1

Y 4 −2
1

Y 6 +10
1

Y 8 −10
1

Y 10 +3
1

Y 12



+ M216


Y 12 −4Y 10 +2Y 8 +12Y 6 −17Y 4 −8Y 2

+28−8
1

Y 2 −17
1

Y 4 +12
1

Y 6 +2
1

Y 8 −4
1

Y 10 +
1

Y 12




+2µ2β1




3Y 10 −4Y 8 +11Y 6 −16Y 4 +18Y 2 −24

+18
1

Y 2 −16
1

Y 4 +11
1

Y 6 −4
1

Y 8 +3
1

Y 10


−3
(

Y 10 −2Y 8 +Y 6 −2Y 2 +4−2
1

Y 2 +
1

Y 6 −2
1

Y 8 +
1

Y 10

)



+n2β2

(
Y 8 +4Y 4 +6+4

1
Y 4 +

1
Y 8

)

+2µ2c1σ4a2
2

(
2
(

Y 10 +5Y 6 +10Y 2 +10
1

Y 2 +5
1

Y 6 +
1

Y 10

)

(47)
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−4
(

Y 12 +5Y 8 +10Y 4 +10+5
1

Y 4 +
1

Y 8

)

+3
(

Y 14 +5Y 10 +10 Y 6 +10Y 2 +5
1

Y 2 +
1

Y 6

)

−4
(

Y 8 +5Y 4 +10+10
1

Y 4 +5
1

Y 8 +
1

Y 12

)

+3
(

Y 6 +5Y 2 +10
1

Y 2 +10
1

Y 6 +5
1

Y 10 +
1

Y 14

))

−6µ2 c1σ4a2
2


Y 14 −2Y 12 +3Y 10 +Y 6 +2Y 4 −5Y 2 +4

−5
1

Y 2 −6
1

Y 4 +
1

Y 6 −4
1

Y 8 +3
1

Y 10 −2
1

Y 12 +
1

Y 14



+n2β4a2
2

(
Y 12 +6Y 8 +15Y 4 +20+15

1
Y 4 +6

1
Y 8 +

1
Y 12

)
= 0.

Thus, a set of algebraic equations is obtained as follows:

(
Y 12 +

1
Y 12

)
: 8µ4c1σ1[49n3 +128n2 +38n+2]+4µ2n3c1σ4a2

2 +n5β4a2
2 = 0,

(
Y 10 +

1
Y 10

)
: 8µ2c1σ1[56n3 +62n2 −2n−8]+n3c1σ4a2

2 = 0,

(
Y 8 +

1
Y 8

)
:

8µ4c1σ1[−83n3 −106n2 +26n+4]

+4µ2n3β1 +n5β2 −24n3c1σ4a2
2 +6n5β4 a2

2 = 0,

(
Y 6 +

1
Y 6

)
: µ2c1σ1[190n3 +1131n2 −601n+96]−n3β1 +40n3c1σ4a2

2 = 0,

(
Y 4 +

1
Y 4

)
:

µ4c1σ1[180n3 −2632n2 +1512n+272]−32µ2n3β1

+4n5β2 −132µ2n3c1σ4a2
2 +15n5β4a2

2 = 0,

(48)
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(
Y 2 +

1
Y 2

)
µ2c1σ1[−1024n3 +928n2 −608n+128]+48n3β1 +160n3c1σ4a2

2 = 0,

(
Y 0 +

1
Y 0

)
:

10µ4c1σ1[−301n3 +458n2 −218n+28]−48n3µ2β1

+6n5β2 +20n5β4a2
2 −184n3µ2c1σ4a2

2 = 0.

Solving the set of algebraic equations (48) yields:

µ =
n
2

√
−(a+6 k2c1σ1)n

2(332+3n−2333n2 −2220n3)c 1σ1
. (49)

Family I

a2 = b2 =∓2µ2

n

√
−2c1σ1[49n3 +128n2 +38n+2]

n(4µ2nc1σ4 +n2β4)
. (50)

Accordingly, a dark-singular straddled soliton solution shapes up as

Φ5 (x, t) =

∓2µ2

n

√
−2c1σ1[49n3 +128n2 +38n+2]

n(4µ2nc1σ4 +n2β4)


tanh2 (µ (x− γt))

+coth2 (µ (x− γt))




1
n

×exp[i(−κx+ωt +θ0)].

(51)

Family II

a2 = b2 =∓2µ
n

√
2[−56n3 −62 n2 +2n+8]

n
. (52)

Consequently, a dark-singular straddled soliton solution turns out to be

Φ6 (x, t) =

∓2µ
n

√
2[−56n3 −62n2 +2n+8]

n


tanh2 (µ (x− γt))

+coth2 (µ (x− γt))




1
n

×exp[i(−κx+ωt +θ0)].

(53)

Family III
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a2 = b2 =∓2µ2

n

√
c 1 σ1 [−83 n3 −106 n2 +26n+4]+4µ2 n3β1 +n5β2

3n(4 c 1σ4 −n3β4)
. (54)

As a result, a dark-singular straddled soliton solution becomes

Φ7 (x, t) =

 ∓2µ2

n

√
c1σ1[−83n3 −106n2 +26n+4]+4µ2n3β1 +n5β2

3n(4c1σ4 −n3β4)

×
{

tanh2 (µ (x− γt))+ coth2 (µ (x− γt))
}


1
n

×exp[i(−κx+ωt +θ0)].

(55)

Family IV

a2 = b2 =∓ 1
2n

√
n3β1 −µ2c1σ1[190n3 +1131n2 −601n+96]

10nc1σ4
. (56)

Thus, our outcome includes a dark-singular straddled soliton solution

Φ8 (x, t) =

 ∓ 1
2n

√
n3β1 −µ2c1σ1[190n3 +1131n2 −601n+96]

10nc1σ4

×
{

tanh2 (µ (x− γt))+ coth2 (µ (x− γt))
}


1
n

×exp[i(−κx+ωt +θ0)

(57)

Family V

a2 = b2 =∓1
n

√
µ4c1σ1[180n3 −2632n2 +1512n+272]−32µ2n3β1 +4n5β2

n(132µ2c1σ4 −15n2β4)
. (58)

Therefore, a dark-singular straddled soliton solution is acquired:
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Φ9 (x, t) =

 ∓1
n

√
µ4c1σ1

[
180n3 −2632n2 +1512n+272

]
−32µ2n3β1 +4n5β2

n(132µ2c1σ4 −15n2β4)

×
{

tanh2(µ(x− γt))+ coth2(µ(x− γt))
}


1
n

×exp[i(−κx+ωt +θ0)].

(59)

Family VI

a2 = b2 =∓ 1
4n

√
µ2c1σ1[−1024n3 +928n2 −608n+128]+48n3β1

−10nc1σ4
. (60)

Accordingly, a dark-singular straddled soliton solution is obtained from the analysis, as follows

Φ10 (x, t) =

 ∓ 1
4n

√
µ2c1σ1[−1024n3 +928n2 −608n+128]+48n3β1

−10nc1σ4

×
{

tanh2 (µ (x− γt))+ coth2 (µ (x− γt))
}


1
n

×exp[i(−κx+ωt +θ0)].

(61)

Family VII

a2 = b2 =∓ 1
2n

√
10µ4c1σ1[−301n3 +458n2 −218n+28]−48n3µ2β1 +6n5β2

n(46µ2c1σ4 −5n2β4)
. (62)

Henceforth, the solution turns out to be a dark-singular straddled soliton solution

Φ11 (x, t) =

 ∓ 1
2n

√
10µ4c1σ1[−301n3 +458n2 −218n+28]−48n3µ2 β1 +6n5β2

n(46µ2c1σ4 −5n2β4)

×
{

tanh2 (µ (x− γt))+ coth2 (µ (x− γt))
}


1
n

×exp[i(−κx+ωt +θ0)].

(63)

5. Results and discussion
Utilizing the Sardar Sub-Equation Method (SSEM) and the Tanh-Coth method technique, we have successfully

derived exact analytical solutions for the concatenation model with power law nonlinearity, as described in Equation
(1). We transform the concatenation model with power law nonlinearity into a system of real and imaginary equations,
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described in Equations (4) and (5). Subsequently, we explore the analytical solutions of this system using the Sardar
Sub-Equation Method (SSEM) and Tanh-Coth method technique. Special assumptions are employed in extracting the
soliton solutions, such as the bright, dark and singular soliton solution. Bright solitons are fascinating phenomena in
nonlinear optics, offering stable, localized wave packets that propagate through dispersive media without dispersion-
induced spreading. These solitons, governed by the nonlinear Schrödinger equation (NLSE), exhibit distinctive features
influenced by the nonlinearity of the medium.

In Figure 1, we explore the behavior of bright soliton solutions under the influence of power law nonlinearity, as
described by Eq. (39). This equation characterizes the evolution of the soliton profile, Φ(x, t), under various power law
exponents (n), highlighting the impact of different nonlinear regimes. Figure 1(a) presents a surface plot illustrating the
bright soliton solution at t = 0 with a power law exponent of t = 1, corresponding to the Kerr law nonlinearity. The surface
plot vividly portrays the stable, bell-shaped profile of the soliton, indicative of its self-trapping nature and resilience
against dispersion. Figure 1(b) delves deeper into the behavior of the bright soliton solution by presenting 2D plots for
various power law exponents (n = 1, 1.5, 2, 2.5, 3, 3.5, and 4). As n deviates from unity, we observe significant alterations
in the soliton’s profile. For n = 1, the soliton profile broadens, reflecting the weakening of nonlinear effects and increased
susceptibility to dispersion. Conversely, as n surpasses unity, the soliton’s profile narrows and intensifies, indicative of
enhanced self-focusing and stronger nonlinear interactions. This transition highlights the crucial role of the power law
exponent in shaping the dynamics of optical solitons. By setting the time variable t = 0, we focus on the initial state of the
bright soliton solution, capturing its intrinsic properties before any temporal evolution occurs. This instantaneous snapshot
allows us to analyze the soliton’s behavior at the onset of propagation, providing valuable insights into its stability and
nonlinear characteristics.

6. Conclusion
In the current paper, the entire discriminant approach was employed to study the concatenation model with the power-

law of SPM. For each of the power-law parameter ’n’ values, the integration schemes, namely the Sardar Sub-Equation
Method (SSEM) and the Tanh-Coth method, derived bright, dark, and singular soliton solutions. By utilizing parameter
constraints, all of these soliton existence requirements are provided. The model holds a promising future, and the results
are truly encouraging. Furthermore, methods other than the Sardar Sub-Equation Method (SSEM) and Tanh-Coth method
technique will also be explored for related quiescent optical solitons and gap solitons. Additionally, it is possible to
examine the model with various waveguide types, such as optical metamaterials [31–35].

In addition to the current findings, future research could explore several promising directions. Firstly, investigating
the derived soliton solutions under various perturbations would provide valuable insights into their practical applicability.
Secondly, extending the analysis to include higher-order nonlinearities or non-local effects could yield amore comprehensive
understanding of soliton dynamics in complex optical systems. Furthermore, exploring the interaction of solitons with
external potentials or defects within the medium could lead to the discovery of novel phenomena and potential applications
in nonlinear optics. Lastly, considering multi-dimensional soliton solutions and their propagation characteristics in
different geometries could open up new avenues for exploring nonlinear wave phenomena in diverse physical systems.
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