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Abstract: According to the broad applicability and advancements made in addressing complex non-linear problems,
Researchers have been actively involved in addressing the accurate approaches to solve non-linear problems in fields
such as chemical science, material science, and image processing. In this paper, the Amperometric response of catalase-
peroxidase (parallel-substrates) conversion has been discussed. The Mathematical model relies on a set of non-linear
differential equations that describe the reaction and diffusion of the system. The analytical methods were extended to
derive the approximate solution of the non-linear reaction-diffusion equation. The straightforward and concise analytical
expressions for the concentrations and current of the Biosensor are developed. This study includes the computational
resolution of the problem by utilizing aMATLAB program. A comparison between analytical outcomes and those derived
numerically has been conducted. The analytical findings presented are dependable and offer an effective comprehension
of the behaviour of this system.

Keywords: mathematical modelling, Akbari-Ganji’s method (AGM), differential transform method (DTM), non-linear
differential equations
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Nomenclature
Symbols Meaning
SE1, SE2 Dimensionless concentrations of substrates
PE1, PE2 Dimensionless concentratiosn of products
γ1, γ2 Dimensionless Reaction rate
y Dimensionless space
Sb1, Sb2 Concentrations of substrates S1, S2 in Bulk solution (mol cm−3)

µ Dimensionless constant
Se1, Se2 Concentrations of substrates S1 and S2 (mol cm−3)
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e1, e2 Concentrations of substrates E1 and E2 (mol cm−3)

Pe1, Pe2 Concentrations of substrates P1 and P2 (mol cm−3)

e1, e2 Concentrations of substrates E1 and E2 (mol cm−3)

DSe1 , DSe2 , DPe1 , DPe2 Diffusion coefficients within the enzyme layers (cm2sec−1)

d Distance between the electrode and enzyme layer(cm)

1. Introduction
Biosensors are sensing instruments that convert a biological interaction into an electrical output. An oxygen-sensitive

electrode is a type of Biosensor designed to detect and measure oxygen concentration in a given solution. The oxygen
electrode typically consists of a sensitive element that reacts with oxygen, generating a measurable signal as a current.
Amperometric Biosensors detect the output current due to the electrochemical reaction [1–3]. While the Biosensor
operates, the substrate being examined undergoes a biochemical transformation to produce a specific product. Typically,
the Biosensor’s response exhibits a direct relationship with the concentration of the reaction product [4]. Amperometric
Biosensor find applications across various fields. Some of their notable applications include Biochemical applications,
Environmental monitoring, the food and beverage industry, Biotechnology and Pharmaceuticals, Industrial applications,
andwearable health devices [5, 6]. The development ofmathematicalmodels for enzymeBiosensors beganwithmodelling
the Amperometric enzyme electrode [7–10].

The unique characteristics of biosensors are essential for designing and enhancing them. Employing Mathematical
modelling replaces physical experiments to improve the configuration for Biosensors. Effectively detailing the quantitative
explanation of how reactions and diffusion occur within confined surface areas, as observed in Amperometric Biosensor
systems, holds great significance. Baronas et al. developed a computational model that accurately simulates an
amperometric biosensor using catalase-peroxidase-catalyzed two-substrate conversion through this approach. Additionally,
it analyzes how various physical and kinetic parameters impact the Biosensor’s response [11]. The exploration of
Mathematical models for two-enzyme biosensors began with a focus on creating models for an Amperometric monolayer
enzyme electrode containing two co-immobilized enzymes. Subsequent advancements led to the creation of non-linear
mathematical models tailored for Amperometric two-enzyme biosensors utilizing varied enzyme combinations.

This study aims to create an analytical solution to the boundary value problem that defines how the Biosensor
operates. This solution will depict the steady or non-steady concentration rates of the substances involved in the
reaction, travelling through the catalytic layer based on distance and time. Analytical solutions for different kinds of
biosensors have been documented in recent years. A straightforward Analytical expression is not available to determine
the steady-state concentrations and current in an amperometric-based biosensor that uses parallel-substrate conversion
within a biochemical reaction. Analytical methods such as Akbari-Ganji’s Method (AGM) and Differential Transform
Method (DTM) are applied to solve this model. The numerical results are gained using the Computational Software
MATLAB. This paper introduces a straightforward and closed version of the Analytical expressions for determining
substrate and product concentrations. These expressions are derived using a novel approach called the Akbari-Ganji
Method (AGM).

2. Mathematical formulation of the problem
The catalase-peroxidase (parallel-substrate conversion) process can be used to describe the chemical reaction in the

following manner.

S1
E1−→ 1

2
P1 (1)
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S1 +S2
E2−→ P2 (2)

Two simultaneous conversions of two substrates (S1 and S2), to get resulting products (P1 and P2) utilizing two
enzymes (E1 and E2) to accelerate the reaction. This Biosensor works in two parallel faces. Figure 1 illustrates the
schematic depiction of the system. Combining the reactions catalyzed by catalase and peroxidase within the enzyme layer,
as explained by Fick’s law, results in formulating the reaction-diffusion equations that depict how the Biosensor operates
within the enzyme layer as follows:

DSe1

d2Se1

dx2 = k1e1Se1 +
k21k22e2Se1Se2

k21Se1 + k22Se2
(3)

DSe2

d2Se2

dx2 =
k21k22e2Se1Se2

k21Se1 + k22Se2
(4)

DPe1

d2Pe1

dx2 =−k1e1Se1

2
(5)

DPe2

d2Pe2

dx2 =− k21k22e2Se1Se2

k21Se1 + k22Se2
(6)

Figure 1. Schematic represeantation of the system

Where x stands for space. Se1, Se2 are the concentration of substrates S1 and S2 and Pe1, Pe2 are the concentration of
products P1 and P2. DSe1 , DSe2 , DPe1 , DPe2 are the corresponding diffusion coefficients and k1, k21 and k22 are the reaction
rate that occurs in the system. This Kinetic model Amperometric Biosensor has been developed under the following
assumptions [12, 13].
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✓ During the first stage of the Biosensor’s function, the solution exclusively comprises hydrogen peroxide (S1).
When the Biosensor response stabilizes at the end of this initial phase. The second substrate(S2) is introduced into the
solution, initiating the second phase of the Biosensor’s operation.

✓ The movements of substrates and product through diffusion happens beyond the enzyme layer, specifically in a
region referred to as the Nernst diffusion layer.

✓ The boundary conditions of the system are given as follows.

DCe(
dCe

dx
)x=0, Pe1(x = 0) = 0, C = S1, S2, P2 (7)

Sei(x = d) = Si0, Pei(x = d) = 0, i = 1, 2 (8)

where d refers to the thickness of the enzyme layers.
✓ The steady-state non-dimensional form of the considered non-linear differential equations. Eqn (3), (4), (5), (6)

are as follows.

d2SE1

dy2 = γ1SE1 +
γ2SE1SE2

µSE1 +SE2
(9)

d2SE2

dy2 = γ2
SE1SE2

µSE1 +SE2
(10)

d2PE1

dy2 =−γ1
SE1

2
(11)

d2PE2

dy2 =−γ1
SE1SE2

µSE1 +SE2
(12)

With the boundary conditions,

dSE1

dy
=

dSE2

dy
=

dPE2

dy
= 0, PE1 = 0 when y = 0 (13)

SE1 = SE2 = 1, PE1 = PE2 = 0 when y = 1 (14)

✓With the dimensionless Parameters

SE1 =
Se1

Sb1
, SE2 =

Se2

Sb2
, PE1 =

Pe1

Sb1
, PE2 =

Pe2

Sb1
, y =

x
d
, γ1 =

d2k1e1
De

, γ2 =
d2k2

1e2
De

, µ =
Sb1

Sb2
(15)

✓ These equations were developed by assuming the model parameters [13] as,
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DSe1 = DSe2 = DPe1 = DPe2 = De, and k21 = k22 = k2 (16)

✓ The dimensionless current response of the system is given by,

ψ = (
dPE1

dy
)y=0 (17)

3. Approximate analytical expressions for the concentration of substrates and
products using AGM
In general, non-linear systems do not possess precise analytical solutions. Researchers typically prefer analytical

solutions as they offer a more lucid insight into how model parameters impact performance [14–17]. AGM has proven
effective in addressing non-linear systems. AGM is an innovative approach of solving differential equations with algebraic
expressions [18–22]. Many complex non-linear differential models encountered in science and engineering have been
effectively addressed by utilizing the AGM. This method has proven its ability to provide highly accurate and approximate
analytical solutions for these models. The detailed computation and analytical solution are given below, To solve the
differential equations, it is assumed that the answers to the non-linear differential equations Eqn (9), (10) and (12) are as
follows:

SE1(y) = Acosh(my)+Bsinh(my) (18)

SE2(y) = A1cosh(ny)+B1sinh(ny) (19)

PE2(y) = 1−A2cosh(qy)+B2sinh(qy) (20)

unknown coefficients A, A1, A2, B1, B2, n, m and q are obtained by applying the boundary conditions given in Eqns (13)
and (14). The following are the approximate analytical solutions for the concentration of reactant species using AGM,

SE1(y) =
cosh(my)
cosh(m)

(21)

SE2(y) =
cosh(ny)
cosh(n)

(22)

PE2(y) = 1− cosh(qy)
cosh(q)

(23)

The Normalized current response of the system is derived as,

ψ =
−γ1

2m2 (
1

cosh(m)
−1) (24)
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Where

m =

√
γ1 +

γ2

µ +1
(25)

n =

√
γ2

µ +1
(26)

q =

√
γ1

1+µ
(27)

To solve eqn (11), substituting SE1 in eqn (11) we get,

d2PE1

dy2 =
−γ1

2
cosh(my)
cosh(m)

(28)

Now solving and applying the boundary condition we get,

PE1(y) =
−γ1

2

[cosh(my)
cosh(m)

−
(
1− 1

cosh(m)

)
y− 1

cosh(m)

]
(29)

And the numeric values of the coefficients n, m and q are obtained using the reaction rate parameters γ1, γ2 and µ .
For instance, for the particular values of parameter γ1 = 0.1, γ2 = 0.1 and µ = 5 . Solving Eqn (25), (26), (27). We get m
= 0.3415, n = 0.1291, q = 0.1291.

4. Approximate analytical expressions for the concentration of substrates and
products using DTM
In the year 1986, Zhou introduced DTM for solving differential equations. It is the extension of Taylor’s series

method. DTM approach is based on finding coefficients of Taylor’s series. DTM is an existing method that provides
a series expression of non-linear boundary value problems [23]. The detailed computation using DTM is given below,
Considering the differential equation given in Eqn (9) with the initial conditions

dSE1

dy
(y = 0) =

dSE2

dy
(y = 0) = 0 (30)

The differential transformed form of Eqn (9) concerning the conditions given in Eqn (30) is given by,

((k+2)(k+1)s1(k+2)− γ1s1(k))(µs1(k)+ s2(k))− γ2

k

∑
r=0

s1(k)s2(k− r) = 0 (31)

s1(1) = 0, s2(1) = 0. (32)
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Now, Assume that,

s1(0) = a, s2(0) = b (33)

Letting k = 0 in eqn (31), we get

(2s1(2)−aγ1)(µa+b)−abγ2 = 0 (34)

⇒ s1(2) =
a(aγ1µ +bγ1 +bγ2)

2(µa+b)
(35)

Now, taking the differential inverse transform s1(k) is defined as,

s1(k) =
2

∑
k=0

s1(k)(y− y0)
k (36)

and letting y0 = 0, we obtain the series expression solution as follows,

SE1(y) =
2

∑
k=0

s1(k)(y)k = a+
a(aγ1µ +bγ1 +bγ2)

2(µa+b)
y2. (37)

In a similar way we can find approximate analytical solutions for the concentration of reactant species using DTM,
as follows:

SE1(y) = a+
a(aγ1µ +bγ1 +bγ2)

2(µa+b)
y2. (38)

SE2(y) = b+
abγ2

2(µa+b)
y2 (39)

PE1(y) = cy− γ1a
4

y2 (40)

PE2(y) = f − abγ1

2(µa+b)
y2 (41)

The Normalized current response of the system is derives as

ψ = c (42)
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The assumed constants a, b, c and f are obtained using the boundary condition given in Eqn (14). At y = 1 and for
particular values of reaction-diffusion parameters γ1 = 0.1, γ2 = 0.1 and µ = 5.

5. Comparison of analytical results with numerical simulation
In this Section, Numerical simulations are carried to evaluate how accurate and dependable the proposed method

is. Recently, Mathematical modelling has been investigated with Numerical simulations [24–26]. The Mathematical
expressions derived in this paper have been cross-referenced with a highly precise numerical solution acquired through
MATLAB (pdex4) software. The code relevant to this is provided in Appendix A. Furthermore, the analysis involves
comparing the numerical solutions with the AGM solutions Eqns (21) & (29) and the results are presented in the following
tabular form.

6. Results and discussion
The amount of the specific substance present in it influences the Biosensor’s reaction rate. Figure 2 shows that the

AGM results are very close to the Numerical solution, and the DTM results have minor variation from the Numerical
results. Therefore, Eqns (21), (22), (23) and (29) are the new simple and closed analytical expressions for the Normalized
concentrations of Substrates (SE1, SE2) and Normalized concentrations of Products (PE1, PE2). Figure 3 depicts all the
concentration curves verses dimensionless space.

Figure 2. Comparison of AGM and DTM results with Numerical results (NUM)

The concentration profiles of the substrate and product within the enzyme layer, obtained through both analytical
solution and computational simulation, are compared and displayed in Figure 3. The continuous line illustrates the
analytical solution, while the dashed line represents the numerical solution. These particular curves were calculated
using the subsequent standard parameter values, µ = 0.1, γ1 = 0.1, γ2 = 22 for SE1, µ = 5, γ1 = 0.1, γ2 = 20 for
SE2, µ = 100, γ1 = 100, γ2 = 500 for PE1, µ = 100, γ1 = 100, γ2 = 100 for PE2. Both the calculated analytical and
numerical solutions were represented on a shared graph, encompassing a broad spectrum of potential values for the
highlighted parameters within the problem. Table 1 and 2 evidently shows an exceptional agreement between the analytical
solution depicting reactant and product concentration profiles for the reaction-diffusion problem and the corresponding
values obtained through numerical evaluation usingMATLAB.On average, the variation between numerical and analytical
outcomes is typically 0.39% for substrate (S1) and 0.92% for product (P1), indicating a highly accurate match.
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Table 1. Comparison of the molar concentration of Substrate S1(SE1) given in Eqn (21) with Numerical (Num) result for the fixed value of parameter
µ = 5

y

γ1 = 0.1, γ2 = 0.1 γ1 = 0.1, γ2 = 5 γ1 = 1, γ2 = 0.1 γ1 = 5, γ2 = 0.1

Num
Soln

AGM
Soln

Error
% of
AGM

Num
Soln

AGM
Soln

Error
% of
AGM

Num
Soln

AGM
Soln

Error
% of
AGM

Num
Soln

AGM
Soln

Error
% of
AGM

0 0.944 0.944 0.02 0.657 0.664 1.13 0.642 0.643 0.20 0. 209 0.210 0.48
0.2 0.946 0.946 0.01 0.673 0.677 0.59 0.656 0.657 0.15 0.231 0.232 0.22
0.4 0.953 0.953 0.00 0.710 0.715 0.70 0.697 0.697 0.00 0.301 0.300 0.36
0.6 0.964 0.964 0.02 0.777 0.779 0.26 0.767 0.765 0.23 0.435 0.431 1.01
0.8 0.980 0.980 1.65 0.875 0.873 0.26 0.869 0.865 0.51 0.660 0.649 1.64
1 1.000 1.000 0.00 1.000 1.000 0.00 1.000 1.000 0.00 1.000 1.000 0.00

Avg
error % 0.28 0.49 0.18 0.61

Table 2. Comparison of the molar concentration of Substrate P1(PE1) given in Eqn (29) with Numerical (Num) result for the fixed value of parameter
µ = 5

y

γ1 = 0.1, γ2 = 0.1 γ1 = 0.1, γ2 = 5 γ1 = 1, γ2 = 0.1 γ1 = 5, γ2 = 0.1

Num
Soln

AGM
Soln

Error
% of
AGM

Num
Soln

AGM
Soln

Error
% of
AGM

Num
Soln

AGM
Soln

Error
% of
AGM

Num
Soln

AGM
Soln

Error
% of
AGM

0 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00
0.2 0.004 0.004 0.00 0.002 0.002 0.00 0.028 0.028 0.00 0.068 0.067 1.47
0.4 0.006 0.006 0.00 0.004 0.004 0.00 0.044 0.043 2.27 0.112 0.112 0.00
0.6 0.006 0.006 0.00 0.004 0.004 0.00 0.045 0.045 0.00 0.125 0.126 0.80
0.8 0.980 0.980 1.65 0.875 0.873 0.26 0.869 0.865 0.51 0.660 0.649 1.64
1 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00 0.000 0.000 0.00

Avg
error % 0.00 0.00 0.93 0.91

Figure 3. Plots between dimensionless concentration of Substrates (SE1, SE2) and dimensionless concentrations of Products (PE1, PE2) and space y
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6.1 Effect of parameter variation on substrate, product concentration and current

Figure 4 displays the dimensionless concentration profiles of substrate (S1), keeping the parameters µ,γ2 as constant,
adjust the reaction parameter γ1 across different values. and Figure 5 displays the dimensionless concentration profiles
of product (P1), keeping the parameters µ , γ1as constant, adjust the reaction parameter γ2 across different values. which
are part of the Parallal-substrate conversion governed by reaction-diffusion equation given in Eqn (21) and Eqn (29).
Observing the figure, it’s evident that the analytical result we obtained aligns closely with the outcomes from numerical
experiments. We have also analyzed the unique characteristics of the Biosensor activity by employing our analytical
findings across different parameter values. As the rate of the reaction goes up, there is a corresponding rise in the
concentration of the Product. The concentration of the substrate declines as the reaction rate increases. The Biosensor’s
present reaction is reliant on the concentration of the product (P1). The analytical derivation provides the equation for the
dimensionless current as expressed in Eqn (24). The current generated by the Biosensor is independent on the reaction
rate. Instead, it steadily rises when reaction rate increases and decreases consistently as reaction rate γ1 increases. It is
displayed in Figure 6, keeping the parameters as constant, adjust the reaction parameter γ1 and γ2 across different values.
This work may extend for predicting biosensor response with multi-substrate conversion and biosensor with substrate
inhibition. And also, the Mathematical formulation can be developed for the enzyme electrode with different shapes.

Figure 4. Plots between dimensionless concentration of First Product (SE1) and dimension space y

Figure 5. Plots between dimensionless concentration of First Product (PE1) and dimension space y
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Figure 6. Plots between dimensionless reaction parameter (γ1,γ2) and dimensionless current (ψ)

7. Conclusions
A Mathematical representation illustrating the steady-state reaction behaviour of an amperometric biosensor that

operates using catalase-peroxidase biochemical reactions (parallel-substrate conversion) is presented. A coupled non-
linear Differential Equations has been effectively addressed by applying a novel technique known as the AGM. The
obtained analytical expressions offer a simple, straightforward and more effective means to grasp and anticipate how
the system will behave. The results obtained from our analytical approach, which solves for the substrates and resulting
products, have been verified against a numerical method, showing reliable and matching outcomes. The Biosensor current
response concerning the kinetic parameters is also discussed.
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Appendix A
Function nebi
m = 0;
x = linspace (0, 1);
t = linspace(0, 10000000000);
sol = pdepe(m, @pdex4pde, @pdex4ic, @pdex4bc, x, t);
u1 = sol(:, :, 1);
u2 = sol(:, :, 2);
u3 = sol(:, :, 3);
u4 = sol(:, :, 4);
figure
plot(x, u1(end, :))
title(’u1(x, t)’)
function [c, f, s] = pdex4pde(x, t, u, DuDx)
c = [0; 0; 0; 0];
f = [1; 1; 1; 1].* DuDx;
r1 = 0.1; r2 =0.1 ; mu = 5;
F1 = - r1 * u(1) - (r2 * u(1) * u(2))/(mu * u(1)+u(2) );
F2 = - (r2 * u(1) * u(2))/(mu * u(1)+u(2));
F3 = ((r1/2) * u(1));
F4 = (r1 * u(1) * u(2))/(mu * u(1)+u(2));
s = [F1; F2; F3; F4]; function u0 = pdex4ic(x)
u0 = [1; 1; 0; 0];
function [pl, ql, pr, qr]= pdex4bc(xl, ul, xr, ur, t)
pl = [0; 0; ul(3); 0];
ql = [1; 1; 0; 1];
pr = [ur(1)-1; ur(2)-1; ur(3)-0; ur(4)-0];
qr = [0; 0; 0; 0];
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