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Abstract: We present two alternative and new proofs for the duality between orbifold zeta functions of Berglund-Hubsch
dual invertible polynomials. We re-prove the following theorem; Assume W and WT are dual invertible polynomials
in n+ 2 variables. Denote by (XW , G) and (XW T , GT) the corresponding Berglund-Hubsch dual hypersurfaces in Pn+1,
where G and GT stands for their group of symmetries. The orbifold L-series of XW and XWT satisfy: (*) Lorb(XW , s) =
Lorb(XWT , s)(−1)n . We present two proofs of the above identity (*). Our methods of proof are different. The first proof
uses cohomological Mackey functors on Mackey systems. The second proof is independent and uses a formula for the
orbifold zeta functions. For an orbifold (X , G) we consider a Mackey system of subgroups of G and cohomological
Mackey functors on this Mackey system. We investigate the relation between the above L-series of orbifolds and the
Mackey functors. We show the orbifold cohomology H∗orb(X , C) is an EndCG[

⊕
gCG/C(g)]-module, that means; the

orbifold cohomology defines a cohomological Mackey functor on the Mackey system of conjugacy classes in G. This
leads one to split the zeta function according to properties of G-cohomological Mackey functors. This method allows
obtaining identities on orbifold zeta functions from identities in a Grothendick group associated with subgroup quotients
of G. In this context, the relation (1) is a consequence of cohomological mirror symmetry and Mackey structure. In other
words, we obtain the identity (1) from Mackey type of identities in a Grothendieck group followed by a multiplicative
homomorphism constructed from zeta functions of a Galois representation. The second proof uses a duality between age
functions ι : G→ Z, and ιT: GT→ Z, of the dual invertible polynomials. It is known that GT is the character group of G.
We show that these age functions are Fourier transforms of each other with respect to a unitary representation obtained
from the natural pairing between G and GT. Using a formula of the orbifold zeta function in terms of the age functions,
we deduce a comparison of zeta functions for the two dual invertible polynomials as given in the above.
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1. Introduction
The zeta functions of complex analytic varieties is an invariant of the variety which characterizes many (topological)

properties of the ambient space. Despite its simplicity the zeta or L-series encodes substantial information about the
manifold or singularities, [1–5]. In this paper, we deal with the interaction between zeta functions and theMirror symmetry
of Chen-Ruan. Mirror symmetry is a branch ofmathematics that studies a duality phenomenon that appears in properties of
Calabi-Yau (CY) varieties. The name “mirror” reflects the fact that CY varieties appear in mirror pairs. Mirror properties
of CYManifolds were first discovered by Physicists but later became a systematic program of research for mathematicians.
HomologicalMirror symmetry considers a duality between theHodge decompositions of twomirror Calabi-Yaumanifolds.
This property was first discovered by M. Kontsevich. A form of this duality was studied by Berglund-Hubsch for dual
polynomials (see below) or hypersurfaces concerning orbifold Hodge structure [6–10].

We study quotient manifolds of type Y/G where Y is a complex topological manifold and G is a finite group. We
consider some additional structures in these spaces relevant to the stabilizers of the G-action on the points in Y . We call
such a structure an orbifold structure. This structure naturally appears in the finite quotients of homogeneous hypersurfaces
X in PN . The quotient here is by the group of nontrivial symmetries of the homogeneous polynomial W defining X . We
present and will work with an example of orbifolds in Section 1.3. A major step is to define a cohomology theory for these
objects, as the usual cohomology of a multisector space denoted by ΣX . This space is a disjoint union of the manifolds
Y g/C(g), g∈G, whereY g is the points fixed by g inY andC(g) is the conjugacy class of g inG. The resulting cohomology
is called orbifold cohomology or Chen-Ruan (CR) cohomology. The orbifold cohomology has a special Hodge structure
and in the étale settings is a representation of the absolute Galois group of the number field where W is defined over.
In this context, one defines a new sort of zeta function associated with this representation, called orbifold zeta function.
Berglund-Hubsch duality is a way to assign to a special homogeneous polynomial W (with the same number of terms as
variables) another polynomial WT of the same form. Then one may study the effect of this assignment on the associated
orbifold zeta function.

We introduce some of the terminologies that we use in the course of presenting our main result. We first introduce
orbifold cohomology and Hodge structure for orbifolds X .

1.1 Orbifold Hodge structure
Assume X = [Y/G] is an orbifold where G is a finite group. By this, roughly speaking we mean that we consider the

quotient space Y/G together with the inertia (stabilizer) structure at each point of Y ([1, 8, 11–13], see also Appendix A
for a detailed discussion). In [7], Ruan introduced a new cohomology theory of orbifolds by defining

Hk
orb(X): = Hk(ΣX) =

⊕
g∈T

Hk−2ı(g)(X(g)), X(g) = Y g/C(g), (1)

where ΣX : = ∏

gX(g) is the multisector space, and T denotes a set of representatives for the conjugacy classes in G. The
superfix by g, means the elements fixed by g and C(g) is the conjugacy class of g ∈ G. The function ı: G→Q, (g 7→ ıg)
is the age function that appears in the grading of Hk

orb(X) (see Appendix A). In our case, the age function takes values in
Z. The orbifold cohomology satisfies a Hodge structure;

Hk
orb(X) =

⊕
p+q=k

⊕
g

H p−ıg, q−ıg
orb (X(g)) (2)

The above Hodge structure is called orbifold Hodge structure, see [6, 8–11, 14]. One can also define the Chen-Ruan
orbifold cohomology in the étale setting for the orbifold X (see [1]), in a similar way. The definition is as follows, (see
[1])
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Hk
et, orb(X , Ql): = Hk

et((ΣX , Ql) =
⊕

a+2b=k

Ha
et(age−1(b), Ql) (3)

Here ΣX : = ∏

gY g/C(g) is the inertia scheme, [1, 11].

1.2 Orbifold zeta and L-series
The étale cohomology is naturally a Galois module, that is a module over Gal(Q/Q). We have a Galois representation

ρ: Gal(Q/Q)−→ GL(Hd
et, orb(X̄ , Ql)) (4)

The Frobenius substitutions

Frobp = (p, F/Q): b 7→ bp (mod p) (5)

of p for F finite and Galois over Q are topological generators of Gal(Q/Q). The induced action on the étale cohomology
groups is denoted by the same symbol Frobp (agrees with the inverse of Frobenius called geometric Frobenius) defines
the representation (4). In the orbifold case, one needs to modify the representation (4) as (see [1] prop. 1.1);

Fp, orb: H∗orb(Xet , Ql)→ H∗orb(Xet , Ql), α 7→ q−ι(α)Frobp(α) (6)

Convention: We consider a convention on the determinant and trace function on graded vector spaces or complexes.
For a linear map F : V → V on a Z-graded vector space we write V = ⊕iVi, F = ⊕Fi and we denote det(F |V ) =

∏i det(Fi|Vi)
(−1)i+1 , and Tr(F |V ) = ∑i(−1)iTr(Fi|Vi).

The orbifold zeta function of X is defined as follows.
Definition 1 [1, 2] The orbifold cohomological zeta function is given by

Lorb(X , t): = det
(

1−Forb.t|H∗orb(Xet ,Ql)

)
= exp

(
∞

∑
r=1

Tr
(

Fr
orb|H∗orb(Xet ,Ql)

) tr

r

)
(7)

In this case one computes (cf. [1] section 6),

Tr(Forb|H∗orb) = ∑
g
Tr(Forb|Xg |H∗) = ∑

g
q−ıg ∑

a

q−dim(a)

]Aut(a)
(8)

where Aut(a) is the automorphism group the sector corresponding to a. Plugging (8) in equation (7) then the formula (7)
becomes
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Lorb(X , t) = exp

(
∞

∑
r=1

∑
ξ

(qr)−age(ξ )−dim(ξ )

]Aut(ξ )
.
tr

r

)
(9)

We refer to [1] definition 6.1 for details of the computation, see also [3]. The zeta function (7) is (also) associated
with the representation of the Galois group of the number field K over which the variety X is defined, see Appendix B. In
this text, we deal with the orbifold zeta functions of some special hypersurfaces, and K =Q.

1.3 Berglund-Hubsch dual invertible polynomials

We work in the weighted projective space P(q1, ..., qn+2) where qi = wi/d have common denominators and we
have gcd(w1, ..., wn+2) = 1. In [15] Bergland and Hubsch look at the orbifolds X defined by weighted homogeneous
polynomials with the same number of variables as monomials

W =
n+2

∑
i=1

x
mi, 1
1 ...x

mi, n+2
n+2 , W (λ q1x1, ..., λ qn+2xn+2) = λW (x1, .., xn+2) (10)

We assume W : Cn+2→ C has isolated singularity at the origin. The group of non-trivial automorphism of W is

G = Aut(W )/JW , JW = 〈diag(exp(2πiq1), . . . , exp(2πiqn+2))〉 (11)

In the notation used at the beginning of this section. The (Chen-Ruan) orbifold cohomology of the hypersurface
XW = {W = 0} inside the weighted projective space P(w1, ..., wn+2) is defined by

Hk
CR([XW/G], C): = Hk

orb([XW/G], C) (12)

To each such polynomial one may associate an integer matrix A = (mi j) that encode the exponent of x j in the i-th
monomial. In the mirror symmetry setup we always assume that the matrix A= (mi j) is invertible. One can make a duality
by transposition of these exponents with (i, j) 7→ ( j, i) obtaining another polynomial WT. Mirror symmetry studies the
properties of the orbifoldsY/G andYT/GT via the Bergland-Hubsch duality, [2, 7, 12, 16–20]. The mirror map establishes
an isomorphism between the Hodge pieces of orbifold cohomologies of the corresponding orbifolds in different levels in
the form

H p, q
CR ([XW/G], C) = Hdim−p, q

CR ([XWT/GT], C) (13)

On account of the correspondence (13), one may investigate possible relations between the orbifold zeta functions
of W and WT.

1.4 Contribution of the text

We compare the orbifold zeta functions of the varieties W = 0 and WT = 0. We reprove the following theorem by a
systematic application of Mackey functors.
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Theorem 1 The orbifold L-series of XW and XWT satisfy

Lorb(XW , s) = Lorb(XWT , s)(−1)n
(14)

In [2] a proof of this theorem has already been presented. We give two new proofs of the above theorem which
provide a mirror symmetric insights. Our proofs also connects several contexts in mathematics, namely Mirror symmetry,
MacKey Functors, and zeta functions.

Our result appears as the proof of the Theorem 4. We also provide several lemmas and propositions on the way to
obtain the above result. They appear as Lemma 2, Definition 3 and Propositions 1 and 2. The results appear in Section 3.

1.5 Method of the proof

We prove the identity (14) in two ways different from that in [2]. Our method in the first proof employs MacKey
functors defined for MacKey systems, [21–23]. We consider a Mackey system (C , O) of subgroups of G in (11) and
cohomological aMackey functor defined by the Chen-Ruan orbifold cohomology. As a result, the Chen-Ruan cohomology
defines aMackey functor X 7→H∗orb(X ,C) on theMackey system (G,C = {C(g)| g∈G}) of subgroupsC(g) of conjugacy
classes in the group G of non-trivial symmetries of the polynomialW . That is the assignmentC(g) 7→Hn−2ιg

orb (X(g))makes
H∗orb(X , C) an EndCG[

⊕
gCG/C(g)]-module. This leads us to split the zeta function according to some properties of

G-modules as cohomological Mackey functors. The method is theoretical and gives insights beyond Mirror symmetry.
The second proof uses some formulas of the orbifold zeta functions as quotient stacks, [1]. The formula concerns

the age function of the associated orbifold. In fact we apply mirror symmetry to the context of orbifold quotient spaces.
A main ingredient of the proof is an inversion relation between the age functions of two dual invertible polynomials.
Specifically these age functions are Fourier transform of each other with respect to the unitary representation induced by
a natural pairing.

1.6 Related works
There is already a proof of the Theorem 4 in [2]. We provide an alternative proof of this Theorem based on the

MacKey systems and functors [21]. Some related facts and conjectures about the classical zeta functions of mirror CY-
manifolds are provided in [16–19, 24, 25] and the references therein.

1.7 Organization of the text

In Section 2 we introduce Mackey systems of subgroups of a given group and their Mackey functors as systematic
operations on this collection of objects. Section 3 contains our main result namely Theorem 4. We reprove a duality
between the orbifold L-series of Berglund-Hubsch invertible polynomials using an application of Mackey functors to zeta
functions. In Appendix A we introduce basic definitions and properties of orbifolds. We define the Chen-Ruan orbifold
cohomology and explain its orbifold Hodge structure. In continuation, we also explain the étale orbifold cohomology and
describe a similar structure on the étale cohomology of orbifolds. In Appendix B we provide the definitions related to
zeta and L-series, both in the usual and orbifold case.

2. Cohomological Mackey functors
In this section, we introduce Mackey systems of groups and their Mackey functors following [21], see also [22, 23,

26, 27]. We wish to use this terminology for the orbifold cohomology and their zeta functions in the next section. Let
G be a group. Mackey functors on Mackey systems are powerful tools appearing in many branches of mathematics. We
first define these systems.
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Definition 2 [21] A Mackey system (C , O) for G is the data
(S1) C is a set of subgroups of G closed under conjugation and finite intersection. In this case for H a subgroup of

G we set C (H) = {U ⊂ H|U ∈ C }.
(S2) A family O(H)⊂ C (H) for H ∈ O such that
·[H: U ] is finite for U ∈ O(H).
·O(U)⊂ O(H) for U ∈ O(H)

·O(gHg−1) = gO(H)g−1

·U ∩V ∈ V for V ∈ C (H)

Assume k is a commutative ring with 1. Let (G, C , O) be a Mackey system. A k-Mackey functor M on this system
(also called G-functor) into the category of k-modules is the data

(F1) A family of k-modules M(H).
(F2) A family of k-linear maps cg

H : M(H)→M(gH) for each H ∈ C and g ∈ G namely conjugation.
(F3) A family of k-linear maps resH

I : M(H)→M(I) for each I ≤ H in C , called restriction maps.
(F4) A family of k-linear maps indH

I : M(I)→M(H) for each I ≤ H with H ∈ C and I ∈ O(H) called induction or
transfer maps. These maps are all supposed to be transitive on subgroups,

(F5) The restriction and induction commute with conjugation and satisfy

resH
I ◦ indH

J = ∑
h∈I\H/J

indhJ∩I ◦ reshJ∩I ◦ ch
J (15)

called Mackey formula or Mackey decomposition.
(F6) A Mackey functor is called cohomological if

indH
I ◦ resH

I = [H: I].idM(H), H ∈ C , I ∈ O(H) (16)

A basic example of Mackey systems appears for Galois groups of field extensions in number theory. An interesting
example of Mackey functor is the Galois cohomology, where the appropriate axioms correspond to well-known properties
of Galois cohomology.

Mackey functors can be presented in several different ways. We briefly mention two of them to give some sense of
their behavior.

AMackey functor can alternatively be defined as a bi-functorM: D(G)→Ab from the category ofG-sets andG-maps
to the category of abelian groups and group homomorphisms. By a bifunctor, we mean pair of functors (M∗, M∗): G-sets
→ Ab where these two functors are the same on objects M∗(S) = M∗(S), S ∈ D(G) but the first M∗ is covariant and the
second M∗ is contravariant, and they satisfy certain compatibility conditions, op. cit (see [21] definition 2.6). One shows
that the category of Mackey functors Mackk(G) is equivalent to the category of bifunctors with certain compatibilities,
([21] theorem 2.7), see also [22, 23].

Mackey functors are also related to permutationG-modules. LetPer(kG) be the category of permutation kG-modules,
that are kG-modules that have a finite basis that is permuted by the action of G. The following theorem explains this
relation.

Theorem 2 (Yoshida) [21, 26, 27] If G is finite, there is an equivalence of categories

Y : Mackk(G)
∼=−→ Functk(Per(kG),Mod(k)) (17)
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such that Y (M)(k[G/H])∼= M(H), where Functk(Per(kG),Mod(k)) denotes the category of k-functors from Per(kG) to
Mod(k) (category of k-modules).

Let E : = EndkG(
⊕

H≤G k[G/H]). The Yoshida theorem says that the category of cohomological Mackey functors
(with compatible natural transformations) is equivalent to E -modules. The following theorem is one of the main results
of [21].

Theorem 3 [21] Let (C , O) be a Mackey system on G. Assume that k is a field with char(k) = 0. Let M be a
cohomological k-Mackey functor for this Mackey system. Suppose H ∈ C and I⊴H is a normal subgroup such that H/I
is not cyclic. Then one has

⊕
I≤H0<...<Hn=H, n odd

M(H0)
|H0/I| ∼=

⊕
I≤H0<...<Hn=H, n even

M(H0)
|H0/I| (18)

of k-modules.
First applying the theorem to G/I shows that I can be taken to be identity. Second is that the theorem also holds in

characteristics p > 0, however, one needs to assume H/I does not have a normal p-subgroup with a cyclic quotient. Third,
by defining

µ(I, H): = ∑
I≤H0<...<Hn=H

(−1)n (19)

then, the relation (19) defines an identity in a Grothendieck group. Theorem 3 has a vast of applications in different areas
of mathematics such as number theory, or representation theory, and also the theory of zeta and L-series. We present just
the following simple example to understand the Theorem 3 better, (see [21] for various examples).

Example 1 [21] For example if G = S3 the symmetric group of 3 elements, then we obtain

M(1)⊕M(G)2 ∼= M(C3)⊕M(C2) (20)

where C2, C3 are subgroups of order 2 and 3. For G = A4 the alternative group of four elements we obtain two possible
identities,

M(1)⊕M(G)3 ∼= M(C3)
3⊕M(V4)

M(1)⊕M(V )4 ∼= M(C2)
3

(21)

where Ci denotes the subgroups of order i and V4 the subgroup of order 4.
An example of a Mackey system appears for G being the Galois group of number fields or p-adic fields. It is a

straightforward checkup that the system of the subgroups satisfies the axioms of a Mackey system. We want to see some
application of the Mackey functors to zeta and L-series. We need the following lemma that shows the behavior of L-series
under IndG

H functor.
Notation: Below we use a convention between zeta functions and L series as L(s, χ, ρ): = ζ (s, χ ⊗ ρ) for a

representation ρ and character χ of the absolute Galois group GK , (see Appendix B for more details).
Lemma 1 ([21] Theorem 6.9, and proposition 6.10) Assume ρ: G=Gal(Q/Q)→GL(Ql) is an l-adic representation

of the absolute Galois group of Q. Assume H is a subgroup of finite index in G. Then
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L(s, IndG
H(χ), ρ) = L(s, χ, ρ|H), ∀χ: H→Q∗l (22)

where L(s, IndG
H χ, ρ): = ζ (s, χ⊗ρ).

We are now ready to see an instance application to zeta functions.
Example 2 ([21] section 6 and Theorem 1.8) Let G be a Galois group and consider the Grothendieck group K0(G)

on the base elements [G/H] where H ≤ G runs through subgroups of finite index in G. Let ρ be a representation of G.
One defines a map

ζ : K0(G)→M , [G/H] 7→ ζ (s, ρ|H) (23)

This map has been studied in ([21] sec. 6). Using the Lemma 1 with Theorem 3 by applying the map ζ in (23) to
identities as (18) one obtains the following computation,

∏
GL≤U≤G

ζ (s, ρ)|U/GL|µ(U, G) = ∏
GL≤U≤G

L(s, IndG
U (1), ρ)|U/GL|µ(U, G)

= L(s, ∑
GL≤U≤G

|U/GL|µ(U, G)IndG
U (1), ρ)

= L(s, 0, ρ) = 1

(24)

where U runs through open subgroups of G with U/GL finite. We provide a more systematic application in the next
section.

3. Orbifold zeta functions and mirror symmetry
Mirror symmetry compares the Chen-Ruan orbifold cohomology associated with each pair of dual polynomials as

W =
n+2

∑
i=1

x
mi, 1
1 ...x

mi, n+2
n+2 ⇆ WT =

n+2

∑
i=1

x
m1, i
1 ...x

mn+2, i
n+2 (25)

with the same number of monomials as variables. Here we have chosen the number of variables to be n+ 2 so that the
dimension of the variety becomes n in the projective space. The (Chen-Ruan) orbifold cohomology of the hypersurface
XW = {W = 0} inside the weighted projective space P(w1, ..., wn+2) is defined by

Hk
CR([XW/G], C): = Hk

orb([XW/G], C) (26)

The Chen-Ruan cohomology of XW has a polarized Hodge structure, see Appendix A. As we mentioned in the
introduction one assigns the matrix A = (mi j) to the polynomial W which we assume is an invertible (n+ 2)× (n+ 2)-

Volume 5 Issue 2|2024| 1827 Contemporary Mathematics



matrix. The polynomialWT is obtained by transposing the matrix A. We usually denote the inverse by A−1 = (mi j). Then
to each column [m1 j, ..., m(n+2) j]T one can associate the diagonal matrix

ρ j = diag [exp(2πimi j), ..., exp(2πim(n+2) j)] (27)

We set G = Aut(W )/JW where

Aut(W ) = {α = diag [α1, ..., αn+2] | α∗W =W}= 〈ρ1, ..., ρn+2〉 (28)

as the group of nontrivial symmetries of the polynomial W . This construction can be repeatedly done starting from AWT .
Then one obtains a group GT defined by

GT =
⟨
ρT

1 , ..., ρT
n+2
⟩
/JWT (29)

where ρT
i corresponds to the i-th column of A−1

WT = (AT)−1 and JWT is defined similarly. The group GT can be identified
with the group of characters of G. The (Homological) mirror map is an isomorphism between the orbifold Hodge pieces
of the dual pairs (W, WT),

H p, q
CR ([XW/G], C) = Hn−p, q

CR ([XWT/GT], C) (30)

Both of the orbifold cohomologies Hk
CR([X/G], C) and its Hodge pieces H p, q

CR ([XW/G]) are modules over E0 =

EndCG(
⊕

(g)CG/C(g)). Therefore by Yoshida theorem 2 they define Mackey functors on the set of subgroups of the
form C (G) = {C(g) | g ∈G}. The family O in the definition of the Mackey system reduces to the identity subgroup only.
The proof of the following theorem is our main result.

Theorem 4 The orbifold L-series of XW and XWT satisfy

Lorb(XW , s) = Lorb(XWT , s)(−1)n
(31)

The relation (31) is referred to as a duality between orbifold zeta functions. However, this expression is conceptual,
referring to the dual invertible polynomials (hypersurfaces) in the sense explained above. We reprove the Theorem 4. This
is our Main result. Our method of proof gives a deeper mathematical understanding of the relation (31). We first prove
the following lemma.

Lemma 2 Let (X , G) be an orbifold. Consider the Mackey system C (X) = (G, C = {C(g)| g ∈ G}) in the sense
defined in Section 2. Then, the functors M(g): X(g) 7→ H∗−2ιg(X(g), C)C(g), g ∈ G define a Mackey functor on C (X).

Proof. The conditions F(1)-F(6) are formal consequences of the way the orbifold cohomology is defined as the
direct sum of the cohomologies H∗−2ιg(X(g), C)C(g) and are based on the fact how the conjugacy classes in a finite abelian
group are structured, see also the discussion in the beginning of Appendix A. By Yoshida Theorem 2 H∗orb(X) becomes an
EndCG[

⊕
gCG/C(g)]-module, where g acts through the component X(g) = Xg/C(g). The corresponding cohomological

functor is M: C → Vect/C, C(g) 7→ H∗−2ιg(X(g))
C(g), where Vect/C is the category of vector spaces over C.

The following definition is an orbifold analog of a similar map for ordinary zeta functions, defined in [21] section 6.
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Definition 3 Let (X , G) be an orbifold. Consider the representation ρ: GL → GL(Hk
orb, et(X , Ql)). Let Kρ

0 (G) be
the Grothendieck group with base elements [G/C(g)], where g ∈ G. Define the homomorphism

Lρ
orb: Kρ

0 (G)→M (C), [G/C(g)] 7→ Lorb(s, ρ|C(g)) (32)

where M (C) is the meromorphic functions on C. Here Lorb(s, ρ|C(g)) is defined as Appendix B, item 5.
As a consequence, we can prove the following.
Proposition 1 Let (X , G) be an orbifold. Then, we have the following formula

Lorb(X , s) = ∏
g

Lorb(s, ρC(g))
|G/C(g)| (33)

Proof. According to Lemma 2, the functors M(g): X(g) 7→ H∗−2ιg(X(g), C)C(g), g ∈ G define a Mackey functor on
C (X). By the theorem 3 we have

M(G)|G/G| ∼=
⊕

g
M(C(g))|G/C(g)| (34)

Applying the map Lρ
orb described in 3 to the both sides of (34), we get (33), see also Example 2 or [21] section 6 for

a similar argument.
Proposition 1 allows to obtain identities between orbifold zeta functions from identities in the Grothendieck group

Kρ
0 (G). We use this property to give our first proof of Theorem 4.

Proof. (First Proof of Theorem 4) From Proposition 1 we also get

Lorb(XT, s) = ∏
g′

Lorb(s, ρC(g′))
|GT/C(g′)|.

On the other hand the subgroups C(g′) ≤ G are dual to the subgroups C(g′) ≤ GT. Because GT is the group of
characters of the group G, this means that the subgroups C(g′) are the kernels of the maps GT→C(g)T associated to the
inclusion C(g) ↪→ G. In this way we have |G/C(g)| = |GT/C(g′)| for the choice of g and g′ as explained. The factors
Lorb(s, ρC(g)) and Lorb(s, ρC(g′)) are the zeta functions of the sectors X(g) and XT

(g′). In case that X and XT are CY-varieties
where one has the cohomological mirror isomorphism H p, q

orb (X , C) = Hn−p, q
orb (XT, C), we obtain the same representation

of the absolute Galois group on these isomorphic pieces. Thus the Hodge decomposition 5 the multiplicative factors in
the det

(
1−Forb.t|H∗orb(Xet ,Ql)

)
and det

(
1−Forb.t|H∗orb(XT

et ,Ql)

)
just (may!) have different exponents ±1 = (−1)n. This

proves the equation (31).
The above proof shows that the duality relation mentioned in Theorem 4, is mainly based Mackey identities in the

Grothendieck group Kρ
0 (XW ).

We also provide another proof of Theorem 4, by a more direct method. The following proposition explains the
relation between the age functions of two dual invertible polynomials. We will use this fact in the proof of Theorem 4.

Proposition 2 Let A = (mi j) be the matrix defined by W . Consider the pairing
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A = 〈., .〉: G×GT→ C∗, 〈g, g′〉= exp[2πi α.A.βT]

g = diag[2πiα1, . . . , 2πiαn+2], g′ = diag[2πiβ1, . . . , 2πiβn+2],

alpha = (α1, . . . , αn+2), β = (β1, . . . , βn+2).

(35)

If ι : G→ Q, g 7→ ιg is the age function of the polynomial W . Then the age function of WT namely, ιT: GT →
Q, g′ 7→ ιTg′ is given by the Fourier transform of ι (denoted ι̂), i.e., ιT = ι̂ .

Proof. (sketch) The group GT is the group of characters of G, i.e., GT = Hom(G, C∗) cf. [2, 20, 28]. If g =

diag[exp(2πia1), . . . , exp(2πian+2)], then ι(g) = a1+ · · ·+an+2. The maps 〈g, .〉 and 〈., g′〉 define 1-dimensional unitary
representations of GT and G respectively. In this sense, we regard the elements of G as a (unique) unitary representation
of G′ and vice versa. Let us for simplicity by abuse call g the exponential of α in equation (35). By ([28] page 5) the
elements of GT are generated by the (some-not all) exponentials of the rows of the matrix A−1 (see the condition in [28]),
and elements of G are between exponentials of the columns of A−1. The age functions just calculate the sum of the entries
in these rows and columns. In this way, the Fourier transform with respect to A should correspond to the operation of
taking the transpose of A in this process. This explains the claim of this proposition.

Remark 1 From the proof of Proposition 2 it is easy to see that ∑g ιg = ∑g′ ιg′ . This formula also follows from the
basic character theory of finite groups by Proposition 2.

Proof. (Second Proof of Theorem 4) We have by definition the formula

Lorb(XW , t): = det
(

1−Forb.t|H∗orb(XW, et ,Ql)

)
= exp

(
∞

∑
r=1

Tr(Fr
orb|H∗orb(XW, et ,Ql)

)
tr

r

)
(36)

and similar for XWT . By the equation (72) in Appendix II, or [1] def. 6.1, we have

Tr(Forb|H∗CR) = ∑
g
Tr(Forb|Xg |H∗) = ∑

g
q−ιg ∑

a

q−dim(a)

]Aut(a)
(37)

Using the formula (37) we obtain

Lorb(XW , t) = exp

 ∞

∑
r=1

∑
ξ∈[XW (Fq)]

(qr)−age(ξ )−dim(ξ )

]Aut(ξ )
.
tr

r

 (38)

Expanding the exponential function we are led to compare terms of the form

exp

 ∑
ξ∈[X(Fq)]

(qr)−age(ξ )−dim(ξ )

]Aut(ξ )

= exp
(
Tr(Fr

orb|H∗CR)
)

(39)
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The identity (39) holds for any r and can be compared with (37). It follows that the expressions q−age(ξ )−dim(ξ )

]Aut(ξ ) are
eigenvalues of Forb|H∗CR. By the well-known formula expTr(M) = deteM in a computation of the determinant of Forb|H i

CR
for some i we have a product of these expressions. Thus, we have to compare the sums ∑ξ −age(ξ )−dim(ξ ) for the dual
invertible polynomials W and WT. So we are led to compare the two sums ∑g ι(g) and ∑g′ ιT(g′). By Proposition 2 ιT is
the Fourier transform of ι with respect to the pairing A. The two sums ∑g ι(g) and ∑g′ ιT(g′) are equal by basic character
theory for finite abelian groups.

We summarize the above. It follows that the only difference that affects between the orbifold zeta function
formula Lorb(XW , t): = det

(
1−Forb.t|H∗orb(XW, et ,Ql)

)
for two dual invertible polynomials is on the power degrees in

det
(

1−Forb.t|H i
orb(XW, et ,Ql)

)(−1)i+1

. The only thing that remains, is to look at how the different factors in (75) or (33)
are corresponded via the Mirror isomorphism. According to the homological mirror symmetry, (30) these exponents
differ by (−1)n. This proves the theorem.

Remark 2 The relation in Theorem 4 is proved in [2] by another method. Our approach was somewhat different
and mainly on the power of Mackey functors in Mirror symmetry. The relation

χorb(XW , G) = (−1)dimχorb(XWT , G) (40)

also holds for the orbifold Euler characteristic defined analogously, see [2].
Remark 3 [29] Given a smooth projective variety X , denote by Db(X) the derived category of coherent sheaves on

X . For two projective varieties X , Y the Fourier-Mukai transform with kernel P ∈ Db(X×Y ) is

F : Db(X)→ Db(Y ), F = (p2)∗(p∗1(−)), (41)

where X
p1←− X×Y

p2
−→ Y are projections. There is a well-known map

v: Db(X)→ H∗(X , C), v(E) = ch(E)
√
td(X) (42)

called Mukai vector which is a covariant functorial isomorphism. In Mirror symmetry, the Mirror isomorphism between
two pairs X and Y (XW and XWT in our case) can also be explained by the Fourier-Mukai transform between their derived
categories. Then one can deduce that

Tr(Frob|Heven(X)) = Tr(Frob|Heven(Y ))

Tr(Frob|Hodd(X)) = Tr(Frob|Hodd(Y ))

however one can not establish the equality between their zeta functions from these relations, except in low dimensions or
when most of the cohomologies may vanish.

Remark 4 [30] Suppose G is as in the setting of this section. Set X = ⊕gIndG
C(g)1. Then one defines the Hecke

algebra by H(g) = EndC[G](IndG
C(g)1) and H =

(⊕
g H(g)

)op. Then there exists natural adjoint functors
Mod(H)

A−→ModC(G) M 7−→ X⊗H M (43)
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Mod(H)
h←−ModC(G) HomG(X, V )←−V (44)

This correspondence reduces the representation theory of the group G to module theory over H. The associated
correspondence can also be made at the level of derived Hecke algebras as

Mod(H•) A−→ModC(G) M• 7−→ I•⊗H• M• (45)

Mod(H•) h←−ModC(G) HomG(X, V •)←−V • (46)

where X→ I• is an injective resolution. The C[G]-module H∗orb(X) can be regarded as an H-module in the derived sense.
This reflects the fact that the theory of L-series is an assignment over complexes and their cohomologies, see [31]. The
interesting fact is to study the structure of the Ext-algebra

Ext∗CG(X) =
⊕

g
H∗(C(g), X) (47)

induced by Frobenius reciprocity. It is a fundamental fact in the theory of Hecke algebras that the multiplication in H• is
induced by the (opposite of) Yoneda product on Ext∗. The Ext-algebra has the structure of an A∞-algebra, i.e. a differential
graded algebra with higher multiplications. If the field C is replaced by a field with char = p > 0 this formalism breaks
down unless when all the subgroups C(g) are pro-p groups and p-torsion free. In this case the two functors A and h are
quasi-inverse to each other by a theorem of P. Schneider, loc. cit. .

Remark 5 (Congruence mirror symmetry-D. Wan) [24] An interesting question is if for two mirror pair of Calabi-
Yau varieties X and Y one has ]X(Fq) = ]Y (Fq). This question has been positively answered in [24] for strong mirror
pairs (Xλ , Yλ ) in mirror families of CY-varieties parametrized by λ , as ]Xλ (Fq) = ]Yλ (Fq).
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Appendix A. Orbifold Hodge structures
We briefly provide some preliminaries on orbifolds and orbifold cohomologies following [8, 11], see also [6, 9,

10, 14]. We start with the definition of an orbifold and orbifold bundles. An orbifold is a Housdorff second countable
topological space X with an atlas A= { (Vp, Gp, πp) | p ∈ X } called uniformizing system, whereVp is an n-dimensional
manifold, Gp is a finite group acting on Vp in a smooth way, and πp: Vp → X inducing a local homeomorphism
π̃p: Vp/Gp −→ X , p ∈ Vp ⊂ X . The group Gp is called the isotropy group of p, or the local group at p. An orbifold
vector bundle or an orbibundle of rank k is given by a surjective map pr: E −→ X , with uniformizing systems (V, G, π)
and (V ×Rk, G, π̂) for X and E respectively, such that the action of G on V is given by g.(x, v) = (g.x, ρ(x, g)v), where
ρ: V ×G→ Aut(Rk) is smooth map satisfying ρ(g.x, h)◦ρ(x, g) = ρ(x, h◦g). Finally we require that p̃r: V ×Rk→V
satisfies π ◦ p̃r= pr◦ π̃ . Maps between orbifolds and orbibundles are defined to be compatible with the orbifold structures.

Define the multi-sector ΣkX as the set of pairs (p, (g)) where g = (g1, ..., gk) is the conjugacy class of elements

(g1, ..., gk) in Gp. ΣkX can be locally seen as V
(g)
p /C(g) where V

(g)
p = V g1

p ∩ ...∩V gk
p and C(g) = C(g1)∩ ...∩C(gk).

The notation V g
p stands for the fixed point of the action of g on Vp and C(g) for the centralizer of g in Gp. We have the

following properties;
1. There exists the decomposition

ΣkX =
⊔

(g)∈Tk

X(g), X(g) = { (p, (g′) | (g′) ∈ (g) } (48)

where Tk is the set of equivalence classes obtained from maps Gq→ Gp for q ∈Up = π(Vp). The X(g) for g 6= 1 is called
twisted sector and X(1) the untwisted one.

2. For l ≤ k there are evaluation maps

ei1, ..., il : ΣkX → ΣlX , ei1, ..., il (x, (g1, ..., gk)) = (x, (gi1 , ..., gil )) (49)

3. We have an involution

I: ΣkX → ΣkX , (x, (g))→ (x, (g−1)) (50)

4. The case we are interested in is a global quotient X = Y/G where G is a finite group. In this case

ΣX =
⊔
(g)

Y g/C(g), X(g) = Y g/C(g) (51)

We assume the orbifold X has an almost complex manifold with a complex structure given by J as a smooth section of
End(T X) such that J2 =−1. For each p∈ X the almost complex structure gives a representation ρp: Gp→GLn(C)where

n = dimX that can be diagonalized as diag
(

e2πi
m1, g

mg , ..., e2πi
mn, g

mg

)
where mg is the order of g ∈ Gp and 0≤ mi, g < mg.

5. There exists a locally constant function

ι : ΣX →Q, ι(p, (g)) =
n

∑
j=1

m j, g/mg (52)
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called the degree shifting number. It is integer-valued iff ρp(g) ∈ SLn(C). In this case, X is called an SL-orbifold.
The orbifold cohomology groups of X are defined as

Hd
orb(X , C): = Hd(ΣX , C) =

⊕
(g)∈T1

Hd−2ι(g)(Y g, C)C(g) (53)

where the superfix means the fixed points. Applying this argument to Dolbeault cohomologies we obtain

H p, q
orb (X) =

⊕
(g)

H p−ι(g), q−ι(g)(X(g)) (54)

Suppose ω ∈ H1, 1(X , R) is a Kähler class and let Lω : H∗orb(X)→ H∗orb(X) be the wedge operator with the Kähler
class (the Lefschetz operator). Because

dimX(g) = dimX− i(g)− i(g−1) (55)

then Lp
ω pairs Hn−p

orb with Hn+p
orb subject to the condition that

ι(g) = ι(g−1) (∗) (56)

In this case Lp
ω : Hn−p

orb → Hn+p
orb is an isomorphism. The primitive orbifold classes are defined by

(Horb)0(X , C): ker(Ln−p+1
ω : H p

orb→ H2n−p+2
orb ) (57)

The following theorem explains the Hodge structure on the orbifold cohomology, based on the notations we
introduced.

Theorem 5 [8] Let X be a projective Sl-orbifold satisfying condition (*). Then for each k,

Hk
orb(X , C) =

⊕
p+q=k

H p, q
orb (X), Hq, p

orb (X) = H p, q
orb (X) (58)

is a Hodge structure (HS) of weight k. The primitive cohomology also inherits a HS of weight k in a natural way from
this decomposition. This Hodge structure is polarized by the form

Q(g)(a, b) = (−1)(k(k−1)/2)+ι(g)
∫

X(g)

a∧b, a ∈ Hk−2ι(g) (59)

The Theorem states that the orbifold intersection form splits as
⊗

Qg according to the sector decomposition ∏

gXg

and
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Qg(Ha−ıg, b−ıg(Xg), Hc−ıg, d−ıg(Xg)) = 0, unless a+ c = n (60)

which implies Q(F p, Fn−p+1) = 0. The two filtrations

Wl =
⊕

k≥2n−l

Hk
orb, F p =

⊕
a

⊕
b≤n−p

Ha, b
orb (61)

define a polarized MHS on H∗orb polarized by Lw. The Lefschetz operator Lw is an infinitesimal isometry for Qg;

Qg(Lwα, β )+Qg(α, Lwβ ) = 0 (62)

and the HS of weight n+ l induced by F on ker(Ll+1
w : GrW

n+l → GrW
n−l−2) is polarized by Q(., Ll

w.).

A1 The étale setting
[1] Let X be an orbifold as above, and define over the number field L. Then define similarly

Hk
et, orb(X , Ql): = Hk

et((ΣX , Ql) =
⊕

a+2b=k

Ha
et(age−1(b), Ql) (63)

for 0≤ k≤ 2n, where ΣX and the age function are defined similarly. The conjugation property in (58) will fail in the étale
setting but one still has dimHq, p

et, orb(ΣX) = dimH p, q
et, orb(ΣX). The groups Hk

et, orb(X , Ql) are Ql-vector spaces endowed
with continuous action ρ: GL→GL(Hk

orb, et(X ,Ql)). Most of the properties and definitions in the étale setting are similar
to the case over the complex numbers, see [1] for details.
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Appendix B. Zeta functions
The materials in this Appendix are classical and quite well-known and can be found in various texts on zeta functions,

[1–5, 20, 21]. We can define various zeta functions for the projective variety X .
1. Artin local zeta function: Assume X is a non-singular projective algebraic variety defined over a finite field Fq

with q = pr elements and let X : = X×Fq Fq. The Artin (local) zeta function of X is defined by

Z(X , t) = det
(

1−Frob∗|H∗(X ,Ql)

)
= exp

(
∞

∑
n=1

]X(Fqn)

n
tn

)
(64)

where l 6= p is a prime, and the notation ]X(Fqn) is the number of rational points of X over Fqn . The identity (64) is based
on the Lefschetz fixed point theorem; ”if f : X → X is a continuous endomorphism of quasi-projective variety X , then
Γ f .∆ = ∑(−1)iTr( f ∗|H i(X ,Ql)

) where Γ is the diagonal in X×X . It follows that ΓFrobr .∆ = |X(Fqr)|.”
2. Hasse global zeta function: If X is defined over a number field K, the Hasse zeta function of X is

ζ (X , s) = ∏
p good

Zp

(
X(p), Np−s) (65)

where Zp(X(p), Np−s) is defined via (64) and Np ∈ Z is the norm of the ideal p. The product is over primes p such that
the reduction of X is a smooth variety (good primes). When K = Q, then p = (p), N(p) = p and the local factors in the
product (65) are defined by the formula (64), with q = p.

3. Zeta function of Galois representations: One also associates the zeta functions with the Galois representations
of GK =Gal(K/K). If ρ: GK =Gal(K/K)→AutK(V ) is a representation of the absolute Galois group of K, then the zeta
function of ρ is

ζ (ρ, s) = ∏
p6=∞

det
(
1−FrobpNp−s|V Ip

)(−1) (66)

If Dp is the decomposition group at p, then Ip⊴Dp is the inertia subgroup which fit into the short exact sequence

0→ Ip→ Dp→ Gal
(

k(p)/k(p)
)
→ 0 (67)

When p is good, then Ip = 1 (identity subgroup). The zeta function in (65) is in fact the zeta function of the natural
representation of GK on the cohomology H∗(X , Qp).

4. L-series of projective varieties: If X is a non-singular projective variety defined over the number field K, then
the L-series of X is defined by

L(X , s) = ∏
i

∏
p6=∞

det
(

1−FrobpNp−s|H i
et (X ,Qp)

Ip

)(−1)i+1

(68)

We use the notation of L-series, where L(s, χ, ρ) = ζ (s, χ⊗ρ) for a character χ of GK . In this sense, we identify the
zeta and L-series, in the text. Zeta and L series can also be associated to Galois representations. In this form, one regards
H i

et(X , Ql) as Galois representations, and the definition is the same as the previous item.
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5. Orbifold L-series: The zeta and L-series can also be defined for orbifolds or orbifold cohomologies. As before
the arithmetic Frobenius acts on the orbifold cohomology. However, unlike the usual case, this action is no longer a ring
homomorphism on H∗orb(X , Qp). To make the action on the orbifold cohomology a ring homomorphism one needs to
modify it as,

A 7−→ q−ιg(A)Frobp(A) (69)

We sometimes denote ıg(A) simply by ıA when A ∈ H∗orb(X , Qp). Following [1] or [3], it is natural to define orbifold
Frobenius morphism as

Fp, orb: H∗orb(Xet , Ql)→ H∗orb(Xet , Ql), α 7→ q−ι(α)Frobp(α) (70)

where the second Frobp is the usual one. In [1] it is explained that Fp, orb is a ring homomorphism. The orbifold L-series
of the orbifold X is defined as

Lorb(X , t): = det
(

1−Forb.t|H∗orb(Xet ,Ql)

)
= exp

(
∞

∑
r=1

Tr
(

Fr
orb|H∗orb(Xet ,Ql)

) tr

r

)
(71)

One computes (cf. [1] section 6),

Tr(Forb|H∗CR) = ∑
g
Tr(Forb|Xg |H∗) = ∑

g
q−ıg ∑

a

q−dim(a)

]Aut(a)
(72)

where Aut(a) is the automorphism group the sector corresponding to a. Plugging (72) in equation (71) then the formula
(71) becomes

Lorb(X , t) = exp

 ∞

∑
r=1

∑
ξ∈[X(Fq)]

(qr)−age(ξ )−dim(ξ )

]Aut(ξ )
.
tr

r

 (73)

We refer to [1] definition 6.1 for details of the computation, see also [3]. The formula (73) allows us to compare
L-series according to the age functions. We wish to do this for a mirror pair polynomials of special forms, according to
some inversion formula between their age function, (see Section 3).

6. Zeta functions of Deligne-Mumford stacks: [3, 32]. Here again the definition is based on the Lefschetz trace
formula. In this case, the trace formula reads TrFq|H(Xet ,Ql) = ]X(Fq). For technical reasons we reformulate this formula
in terms of the arithmetic Frobenius ϕq On H(Xet , Ql) that acts as the inverse of Fq. For ϕq the trace formula reads
qdim(X)Trϕq|H(Xet ) = ]X(Fq). This follows from Poincaré duality.

Algebraic stacks relate to algebraic varieties in the same way groupoids relate to sets. A groupoid is a category all
of whose morphisms are isomorphisms. A set X is considered as a groupoid denoted also X , by taking for objects the
elements of the sets and morphisms only the identity morphisms. A group G is considered as a groupoid denoted BG
with one object whose automorphism group is G. A G-set X is considered as a groupoid denoted XG or [X/G] by taking
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as objects the elements of X and for the set of morphisms from x to y the transporter the elements of G that take x to y
through the action. For a groupoid X we define

]X= ∑
ξ∈[X]

1
Autξ

.

where the sum is taken over the set of isomorphism classes ofX and for an isomorphism class Aut(ξ ) is the automorphism
group of any representative. If Aut happens to be infinite we set 1

Aut = 0.
In case X is a set ]X is just the number of elements of X . If X = BG for a group G we have ]BG = 1

]G . If X = XG

for a G set X we have, ]X= ]X
]G , by the orbit formula. When X= [X/G] and essentially of finite type over Fq we have the

following

]X(Fq)

]G(Fq)
= ∑

η∈X(Fq)/G(Fq)

1
]Stab(η)

= ∑
ξ∈[X(Fq)]

1
]Aut(ξ )

(74)

If X is a Deligne-Mumford (DM) stack of finite type over Fq one can define the zeta or L-series of the DM-stack X

as

L(X, t): = exp

(
∞

∑
r=1
|X(Fqn)| t

r

r

)
=

2dimX

∏
i=0

det
(

1−qdimXtFq|H i(Xet ,Ql)

)(−1)i+1

(75)

where we have

|X(Fq)|= qdimXTr(Fq)|H∗sm(Xet ,Ql)
= ∑

ξ∈[X(Fq)]

1
]Aut(ξ )

(76)

Remark 6 (Gamma factors) [5] IfV =
⊕

V p, q is a Hodge decomposition over C, then one defines hp, q = dimV p, q.
Then the Gamma factor attached to V is

ΓV (s) = ∏
p, q

ΓC(s− inf(p, q))hp, q
(77)

If V = ⊕p, qV p, q is an R-Hodge structure, that is there exists an involution σ such that pairs σ(V p, q) = V q, p. If a
factorV n, n appears in the Hodge decomposition, then the automorphism σ induces a decompositionV n, n =V n,+⊕V n,−,
as the ±1-eigenspaces of σ . We put h(n, +) = dimV n,+, h(n, −) = dimV n,− and h(n, n) = h(n, +)+ h(n, −). Then
the Gamma factor attached to V is

ΓV (s) = ∏
n

ΓR(s−n)hn, + ∏
n

ΓR(s−n+1)hn, − ∏
p<q

ΓC(s− p)hp, q
(78)

If X is a non-singular projective variety defined over a global field K we set A = N(f).DBm , D = |dK/Q|, Bm =

dimHm(X , C) where dK/Q is the discriminant and f the conductor pf K/Q. Then one defines
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ξ (s) = As/2ζ (s) ∏
v∈Σ∞

K

Γv(s) (79)

It satisfies the functional equation

ξ (s) = w ξ (m+1− s), w =±1 (80)

The important consequence of the functional equation for zeta functions is the meromorphic continuation of ξ (s) to
the whole complex plane.

Remark 7 [29] In general, the functional equation for the zeta function of nonsingular varieties is a consequence of
Poincaré duality H2dim−r(X , Ql)×Hr(X , Ql)→Ql . Using the (projection) formula

F∗(x).x′ = x.F∗(x′), x ∈ H2dim−r, x′ ∈ Hr (81)

one deduces that the eigenvalues ofF∗ acting onH2dim−r are the same as eigenvalues ofF∗ acting onHr. On the other hand
the equationF∗◦F∗= qd tells that if the eigenvalues ofF∗ areα1,...,αs then the eigenvalues ofF∗must be qd/α1, ..., qd/αs.
This implies the functional equation. The proof for stacks or orbifolds is the same. This argument can also be done via the
Lefschetz operator Lw. The operator Ln−i

w : H i
et, ∗(X)(i-n)

∼=→H2n−i
et, ∗ (X) commutes with the Frobenius map on cohomology.

Therefore the aforementioned result follows from Hard Lefschetz and the fact that twisting the étale cohomology by (l)
affects the eigenvalues of the Frobenius multiplied by 1/ql .

Remark 8 (Independence of l) [31] The coefficients of the expansion of the rational function

Lorb(X , t) = ∏Pi(t)(−1)i+1
, Pi = det(1−Forbt; H i(X , Ql) (82)

are rational numbers and are independent of l. It is a famous conjecture that this is also true for each Pi(t). It is known that
the roots of Pi(t) are Weil q-numbers, i.e. all their (Galois) conjugates have the same weight, which is a rational number.

Remark 9 [4] For special varieties, one may get explicit formulas for the action of the Frobenius, Fp. Consider the
variety X defined by the Fermat equation,

X : xd
0 + xd

1 + ...+ xd
n+1 = 0 (83)

of degree d, where we regard as a variety of dimension n over the field K =Q( d
√

1). Then G=
⊕n+1

i=0 µd/(diagonal). Then
the cohomology Hn(X) decomposes as Hn(X) =

⊕
g Hn(X)g, where Hn(X)g = {v| ζ .v = ζ gv , g ∈G}. Then according

to [4] each Hn(X)g is either one dimensional or 0. The action of the geometric Frobenius Fp is given by the following
Gauss sum.

Fp.v = J(ε1, ..., εn+1) = (−1)n ∑
x∈Pn(Fq)

∏
i

εi(xi), εi: F×q → µd (84)
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Remark 10 The fundamental fact about zeta functions is given by the Weil conjectures proved by P. Deligne. They
are as follows.

(1) Z(X , t) is a rational function of t and can be written

Z(X , t) =
P1(t)...P2n−1(t)
P0(t)...P2n(t)

, n = dimX , Pi(0) = 1 (85)

where Pi(t) is a polynomial of degree βi the i-th betti number of X . Moreover P0(t) = 1− t and P2n(t) = 1−qn.t.
(2) One has a functional equation

Z(X ,
1

qn.t
) =±qnχ/2 tχ Z(X , t), χ =

2n

∑
i=0

(−1)iβi (86)

(3) The polynomials Pi(t) above have integral coefficients, if Pi(t) = ∏i(1−wα .t) the complex numbers wα have
absolute value q1/2.

Weil conjectures are also the base to define the weight filtration in Hodge-Tate decompositions as the analog of mixed
Hodge structure in p-adic Hodge theory.

Remark 11 [33] Langlands program studies the deformation theory of representations ρ: Gal(Q/Q)→GL(H∗et) by
the existence of certain continuous map Def: Gal(Q/Q)→ T(H )/I where T(H ) is a specific Hecke algebra (arisen
from the cohomology of the Shimura variety parametrizing Hodge structures of H∗et ), with generator T1, ..., Tn. In this
context the characteristic polynomial of Def(Frob) is

Xn−T1Xn−1 + ...+(−1) jq j( j−1)Tj + ...+(−1)nqn(n−1)Tn (87)

It follows that the eigenvector ϕ ∈ H of Hecke operators correspond bijectively to representations ρ and the
characteristic polynomial of the Frobenius is

Xn−a1Xn−1 + ...+(−1) jq j( j−1)a j + ...+(−1)nqn(n−1)an (88)

where a j are the eigenvalues of the Hecke operators Ti(ϕ) = ai.ϕ , 1≤ i≤ n, ai ∈Qp.
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