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Abstract: TheNumber Theoretic Transform (NTT) has emerged as a powerful tool for efficiently computing convolutions
of digital signals, due to its inherent advantages such as numerical stability, reliance on simple integer operations, and
proven efficiency. Its applications have extended to accelerating polynomial multiplication in lattice-based cryptography.
However, existing NTT multiplication algorithms impose restrictions on the underlying moduli, potentially affecting key
and ciphertext sizes as well as computational overhead. Therefore, enabling NTT with small moduli holds significant
potential for enhancing the overall system performance. This study introduces a novel reduction framework for NTT
computation in cyclotomic rings employing field extensions. Our approach replaces the underlying polynomial ring
with a two-dimensional isomorphic ring, effectively relaxing the restrictions imposed on the NTT moduli. The proposed
framework is evaluated through two case studies relevant to the LAC and NTTRU lattice-based cryptographic schemes.
Comprehensive theoretical analysis is provided, demonstrating the effectiveness of our approach in enabling NTT with
small moduli and its potential to improve the efficiency of lattice-based cryptography.
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DGT Discrete Galois Transform
IDFT Inverse DGT
GDGT Generalized DGT
DFT Discrete Fourier Transform
FV Fan-Vercauteren
CKKS Cheon-Kim-Kim-Song
FFT Fast Fourier Transform
GF Galois Field
CRT Chinese Remainder Theorem
EIMM Elementary Integer Modular Multiplications
ECC Error Correction Code

1. Introduction
Quantum computing and cloud and distributed computing are poised to transform the way we interact with the

digital world, fundamentally altering how we store, communicate, and process data. Quantum computers, with their
unprecedented computational power, hold the potential to solve complex problems that are intractable for classical
computers, leading to breakthroughs in fields like drug discovery, materials science, artificial intelligence, and cryptography.
Cloud and distributed computing, on the other hand, offers on-demand access to vast computing resources, enabling
seamless collaboration and data sharing across the globe. The convergence of these two technologies promises to usher in
an era of unprecedented computational power, data accessibility, and problem-solving capabilities, transforming the way
we live, work, and interact in the electronic world. Despite the transformative potential of quantum computing and cloud
computing, their widespread adoption necessitates careful consideration of potential security and privacy risks. Ensuring
robust data protection and privacy safeguards is paramount to harnessing the full potential of these technologies while
mitigating their associated risks.

On the one hand, the recent surge in quantum computing capabilities has necessitated the development of new
cryptographic methods that can withstand the potential threats posed by these powerful machines. Quantum computers
are rapidly advancing, with existing 1121-qubit machines [1] and roadmaps for developing 2000-qubit machines by
2033 [2]. The emergence of large-scale (multi-million qubits [3]) quantum computers threatens to break most of the
classical cryptosystems that rely on integer factorization and discrete logarithm problems, which are the foundation of
secure electronic communication on the Internet [4]. This looming threat has driven the search for new cryptographic
methods that are resistant to quantum attacks, known as Post-Quantum Cryptography (PQC) [5].

On the other hand, the emergence of cloud and distributed computing paradigms has significantly transformed the
computational landscape. Users can now leverage third-party providers for data storage and computation, offering benefits
such as scalability and cost-effectiveness. Furthermore, Blockchain technology has emerged as a promising approach for
ensuring secure and transparent tracking, data sharing, and authentication at scale. Blockchain’s distributed ledger and
cryptographic mechanisms can provide tamper-proof audit trails and establish trust between entities without a central
authority [6, 7]. However, a critical challenge remains: protecting data during processing. Conventional encryption
techniques effectively safeguard data at rest and in transit. However, the very nature of data processing necessitates its
unencrypted state, leaving it vulnerable to cyberattacks. This vulnerability is further amplified by the in-memory storage
of data during processing, increasing the exposure to unauthorized access. Therefore, robust mechanisms for securing
data during processing are paramount. These concerns regarding data security and privacy within cloud computing
environments necessitate further research efforts [8].

Potential solutions to address the aforementioned challenges have emerged through the development of lattice-based
cryptographic methods. For instance, lattices have been employed to construct post-quantum public-key cryptosystems,
ensuring the security of data communication even in the face of quantum attacks [9–11]. Moreover, several Fully
Homomorphic Encryption (FHE) schemes that enable computations to be performed on encrypted data have been realized
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based on lattices [12–18]. These advancements demonstrate the potential of lattice-based cryptography to address the
security and privacy concerns associated with quantum computing and cloud computing. We emphasize that the scope
of this work is solely focused on post-quantum lattice-based cryptosystems. Nevertheless, the concepts presented here
are applicable to a broader range of lattice-based cryptosystems and any problem involving polynomial multiplication in
cyclotomic rings.

In 2016, the U.S. National Institute of Standards and Technology (NIST) initiated a standardization program for Post-
Quantum Cryptography, called NIST-PQC [19] targeting Public-Key Encryption (PKE), Key Encapsulation Mechanism
(KEM), Digital Signature (DS), and Key Establishment and Exchange (KEE) schemes. From an initial pool of 69
proposals, 26 advanced to Round 2, followed by seven in Round 3. After six years of evaluation, four schemes were
selected as the winners: CRYSTALS-Kyber [20] for key establishment, and CRYSTALS-Dilithium [21], FALCON [22],
and SPHINCS+ [23] for digital signatures. Note that the first three schemes are based on lattices, which shows the
importance of these mathematical structures in modern cryptographic methods.

Lattice-based cryptosystems proposed in the NIST PQC competition fall into two main categories: structure-
free lattices, which rely on matrix-vector operations over finite fields, and lattices with algebraic structure, which
involve polynomial manipulation in cyclotomic polynomial rings. This work focused on the latter, where polynomial
multiplication in a ring is the primary performance bottleneck [24, 25]. Therefore, our focus in this work is solely focused
to developing a more relaxed framework to efficiently perform polynomial multiplication.

A cyclotomic ring is denoted as Rq = Zq[x]/⟨ f (x)⟩, where q is the ring coefficient modulus and f (x) is a degree-n
polynomial modulus that is irreducible over Z. Cyclotomic rings are advantageous due to the efficient multiplication
computation using the Number Theoretic Transform (NTT) or its variants, namely, the Discrete Weighted Transform
(DWT) and Discrete Galois Transform (DGT) when n is a power of 2 [26–28].

To use the typical [We use the term typical NTT-based multiplication when q ≡ 1 (mod 2n).] NTT-based
multiplication algorithms, the constraint q ≡ 1 (mod 2n) must be satisfied so that f (x) factors into linear factors. This
implies that q ≥ 2n, which can impose large key and ciphertext sizes unnecessarily in certain parameter sets. For instance,
LAC [LAC is used throughout the text without abbreviation, consistent with the original paper introducing the concept.],
Kyber and NTTRU [29–31] use relatively small ring dimensions n = 512, n = 256 and n = 768, respectively. For such
rings the smallest moduli that can be used to enable typical NTT-multiplication are q = 12, 289, q = 7, 681 [Note that this
modulus has been reduced further to q = 3329 using a variant of NTT multiplication [31]] and q = 7681, respectively,
even though smaller moduli can be used with acceptable security level [29].

In this work, our main contribution is a reduction framework that is tailored for NTT computation in cyclotomic
polynomial rings. We consider two of the most commonly used classes for the ring dimension n, namely when n is a
power of 2 or a product of a power of 2 and a power of 3. Our framework generalizes existing transform computations
by allowing for computation in field extensions. The framework replaces the underlying 1-dimensional ring with an
isomorphic 2-dimensional ring, as Figure 1 shows. The reduction offers several important benefits. For instance, it relaxes
some of the restrictions imposed on the transform moduli, especially their magnitude. Enabling NTT computation with
small modulus is of paramount importance due to its effect on the key and ciphertext sizes and computational overhead.
It also offers a way to control the transform length, which can be highly beneficial for reusing existing optimized compute
data-paths with minimal modifications. Moreover, the reduction can be useful for hardware platforms where fast memory
resources are scarce and/or special memory access patterns are preferred such as GPUs [32].

To show the advantage of our reduction framework, we present methods to enable NTT-based ring multiplication
for two hypothetical rings that are inspired by the LAC and NTTRU cryptosystems [33, 31]. These two case studies are
selected to demonstrate how our framework can be applied to different forms of n and values of q which are either close to,
or smaller than the proposed parameters. Note that the original proposal of LAC uses the parameter set (n, q) = (512, 257)
that is not friendly with typical NTT algorithms. Likewise, NTTRU employs the parameter set (n, q)= (768, 7681), which
requires special treatment to be compatible with typical NTT algorithms [31]. Security analyses are provided to show that
the proposed parameters do not affect the security of the original schemes. Moreover, we provide a theoretical analysis
to study the computational complexity of the proposed multiplication methods.

Contemporary Mathematics 4202 | Ahmad Al Badawi, et al.



Figure 1. The adopted ring decomposition as a reduction framework to simplify ring multiplication

1.1 Our contributions
Precisely, the main contributions and scope of the paper can be summarized as follows:
• We introduce the Generalized Discrete Gaussian Transform (GDGT) framework. This framework offers a

reduction technique for efficiently computing the Number Theoretic Transform (NTT) and its variants within power-
of-two cyclotomic polynomial rings.

•We demonstrate the applicability of GDGT through a concrete example. Specifically, we show how it can be applied
to cyclotomic rings where the modulus n takes the form n = 3l ·2k, with l and k are positive integers.

• We leverage GDGT to enable NTT-based multiplication for two prominent post-quantum cryptography (PQC)
cryptosystems inspired by LAC [29] and NTTRU [31]. This highlights the practical application of GDGT within specific
cryptographic contexts.

• We evaluate the performance of our framework by conducting a detailed theoretical complexity analysis focused
on ring multiplication. This analysis provides insights into the efficiency gains achieved by employing GDGT.

1.2 Organization
The remainder of the paper is organized as follows: In Section 2, we briefly review the state of the art regarding

computing the Number Theoretic Transform (NTT) for lattice-based cryptography. Section 3 provides the mathematical
background upon which our work is built. Our Generalized Discrete Galois Transform (GDGT) framework is presented
in Section 4. Sections 5 and 6 include two GDGT-based ring multiplication algorithms, serving as case studies inspired
by the LAC and NTTRU cryptosystems, along with results and discussions. Finally, Section 7 draws conclusions and
provides guidelines for potential future work.

2. Literature review
In this section, we review the literature on NTT and its variants which have been used in ring multiplication.
Computing Number theoretic transform in finite fields, was first presented by Pollard [34] who showed how to extend

the Discrete Fourier Transform (DFT) to finite fields and applying it for integer convolutions. The NTTmethods started to
gain more popularity with the rise of digital signal processing. NTT was preferred over DFT due to its numerical stability
for computing convolutions of integer signals without rounding errors. In addition, it requires only simple modular integer
operations. The main disadvantage of NTT, however, was the strict constraints imposed on the signal length and the
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underlying modulus [35]. The literature includes a rich body of work trying to relax these constraints [26, 27, 35–39]. For
historical remarks, the reader is referred to [26, 40].

The reduction in the depth of NTT computation data-path was first proposed by Crandall via the DGT algorithm,
which can be used to compute the negacyclic integer convolution in power-of-two cyclotomic rings. Given that the input
signal (polynomial) has only real values, DGT can be computed via a data-path of length n

2 points [27]. Crandall showed
how to compute DGT inGaussian finite fieldsGF(q2), where q is a Gaussian prime that is q≡ 3 (mod 4). In amore recent
work, Al Badawi et al. relaxed the condition on the underlying fields and showed how to compute DGT in non-Gaussian
finite fields as well [28]. The modified DGT-based multiplication algorithm has been used in GPU implementations of the
Fan-Vercauteren (FV) and the Cheon-Kim-Kim-Song (CKKS) Somewhat Homomorphic Encryption schemes [32, 41].

The DGT transform can be viewed as a recursive factoring of the polynomial ring Rq = Zq[x]/(xn + 1) into n/2
quadratic factors, i.e., factors of the form x2−ω j, where ω j’s are the n-th primitive roots of unity modulo q. The mapping
from Rq to the direct product of the quadratic factors can be computed efficiently via a Fast Fourier Transform (FFT)-like
data-path of log2

n
2 −1 stages, each stage comprising n

4 butterfly operations (1 multiplication, 1 addition and 1 subtraction)
in GF(q2).

A similar idea has been employed recently by Lyubashevsky and Seiler [31] to implement an NTRU [NTRU stands
for the N-th degree Truncated polynomial Ring Units]-based key encapsulation scheme called NTTRU that uses NTT-
based ring multiplication. The authors employed a hand-crafted ring that can be split into factors of the form x3 −ω j.
This non-typical NTT mapping enabled one to use NTT-based multiplication for the NTTRU scheme achieving about one
order of magnitude improvement in performance compared to NTRU-HRSS [42]. In addition, Chung et al. [43] proposed
non-typical NTT mappings to affect NTT-based ring multiplication for the Saber, NTRU and LAC PQC schemes.

In this work, we follow up on these works and provide a generic reduction framework that can reduce the NTT
computation depth by a factor k using an n′-point data-path where n = kn′ and k > 1. Two relevant use cases are
provided to show how the framework can be utilized. This generalization allows for flexibility in choosing k for efficient
implementations.

3. Preliminaries
This section includes nomenclature and notations for NTTmultiplication, and definitions of the mathematical notions

our work builds on.

3.1 Basic notations
Conventionally, capital letters denote sets, and lowercase letters represent elements within those sets. The symbol Z

denotes the set of integers. For a positive integer q, we usually represent elements in Zq by integers modulo q in the range
{
⌈
− q

2

⌉
, ...,

⌊
q−1

2

⌋
} unless stated otherwise. When q is prime, we also use Fq to denote the Galois field with q elements,

and we use Fq and Zq interchangeably. We borrow vector notation to represent polynomials; for instance, polynomial
a(x) (sometimes denoted simply as a), with a degree less than n, can be represented as a = [a0, a1, ..., an−1], where ai is
the i-th coefficient of a(x). The notation [a]q, where a, q ∈ Z, is used to denote the operation of reducing a modulo q in
Zq. If a is a polynomial, the operation is applied to all coefficients. Lastly, matrices are denoted by capital letters.

3.2 Efficient polynomial multiplication
Fast polynomial multiplication in cyclotomic rings Rq = Zq[x]/ f (x) hinges on the idea that Rq can be instantiated

with a certain parameter set such that the polynomial modulus f (x) can be factored into smaller co-prime polynomials
f (x) = ∏ j=l

j=1 f j(x) modulo q. The Chinese Remainder Theorem (CRT) establishes an isomorphism: Zq[x]/ f (x) ∼=
∏l

j=1Zq[x]/ f j(x). Polynomial multiplication can be carried out by first computing the CRTmap for the input polynomials,
which are assumed to be in Zq[x]/ f (x), followed by component-wise multiplication of the transformed inputs and finally
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computing the inverse CRT map. If the CRT mappings can be computed efficiently, this can provide fast multiplication
algorithms.

More concretely, let q be a prime and let n be a positive integer (typically a power of 2). We seek to perform
multiplication in Rq efficiently, namely, to compute a(x)b(x) mod (xn + 1) for any a(x), b(x) ∈ Rq. The typical
approach stems from the following notion. Suppose that 2n|(q − 1), so that there exists a primitive 2n-th root of
unity in the multiplicative cyclic group Z×

q , denoted by ω . Then ω2n = (ωn)2 = 1 which yields ωn = ±1 mod q.
Since ω is a primitive 2n-th root of unity, we must have ωn = −1. Denote by F the map from Rq to Zn

q such
that:F(a) = (a(ω0), a(ω1), . . . , a(ωn−1)) for all a ∈ Rq. Note that F is invertible since for any z ∈ Zn

q, one can find
an a ∈ Rq such that F(a) = z via Lagrange interpolation. The following lemma restates the well-known fact that F is an
isomorphism between Rq and Zn

q.
Lemma 1 For all a, b ∈ Rq, one has: F−1(F(a)⊙F(b)) = ab, where ⊙ denotes the component-wise product in Zn

q.
The map F is commonly known as the NTT transform. Lemma (1) shows that one can compute the product of any

two elements in Rq by performing 2 NTT computations, a product in Zn
q and an inverse NTT computation.

3.3 DWT

The preceding description of NTT works for any polynomial f (x) ∈ Rq. DWT, also known as negative wrapped
convolution, is a popular variant of NTT algorithm for computing the negacyclic convolution in GF(q) where q ∈ Z is a
prime. Specifically, DWT can be viewed as an efficient variant of NTT when f (x) = xn +1 over GF(q) when q and n are
appropriately chosen as described below.

Let n ∈ Z be a power of 2 corresponding to the desired transform length, and ωn be a primitive n-th root of unity in
GF(q), i.e., n is the smallest integer of e = 1, . . . , n s.t. ωe ≡ 1 (mod q). DWT also requires the existence of ζ ∈ GF(q)
s.t. ζ 2 ≡ ωn (mod q). The algorithm can be adapted to work in any other algebraic structure if it includes an equivalent
definition of ωn, ω−1

n , ζ , ζ−1, and n−1. To guarantee the existence of ωn and ζ , one may choose q s.t. q ≡ 1 (mod 2n).
The basic idea behind DWT exploits the following property: for the ring Rq: Zq[x]/(xn + 1), substituting x by ζ x

generates the following isomorphism: Zq[x]/(xn +1)→ Zq[x]/(xn −1) since ζ n = −1. This is equivalent to computing
the negacyclic convolution. The DWT and its inverse (IDWT) for n-point signal are defined below [44]:

Xk =
n−1

∑
j=0

ω− jk
n x j mod q, xk = n−1

n−1

∑
j=0

ω jk
n X j mod q (1)

Since we are working in GF(q), the existence of n−1, ω−1
n , and ζ−1 (mod q) are guaranteed.

Remark 1 In the above description, one requires that 2n|(q − 1). In practical applications of lattice-based
cryptography, we typically let n to be a power of 2. This restriction results in only a limited number of possible q.

3.4 DGT
DGT [27] is an adapted version of DFT instantiated over the Galois field GF(q2), where q is a Gaussian prime.

Although DGT was shown initially to require q ≡ 3 (mod 4), so-called Gaussian primes, Al Badawi et al. [28] showed
how to relax this condition and adapt DGT to work with prime numbers that are ≡ 1 (mod 4), i.e., non-Gaussian primes.
In the following paragraphs, we briefly introduce the DGT and refer the reader to the referenced articles for more concrete
treatment.

An element u ∈ GF(q2) can be represented as ur + iui where ur, ui ∈ Zq and i2 = −1 is the imaginary unit. These
elements are also known as Gaussian integers. Arithmetic with Gaussian integers is similar to complex number arithmetic
with a reduction modulo q for the real and imaginary parts. The DGT and its inverse of signal x = {x0, x1, . . . , xn−1} of
length n and xi ∈ GF(q2), are shown in equation 2:

Volume 5 Issue 4|2024| 4205 Contemporary Mathematics



Xk =
n−1

∑
j=0

h− jkx j mod q, xk = n−1
n−1

∑
j=0

h jkX j mod q (2)

where h is a primitive n-th root of unity in GF(q2).
DGT enjoys several appealing properties, the most notable is that negacyclic convolution of two n-point signals can

be computed via (n/2)-point DGT/IDGT. This reduces the length of the compute data-path and may lead to improved
performance in certain cases [32]. In the case of Gaussian primes, this reduction is particularly helpful as the computations
will be performed in the field GF(q2) instead of the base field GF(q).

3.5 Computational complexity estimates
We note that in our theoretical computational complexity analyses of all the algorithms presented in this work, we

only consider the number of Elementary Integer Modular Multiplications (EIMM) in a base finite field GF(q), i.e., a×b
(mod q), where a, b, q are all ∈ Z. Other operations such as modular additions, and subtractions are not included due to
their cheap computational overhead compared with modular multiplication.

4. A reduction framework for NTT computation
Let q be a prime, p be a power of q (a prime power), and let n be a power of 2. Let Rq denote the ring Fq[x]/(xn +1).

Our goal is to compute the product of elements in Rq efficiently via NTT techniques for a wider range of values of q and
n that is a power of 2.

We recall some facts from finite field theory.
Lemma 2 There exists an element g of F∗

p that generates all of F∗
p. Equivalently, g is a primitive (p−1)-th root of

unity modulo q.
Lemma 3 Suppose that r is a positive integer such that r|(p−1). Then, there exists a primitive r-th root of unity in

Fp.
Proof. Let g be a primitive (p−1)-th root of unity which exists by Lemma (2). Let t = (p−1)/r. Since r|(p−1),

t is an integer. Thus, ω = gt is a primitive r-th root of unity.
The ring multiplication can be calculated in at least three different methods as follows:
1. DWT if 2n|(q−1).
2. Generalize NTT to field extensions if 2n ̸ |(q−1).
3. Speeding up method 2 via GDGT (2 dimensions).
We describe each method in the following subsections.

4.1 Using DWT

Condition required: q is a prime and n a power of 2 such that 2n|(q− 1). By Lemma (3), there exists an ζ ∈ Fq

which is a primitive 2n-th root of unity modulo q. Further, we have the following:
• ζ n =−1;
• ωn = ζ 2 is a primitive n-th root of unity;
• i = ζ n/2 satisfies i2 =−1. Here, i ∈ Fq.
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Algorithm 1. Polynomial multiplication in Rq via the DWT [26]

Let Rq be the ring Fq[x]/(xn + 1), q is a prime number and n is a power of 2. Let ωn be a primitive n-th
root of unity in GF(q), and ζ be a square root of ωn in GF(q). Let a(x), b(x), c(x) ∈ Rq be polynomials of
degrees less than n with integer coefficients {

⌈
− q

2

⌉
, ...,

⌊
q−1

2

⌋
}.

Input: a(x), b(x), ωn, ω−1
n , ζ , ζ−1, n, n−1, q

Output: c(x) = a(x) ·b(x) (mod (q, xn +1))

Precompute:

ω j
n , ω− j

n , ζ j, ζ− j (mod q), where j = 0, . . . , n−1

Twist input signals:

ā j = ζ ja j (mod q)

b̄ j = ζ jb j (mod q)

Compute n-DWT:

A = DWT (ā)

B = DWT (b̄)

Coordinate-wise multiplication:

C j = A j.B j (mod q)

Compute n-DWT−1:

c̄ = DWT−1(C)

Remove twisting factors:

c j = ζ− j c̄ j (mod q)

return c(x)

Here, DWT (ā) = āW , whereWi, j = ω i j
n , i, j = 0, 1, . . . , n−1. This standard case can be seen as if q = p1.

Computational Complexity: The DWT transform of polynomial a(x) of length n can be calculated in O(n logn)
EIMM if a FFT-like datapath is used to compute DWT (ā).

4.2 DWT over finite field extensions

Next, suppose that 2n̸ |(q− 1). Let d be an integer such that 2n|(qd − 1), and p = qd . We consider the field Fp =

Fq[z]/ f (z), where f (z) is an irreducible polynomial over Fq of degree d.
We can now apply Algorithm (1), with some modification. In particular, we work over the extension field Fp instead

of over the finite field Fq as shown in Algorithm (2).
Condition required: q is a prime and n a power of 2, d is an integer such that 2n|(qd − 1). By Lemma (3), there

exists a ζ ∈ Fp which is a primitive 2n-th root of unity modulo q. Further, we have the following:
• ζ n =−1;
• ωn = ζ 2 is a primitive n-th root of unity.
From Lemma (3), we further have the following:
If n|(q−1), then ωn ∈ Fq.
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Algorithm 2. Polynomial multiplication in Rq via the DWT with extension fields

Let Rq be the ring Fq[x]/(xn + 1), q is a prime number and n is a power of 2, p = qd such that 2n|(p− 1).
Let ωn be a primitive n-th root of unity in Fq, and ζ be a square root of ωn in Fq. Let a(x), b(x), c(x) ∈ Rq

be polynomials of degrees less than n with integer coefficients {
⌈
− q

2

⌉
, ...,

⌊
q−1

2

⌋
}.

Input: a(x), b(x), ωn, ω−1
n , ζ , ζ−1, n, n−1, q, d, f (z)

Output: c(x) = a(x) ·b(x) (mod (q, xn +1), f (z))

Precompute:

ω j
n , ω− j

n , ζ j, ζ− j ∈ Fp, where j = 0, . . . , n−1

Twist input signals:

ā j = ζ ja j (mod q, f (z))

b̄ j = ζ jb j (mod q, f (z))

Compute n-DWT:

A = DWT (ā)

B = DWT (b̄)

Coordinate-wise multiplication:

C j = A j.B j (mod q, f (z))

Compute n-DWT−1:

c̄ = DWT−1(C)

Remove twisting factors:

c j = ζ− j c̄ j (mod q, f (z))

return c(x)

In Algorithm (2), DWT (ā) = āW , whereWi, j = ω i j
n , i, j = 0, 1, . . . , n−1 andW is a matrix over Fq.

Suppose that q is an odd prime. Since q and n are co-prime, by Euler’s theorem, one has qϕ(2n) = qn ≡ 1 (mod 2n).
It follows that there must exist d such that 2n|(qd −1). Consequently, Algorithm (2) can be applied for any q and n that
is a power of 2. However, the extended DWT operations require approximately n logn products in Fp or approximately
d2n logn products in Fq. If d >

√
n/ logn, this step will require greater than n2 products in Fq which is less efficient than

performing the product in Rq via schoolbook multiplication.
Remark 2 Suppose that n|(q− 1) but 2n̸ |(q− 1). One can apply Algorithm (2) for a suitable p. In this case, the

DWT matrix W will be in Fq (by Lemma (3)). It follows that the DWT step will require n logn products of elements in
Fq.

4.3 GDGT
We demonstrate now how the second method can be sped up under some conditions.
First, we introduce a 2-dimensional ring isomorphic to Rq. Let k be an integer dividing n and write n = kn′. Suppose

that 2n′|(q−1). Consider the ring R̄q[x, y] = E[x]/(xn′ − y), where E = Fq[y]/(yk +1). Then, elements in R̄q[x, y] are of
the form ∑n′−1

i=0 ∑k−1
j=0 ai, jxiy j. Clearly, both Rq and R̄q[x, y] have qn elements. The next theorem shows that they are in fact

isomorphic as rings.
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Theorem 4 Define the maps: ϕ : Rq → R̄q[x, y] with ϕ(a(x)) = a(x) (mod xn′ −y, yk +1) and ψ: R̄q[x, y]→ Rq with
ψ(a(x, y)) = a(x, xn′). The following hold:

• Both ϕ and ψ are well defined.
• ϕ is a homomorphism.
• ϕ and ψ are inverses of each other. In particular, ϕ is an isomorphism between the rings R̄q[x, y] and Rq.
Proof.
• ϕ is well defined since xn +1 (mod xn′ −y, yk +1) = 0. Hence, any two elements in the same class of Rp will map

to the same element in R̄q[x, y] under ϕ . On the other hand, for any a(x, y) = ∑n′−1
i=0 ∑k−1

j=0 ai, jxiy j ∈ R̄q[x, y], a(x, xn′) =

∑n′−1
i=0 ∑k−1

j=0 ai, jxi+n′ j has degree at most n−1 and is thus unique.
• This follows since ϕ is well defined and modulo operation respects both addition and multiplication of polynomials.
• Let a(x) = ∑n−1

i=0 aixi. For 0 ≤ i ≤ n−1, write i = i1 + i2n′ with 0 ≤ i1 ≤ n′−1, 0 ≤ i2 ≤ k−1. Then,

a(x) =
n−1

∑
i=0

aixi

=
n′−1

∑
i1=0

k−1

∑
i2=0

aixi1(xn′ )
i2

(3)

Thus, ϕ(a(x)) =a(x) (mod xn′ − y, yk +1)

=
n′−1

∑
i1=0

k−1

∑
i2=0

aixi1yi2 (4)

It follows that:

ψ(ϕ(a(x))) =ψ(
n′−1

∑
i1=0

k−1

∑
i2=0

aixi1yi2)

=
n′−1

∑
i1=0

k−1

∑
i2=0

aixi1(xn′)i2

=
n−1

∑
i=0

aixi = a(x) (5)

An immediate consequence of Theorem (4) is that for any a(x), b(x)∈Rq, it follows that: a(x)b(x)=ψ(ϕ(a(x))ϕ(b(x))).
In other words, instead of directly computing the product of two elements in Rq, one can compute the product of the two
corresponding elements in R̄q[x, y] and find the result via an application of ψ .
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Algorithm 3. Polynomial multiplication in Rq via the GDGT

Let Rq be the ring Fq[x]/(xn +1), q is a prime number and n is a power of 2. Let d be the smallest integer
such that 2n|(qd − 1) and let p = qd . Let f (z) be an irreducible polynomial of degree d over Rq. Let
E = Fq[y]/(yk + 1). Let k be the shrinking factor with 1 < k < n so that k|(q− 1) and n′|(q− 1). Let
g = ωn′ be a primitive n′-th root of unity in E, and h = (ω, ω3, . . . , ω2k−1) be an n′-th root of y in E. Let
a(x), b(x), c(x) ∈ Rq be polynomials of degrees less than n with integer coefficients {

⌈
− q

2

⌉
, ...,

⌊
q−1

2

⌋
}.

Input: a(x), b(x), g, g−1, h, h−1, n, n−1, p, k, d, q, f (z)

Output: c(x) = a(x).b(x) (mod (q, xn +1))

Precompute:

g j, g− j, h j, h− j (mod q, f (z), yk +1), where j = 0, . . . , n
k −1

Initialize:

fold over input signals:

a′j = a j + ya j+ n
k
+ . . .+ yk−1a

j+ (k−1)n
k

b′j = b j + yb j+ n
k
+ . . .+ yk−1b

j+ (k−1)n
k

Twist the folded signals:̂̄a′ j = DWT (a′j) via Algorithm (2) with n replaced by k).̂̄b′ j = DWT (b′j) via Algorithm (2) with n replaced by k).

ā′ j =
̂̄a′jh j

b̄′ j =
̂̄b′jh j

Compute k parallel NTT: At this point, we have k polynomials ā′l ∈ Fp[x]/(xn′ −1) for l = 0, 1, . . . , k−1
and similarly for b̄′l .

Al = NT T (ā′l)

Bl = NT T (b̄′l)

Point-wise multiplication:

C j = A j ·B j (mod q, f (z)). Here, multiplication is done component-wise

Compute k NTT−1:

c̄′ = NTT−1(C)

Remove twisting factors:

c′j = c̄′ jh− j (mod q, f (z)). At this point, the c j’s are k-vectors. Convert them back into the polynomial
form via inverse DWT

Unfold output signal:

c j+ in
k
= coefficient of yi in c′j)

return c(x)
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Observe that we have reduced the length of the polynomial/vector from n to n′ but our operations are now performed
in E = Fq[y]/(yk +1) instead of over Rq. For efficient computations, we impose further conditions.

Let k be a power of 2 satisfying:
• 1 < k < n;
• k|(q−1) so there exists a primitive k-th root of unity in Fq;
Write n = kn′. We further require n′|(q−1). It follows that there exists a primitive n′-th root of unity in Fq. Let ζ

denote a 2n-th primitive root of unity. Here, ζ ∈ Fp. Let ωn = ζ 2, ωk = ζ 2n′ and ωn′ = ζ 2k be the primitive n, k and n′

primitive root of unity. Let ζk = ζ n′ and ζn′ = ζ k. Then, ζ 2
k = ωk and ζ 2

n′ = ωn′ . By our assumption, both ωk and ωn′ are
in the base field Fq. By applying Algorithm (2), one can verify that the element y ∈ E = Fq[y]/(yk +1) can be converted
via DWT to the vector v = (ζk, ζ 3

k , . . . , ζ 2k−1
k ) = (ζ n′ , ζ 3n′ , . . . , ζ (2k−1)n′) ∈ Fk

q. We want an h such that hn′ = y = v.
Thus, let h = (ζ , ζ 3, . . . , ζ 2k−1) ∈ Fp. We may now adapt Algorithm (2) as follows.

We remark that two different matrices are used in Algorithm (3) for the DWT and NTT operations, using the primitive
roots ωk and ωn′ , respectively. By our choice of k and n′, both these matrices are over Fq. As discussed in Remark (2),
converting the ā j and b̄ j involve around k logk products of elements in Fq and Fp, or around dk logk products in Fq.
Similarly, the main DGT step requires n′ logn′ products in Fk

q and Fp, resulting in around dkn′ logn′ = dn logn′ products
in Fq. Observe that these operations can be parallelized for great speed-ups.

Remark 3 In the case when n′ is not a factor of (q−1), the algorithm can be adapted in a straightforward manner
where the computations will be over an extension field of GF(p). In fact, when k = 2, this algorithm effectively reduces
to the DGT algorithm. We have thus generalized the DGT framework that allows one to vary k and valid for more values
of q.

Remark 4 In the case when 2k|(q−1), the first set of DGT operations only involve operations in Fq, that is, reduces
to DWT operations. It follows that it is generally more efficient to choose k to be as large as possible.

We end this section by summarizing the possible conditions on q and nwhen n is a power of two and the corresponding
algorithm to be applied.

4.4 Concrete lower bounds on q
In the design of lattice-based cryptosystems, one may fix n and search for appropriate values of q that balances

security, efficiency and accuracy of the scheme. As such, efficient DGDT computations inevitably allows for more values
of q to be considered. In this subsection, we provide some lower bounds on the underlying modulus q that can be used
with each algorithm for various values of n. These lower bounds are the smallest values of q satisfying the conditions
specified in Table (1). In particular, for the GDGT algorithm, the lower bound on q is the smallest q satisfying either of
the 3 conditions given.

Table 1. Recommended NTT algorithm to use for different parameters n and q

Condition on q and n k d Algorithm

2n|(q−1) 1 or 2n 1 DWT

q ≡ 3 mod 4 & q ≡−1 mod n 2 2 DGT

q ≡ 3 mod 4 & q ≡−1 mod n
2 2 4 GDGT

q ≡ 1 mod n n 2 GDGT

q ≡ 1 mod n
2

n
2 4 GDGT

Table 2 gives the smallest values of q for a given n ∈ {2u: 8 ≤ u ≤ 12} for the 3 algorithms of DWT, DGT and
GDGT. The values of n are inspired by common parameters used in lattice-based cryptography. Clearly, GDGT can allow
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for smaller moduli compared with DWT and DGT for the same ring dimension n. The parameter set in the second row
will be used in the subsequent section to instantiate a ring that is inspired by the LAC cryptoscheme.

Table 2. Smallest values of q for a given n for DWT, DGT and GDGT

n DWT DGT GDGT

256 7681 1279 127

512 12289 3583 257

1024 12289 5119 3583

2048 12289 6143 5119

4096 40961 8191 6143

5. Case study I: LAC
In this section, we show how to utilize the GDGT framework to compute polynomial multiplication in a ring inspired

by the LAC NIST-PQC Round 2 candidate scheme [29]. We target the LAC-128 parameter set n = 512 with a slight
modification to the modulus from q = 251 proposed in the original scheme and use instead q = 257. Our main purpose of
introducing this case study is to illustrate how one can use the GDGT framework in existing schemes where parameters
have been optimized. In addition, complete security and theoretical computational analyses are provided for completeness.

5.1 LAC
The LAC encryption scheme is a lattice-based cryptosystem that is constructed based on the Ring-LWE problem.

LAC is the winner of the Chinese Association for Cryptologic Research competition award. It was also submitted to
the NIST PQC competition and advanced as Round 2 candidate. LAC uses a small modulus (q = 251) over rings of
dimensions n = 512 and 1024 [LAC-128 uses the smaller ring, whereas LAC-192 and LAC-256 use the larger ring.].

More formally, LAC is constructed over the ring Rq = Zq/(xn +1) with n = 512 for LAC-128 or n = 1024 for LAC-
192 and LAC-256 and q = 251 for all parameter sets. While the small modulus in LAC provides several advantages such
as low keys and ciphertext sizes and computing arithmetic with byte-level modulus, it suffers from two main challenges:
1) the small modulus used increases the decryption error rates and 2) the difficulty of utilizing NTT to compute the ring
multiplication. The first challenge can be handled by using Error Correction Code (ECC) techniques, while the latter is
more involved. In the subsequent section, we present a way to tackle the second challenge and provide an NTT-based
method to compute LAC’s ring multiplication via the GDGT framework.

5.2 GDGT-based ring multiplication
We need to compute the product of two elements a(x), b(x) ∈ Rq[x]/(xn +1) for (n, q) = (512, 257). Here, q−1 =

256 = 28 and 2n = 1024. Thus, we must have d ≥ 4. It follows that one can choose k = 2u and n′ = 29−u for 1 ≤ u ≤ 8.
Since d = 4, it can be checked that the optimal choices of k and n are k = 27 = 128 and n′ = 4 (so as to reduce the number
of operations involving Fq4 . We now simplify the GDGT algorithm to this specific case as follows.

Note that we have 3128 ≡−1 mod q and 3256 ≡ 1 mod q. Further, we have
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Rq[x]/(xn +1) = Rq[x]/((x4)n/4 +1)

∼=
n/4−1

∏
i=0

Rq[x]/(x4 −32i+1) = E (6)

In particular, E is a product of n/4 copies of Fq4 , where we take the evaluations of x4 at 32i+1, ∀i = 0, 1, . . . , n/4−1.
Thus, for every element a(x) = ∑n−1

i=0 aixi, we can group into four parts, according to the remainders when the powers
are divided by 4. This gives a(x) = a(0)(x)+xa(1)(x)+x2a(2)(x)+x3a(3)(x). We can now get the image of this element in
the product of fields E by performing 4 DWTs independently. Given two such vectors, one can compute the component-
wise product and perform the inverse DWT to obtain the desired product. However, note that the component-wise products
are taken over modulo x4 − 32i+1, that is, with respect to different polynomial moduli for each entry. This may not be
desirable for practical computations. Here, we observe that for all even i, say i = 2 j, the modulus is of the form x4−34 j+1.
Letting x = 3 jx, one gets Fp[x]/(x4 −34 j+1) ∼= Fp[3z]/(34 jx4 −34 j+1) ∼= Fp[z]/(z4 −3). In other words, by considering
appropriately weighted polynomials, one can transform the polynomials where the product is with respect to the modulus
x4 −3 for all the even entries. Similarly, all the moduli in the odd entries can be transformed to x4 −27.

Concretely, we perform the following steps to compute c(x) = a(x)b(x) ∈ Rq[x]/(xn +1).
Write a(x) = ∑n−1

i=0 aixi and b(x) = ∑n−1
i=0 bixi. Let k = n/4 = 128.

• For i = 0, 1, 2, 3, let

a(i) =
k−1

∑
j=0

a4 j+iy j, and b(i) =
k−1

∑
j=0

b4 j+iy j (7)

• Compute k-point DWT(a(i)) and DWT(b(i)) for i = 0, 1, 2, 3. Denote the resulting vectors by a′(i) and b′(i),
respectively.

• Let

a′[0] =(a′0, a′2, . . . , a′k−2), and a′[1] = (a′1, a′3, . . . , a′k−1),

b′[0] =(b′0, b′2, . . . , b′k−2), and b′[1] = (b′1, b′3, . . . , b′k−1) (8)

In other words, a′[0] and b′[0] are the even entries of a′ and b′, respectively, while a′[1] and b′[1] are the odd entries.
• For i = 0, 1, . . . , k/2−1, replace
a′[0]i by a′[0]i0 +3ia′[0]i1 +32ia′[0]i2 +33ia′[0]i3,
a′[1]i by a′[1]i0 +3ia′[1]i1 +32ia′[1]i2 +33ia′[1]i3,

and do the same for b′[0]i and b′[1]i.
• Let c′[0] = a′[0]⊙ b′[0], where the product is performed component-wise modulo x4 − 3. Let c′[1] = a′[1]⊙ b′[1],

where the product is performed component-wise modulo x4 −27.
• Replace c′[0]i by c′[0]i0 +86ic′[0]i1 +862ic′[0]i2 +863ic′[0]i3. c′[1]i by c′[1]i0 +86ic′[1]i1 +862ic′[1]i2 +863ic′[1]i3.
• Let c′ be the vector whose even entries are c′[0] and odd entries are c′[1].
• Perform the inverse DWT with respect to each power of x on c′ and recombine to obtain c(x).
Next, we suggest a method to compute the products in F = Fp[x]/(x4 −a), where p is small. Let g be a generator of

F∗, that is, the powers of g generate all of F∗. Let h = gp2+1. Then, h is a generator of GF(p2). Compute a look-up table
for the discrete log of c0 + c1x2 with respect to h, namely, find i ∈ {0, 1, . . . , p2 −2} such that c0 + c1x2 = hL(c0, c1).
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To compute a0 +a1x+a2x2 +a3x3)(b0 +b1x+b2x2 +b3x3), we do as follows:
• Write a = a0 +a2x2 + x(a1 +a3x2) and similarly for b.
• From the look-up table, find d0 = L(0, 1), d1 = L(a0, a2), d2 = L(b0, b2), d3 = L(a1, a3), d4 = L(b1, b3).
• Compute e1 = d1 + d2 mod p2 − 1, e2 = d0 + d3 + d4 mod p2 − 1, e3 = d1 + d4 mod p2 − 1, e4 = d2 + d3

mod p2 −1.
• From the look-up table, find the inverse of ei, i = 1, 2, 3, 4 and denote it by e′i.
• Then, ab = e′1 + e′2 + x(e′3 + e′4).

5.3 Computational complexity
Analyzing the GDGT-based multiplication algorithm for LAC shows that the number of EIMM required to compute

the product of two input polynomial is: 3 · (4 ·128 · log128+43̇ ·128)+16 ·128. The first term corresponds to computing
DWT of 4 signals, each of length k = 128. The second term corresponds to the transformation of the DWT results to
uniform the polynomial modulus of the extension field. This operation has to be done 3 times, 2 for computing GDGT and
1 for GDGT inverse. The third term corresponds to the point-wise modulo x4−a. The total number of EIMMwithout any
optimizations such as parallel execution nor using the lookup tables requires 29,312 EIMM, 8.94× faster than the classic
schoolbook multiplication that requires 5122 = 262, 144 EIMM. Compared with more efficient multiplication methods
such as Karatsuba [45] (which runs in O(nlog23) = 19,683) and 3-way Toom-Cook [46] (which runs in O(n

log5
log3 ) = 9,026),

our GDGT method is slower by 1.49× and 3.25×, respectively. Despite the slowness shown in our algorithm compared
with Karatsuba and Toom-Cook, it is clear that our GDGTmethod is embarrassingly parallel and can benefit from parallel
implementations. We believe that it would be very interesting to characterize the performance of our GDGT algorithm
experimentally via an optimized parallel implementation.

5.4 Security level
To estimate the security of the LAC scheme under the new parameters proposed here, we follow the security analysis

in [47]. Using the LWE hardness estimator [48], our chosen parameters do not noticeably affect the security level of LAC
as shown in Table 3.

Table 3. Estimated security levels of the vanilla LAC parameters and our proposed parameters for LAC using GDGT

Scheme Parameters: (n, q) Security Level

LAC (vanilla) (512, 251) 134.9 bit

LAC (GDGT) (512, 257) 134.4 bit

6. Case study II: NTTRU
In this section, we show how to utilize the GDGT framework to propose an efficient compact ring multiplication for

an instance that is inspired by the NTTRU cryptosystem [31].

6.1 NTTRU
The NTRU-based cryptoscheme we are interested in here is the NTTRU scheme proposed by Lyubashevsky and

Seiler in [31]. Following Albrecht et al.’s security analysis [47] and to enable a variant NTT ring multiplication, the
authors constructed NTTRU over the cyclotomic ring Zq[X ]/(Xn −Xn/2 +1), where (n, q) = (768, 7681). It should be
noted that, to the best of our knowledge, NTTRU provides the first NTT-based ring multiplication of an NTRU-based
scheme. In this case, n = 768 is not a power of 2 but a small multiple of it. We follow on NTTRU footsteps and provide
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an NTT-based ring multiplication algorithm with a more compact parameter set and a more efficient implementation. The
purpose of this section is twofold: 1) we demonstrate with a concrete example how our GDGT framework can be extended
to work in non-power of two rings, and 2) characterize the performance of a GDGT-based method experimentally to show
how it can benefit from parallel implementations. Before presenting our proposed algorithm, we briefly describe the basic
idea of NTTRU’s NTT-based ring multiplication.

NTTRU is built based on the idea that Z7681[X ]/(X768 −X384 + 1) can be factored into (X384 + 684)(X384 − 685).
Each of these factors can be factored into two factors of the form (X i + r′) and (X i − r′). This factoring ends at (X3 +

r)(X3 − r). Point-wise multiplication is computed modulo (X3 − r). The process is reversed (via NTT inverse) to get the
result back in coefficient representation.

6.2 GDGT-based ring multiplication
In this section, we present our GDGT-based ring multiplication algorithm alongside with a hand-tailored parameter

set. Specifically, we tweak our general GDGT framework to handle small multiples of powers of 2. While we present a
concrete example here, this approach can be applied to other sets of parameters as well.

Recall that in [31], a concrete instantiation was demonstrated on NTTRU for n of the form 3 ·2k where the associated
polynomial modulus takes the form f (x) = xn − x

n
2 + 1. In fact, f (x) is the cyclotomic polynomial modulo m, where

m = 3n = 9 ·2k. In this example, q was chosen so that n|(q−1) and the polynomials are recursively factored into products
of cubic polynomials. Essentially, this approach can be viewed as a generalization of DWT computations from n being a
power of two to small multiples of powers of two.

By exploiting the power of DGDT computations, we show that the condition imposed on q can be relaxed even when
n is of the form 3l · 2k for some positive integer k, namely, we consider values of q for which n is not a factor of q− 1.
Specifically, we demonstrate the computations with a particular example on n and q satisfying the following conditions:

1. n = 3l ·2k

2. q ≡ 1 mod 2 ·3l+1

3. q ≡−1 mod 2k−1

Here, observe that 3n|(q2 −1) but n ̸ |(q−1). Table 4 gives some possible values of q and n when l = 1.

Table 4. Possible values of q for a given n for GDGT with n = 3 ·2k

n q

384 {127, 1279, 3583, 4159, 7039, 8191, 9343}

768 {127, 1279, 3583, 7039, 8191, 9343}

1536 {1279, 3583, 8191}

3072 {3583, 8191}

In our instantiation for the polynomial multiplication in NTTRU ring, we use the same n = 768 (l = 1) and the lowest
possible q = 127 for the sake of illustration. Our parameters should not be used in implementing NTTRU without careful
analysis and treatment of the decryption error.

Let F = GF(q) where q = 127 and R = F[x]/(x768 − x384 + 1). We seek to compute the product of two elements
a(x), b(x) ∈ R. As in all NTT-like computations, we will compute the vectors ā and b̄, do component-wise multiplication
and compute the inverse transform.

We have q−1 = 126 = 2∗32 ∗7 and q2 −1 = 126∗128 = 28 ∗32 ∗7. In particular, q ≡ 3 mod 4. One may be able
to perform the usual DGT with n = 128. Our aim is to perform DGT for n = 768 which is 6 times bigger.

Note that y2 +1 is irreducible over F. Let i denote a root of y2 +1 so that E = F[i] = {a+bi: a ∈ F, b ∈ F}.
We first present some elements in E which are helpful.
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• g = 3 is a primitive 126-th root of unity modulo q.
• ζ = g7 = 28 satisfies ζ 6 −ζ 3 +1 = 0.
• The six roots that satisfy x6 − x3 +1 are ζ = 28, ζ 5 = 90, ζ 7 = 75, ζ 11 = 105, ζ 13 = 24 and ζ 17 = 59.
• u = g35 = 90 satisfies u2 =−28.
• z = 59+ i70 satisfies z64 = i and z128 =−1.
• h = z4 = 78+ i34 satisfies h64 = 1.
The main steps of the algorithm are:
1) Observe that R = F[x]/(x768 − x384 + 1) ∼= F[x]/(x128 − ζ )×F[x]/(x128 − ζ 5)×F[x]/(x128 − ζ 7)×F[x]/(x128 −

ζ 11)×F[x]/(x128 −ζ 13)×F[x]/(x128 −ζ 17). We convert a signal of length 768 into six signals, each of length 128. This
is done via small NTT computations of length 6.

2) Next, we multiply the signals by appropriate weights to transform the signals to work in the field F[x]/(x128+1)×
. . .×F[x]/(x128 +1).

3) We perform the DGT on the six signals. Note that this can be done in parallel.
4) Merge the six signals to obtain a signal of length 384 in E.
Recall that the first step in DGT computations is to multiply the signal by some weights. In the following, we will

merge Step 2 and this step.
Let a(x) = a0 +a1x+ . . .+a127x127. Let a⃗ = (a0, . . . , a127) represent its coefficients. We now present the concrete

steps to perform GDGT on a(x).
1.1 Let A be a 6×128 matrix such that the j-th row of A, for j = 0, 1, 2, 3, 4, 5, comprises the elements:

A j = (a128∗ j+0, a128∗ j+1, a128∗ j+2, . . . , a128∗ j+127) (9)

1.2 Define the 6×6 matrix

Z =



1 ζ . . . ζ 5

1 ζ 5 . . . (ζ 5)5

1 ζ 7 . . . (ζ 7)5

1 ζ 11 . . . (ζ 11)5

1 ζ 13 . . . (ζ 13)5

1 ζ 17 . . . (ζ 17)5


(10)

1.3 Compute the matrix Ā = Z ·A.
2.1 Define u0 = u, u1 = uζ 2 = 75, u2 = uζ 3 = 68, u3 = uζ 5 = 99, u4 = uζ 6 = 105 and u5 = uζ 8 = 24.
2.2 Let Āleft and Āright denote the left 64 and the right 64 columns of Ā, respectively. Let D = Diag(u0, u1, −u2,

−u3, u4, u5). Compute Ā′ = Āleft − iDĀright. where i =
√
−1.

2.3 For s = 0, 1, . . . , 5 and j = 0, 1, . . . , 63, let Ā′′
s j = (usz) jĀ′

s j.
3.1 LetW ′ be the 64×64 matrix withW ′

s j = hs j for s, j = 0, 1, . . . , 63.
3.2 Define Ā′′′ = Ā′′W ′.
4 Let ā′ be a length 384 vector with ā′6 j+s = Ā′′′

s j. Here, we note that each element in ā is of the form a+bi.
Given two polynomials a(x) and b(x), we perform the above on each of a(x) and b(x) to obtain ā′ and b̄′, respectively.

Define c̄′ = ā′⊙ b̄′, where ⊙ denotes component-wise product in the field E, namely, modulo y2 +1. Finally, we perform
an inverse of the above steps to obtain c(x). The complete procedure can be found in Algorithm 4.
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Algorithm 4. Polynomial multiplication for NTTRU via the GDGT

Input: a(x), b(x)

Output: c(x) = a(x).b(x) (mod (127, (x768 − x384 +1)))

Precompute:

g = 3, ζ = 28, ζ 5 = 90, ζ 7 = 75, ζ 11 = 105, ζ 13 = 24, ζ 17 = 59, u = g35 = 90, z = 59+ i70, h = z4 =

78+ i34, z j, z− j, h j, h− j (mod q), where j = 0, . . . , 63.

Define u0 = u, u1 = uζ 2 = 75, u2 = uζ 3 = 68, u3 = uζ 5 = 99, u4 = uζ 6 = 105 and u5 = uζ 8 = 24.

Let D = Diag(u0, u1, −u2, −u3, u4, u5).

LetW ′ be the 64×64 matrix withW ′
s j = hs j for s, j = 0, 1, . . . , 63.

Define the 6×6 matrix Z as in Equation (10)

Step 1:

Let A and B be 6×128 matrices such that the j-th rows of A and B, for j = 0, 1, 2, 3, 4, 5, comprise the
elements:

A j = (a128∗ j+1, a128∗ j+2, a128∗ j+3, . . . , a128∗ j+128)

B j = (b128∗ j+1, b128∗ j+2, b128∗ j+3, . . . , b128∗ j+128)

Step 2:

Ā = Z ·A

B̄ = Z ·B

Step 3:

Ā′ = Āleft − iDĀright

B̄′ = B̄left − iDB̄right

Step 4:

For s = 0, 1, . . . , 5 and j = 0, 1, . . . , 63,

Ā′′
s j = (usz) jĀ′

s j

B̄′′
s j = (usz) jB̄′

s j

Step 5:

Ā′′′ = Ā′′W ′

B̄′′′ = B̄′′W ′

Step 6:

C̄′′′ = Ā′′′⊙ B̄′′′, where ⊙ is point-wise multiplication in the field E

Step 7:

C̄′′ = C̄′′′Winv′

Step 8:

For s = 0, 1, . . . , 5 and j = 0, 1, . . . , 63,

C̄′
s j = (usz)− jC̄′′

s j
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Step 9:

For s = 0, 1, . . . , 5 and j = 0, 1, . . . , 63,

C̄′
s, left = Re(C̄s

′
)

C̄′
s, right =−Im(C̄s

′
)

Step 10:

C̄′
right = Dinv ·C̄′

right

Step 11:

C = Zinv ·Concat(C̄′
left, C̄′

right)

Step 12:

Unfold C. for j = 0, 1, 2, 3, 4, 5:

c128∗ j+1 =C j

return c(x)

6.3 Computational complexity
Analyzing the GDGT-based multiplication algorithm for NTTRU shows that the number of EIMM required to

compute the product of two input polynomial is:

3 · (6 ·6 ·128+1 ·6 ·64+6 ·6 ·64+4 ·6 ·64 · log64)+6 ·64 ·4 (11)

The first term corresponds to computing Step 2 inAlgorithm 4. The second anf third terms represent the computational
overhead of Step 3 and 4, respectively. The fourth term corresponds to computing DGT for 6 signals (Step 5). The
scale by 3 is for computing 2 GDGT and 2 GDGT inverse. The last term corresponds to the point-wise multiplication
of the transformed signals. The total number of EIMM without any optimizations such as parallel execution nor using
the lookup tables requires 51,072 EIMM, 11.55× faster than the classic schoolbook multiplication that requires 7682

= 589,824 EIMM. Karatsuba would require 7681.585 = 37,428 and 3-way Toom-Kook would require 7681.46 = 16,317.
While our GDGT algorithm is slower than both algorithms by 1.36× and 3.13×, respectively, it can benefit largely from
a parallel implementation.

6.4 Security level
To estimate the security of the NTTRU scheme under the new parameters proposed here, we follow the security

analysis in [47]. Using the LWE hardness estimator [48] (commit #fb7deba), our chosen parameters almost doubles the
security level of NTTRU as shown in Table 5.

Table 5. Estimated security levels of the vanilla NTTRU parameters and our proposed parameters for NTTRU using GDGT

Scheme Parameters: (n, q) Security Level

NTTRU (vanilla) (768, 7681) 123.5 bit

NTTRU (GDGT) (768, 127) 243.5 bit
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6.5 Decryption error
We discuss here the decryption error that might arise from using small moduli as presented in the preceding sections.

Lattice-based encryption schemes inherently introduce decryption error that can affect restoring back valid ciphertexts.
Luckily, this decryption error can be controlled by an appropriate choice of the cryptosystem parameters. One important
parameter that affects the decryption error is the size of the coefficient modulus q. While one desires to minimize q to
attain small encryption keys and ciphertext sizes, q cannot be chosen arbitrarily small to maintain the security level and
reduce the probability of decryption error. Analyzing the decryption error of the proposed schemes is beyond the scope
of this paper, however, we refer the reader to some commonly used techniques to handle this problem.

The first approach is to use ECCs. This approach has been used in the LAC cryptosystem, which suffers from large
decryption error due to the employment of a small coefficient modulus. The authors used nested double encoding using
BCH and D2 ECC schemes to reduce the decryption error probability to a desirable level [29].

Another approach is to keep the coefficient modulus large enough but composed of the product of smaller prime
factors. One can apply the CRT mechanism to compute over the residues modulo each factor and combine the residues
via the CRT reconstruction. This approach has been recently used in [43] to compute 32-bit NTT via two 16-bit NTT on
Intel processors leading to a faster implementation than computing 32-bit NTT on the same processor. Note also that the
two 16-bit NTTs can be computed in parallel leading to a theoretical 2× improvement in performance.

7. Conclusion
In this work, we present a generalized framework for computing NTT in finite fields with small moduli. The

framework leverages several algebraic tools, including the CRT, DWT, and DGT, to replace the 1-dimensional polynomial
ring with a 2-dimensional one. Specifically, we demonstrate how the GDGT framework can efficiently compute
polynomial multiplication in two use cases inspired by the LAC and NTRU post-quantum cryptosystems. To ensure
completeness, we provide theoretical security analyses and computational assessments. Our evaluation of the GDGT
framework, conducted through complexity analysis, confirms its efficiency. We anticipate that our work will benefit
the cryptographic community by offering new parameter settings for compact lattice-based cryptography. By allowing
a more relaxed approach to working with NTT, we pave the way for improved cryptographic schemes. In our future
endeavors, we will focus on optimizing algorithms for other lattice-based schemes using the techniques introduced in this
work. Additionally, we aim to integrate these algorithms with appropriate ECCs to fine-tune decryption error handling.
Moreover, We are particularly interested in exploring the potential application of our methods in homomorphic encryption
schemes, especially those dealing with small parameters like FHEW and TFHE. This holds promise for advancements in
secure computation on encrypted data.
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