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Abstract: The highly dispersive optical solitons with a quadratic-cubic form of self-phase modulation structure are
derived. The governing model was reduced to an ordinary differential equation by the traveling wave hypothesis.
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1. Introduction

The concept of highly dispersive (HD) optical solitons emerged about half a decade ago [1-5]. This involves the
nonlinear Schrédinger’s equation with inter-modal dispersion (IMD), chromatic dispersion (CD), third-order dispersion
(30D), fourth-order dispersion (40D), fifth-order dispersion (50D), and sixth-order dispersion (60D). When the CD
levels become critically low and there is an imminent risk of depletion, the implementation of additional distinct effects
becomes necessary. These effects serve as a strategic response to counterbalance the diminishing levels of CD. Essentially,
they are introduced to offset the adverse effects or limitations caused by the low count of CD. By deploying these
supplementary measures, the aim is to maintain functionality or achieve desired outcomes despite the scarcity of CD
resources. In essence, these additional effects act as a form of intervention to address the challenges posed by the impending
depletion of CD [1-5]. The negative effects of the inclusion of such higher-order dispersion terms are ignored. One of
the issues is the drastic slowdown of optical solitons, while the other is the immense radiative effect that the model will
experience. By ignoring these effects, the study will focus on the soliton dynamics of the model.
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The self-phase modulation (SPM) structure is considered to be one of the non-Kerr laws. This work addresses the
model with a quadratic-cubic form of SPM. This extension to the usual Kerr law of SPM includes the quadratic term as
an addendum. Earlier this year, this form of the nonlinear Schrodinger’s equation was examined using the Lie symmetry
approach, and a few soliton solutions were established [6, 7]. The current paper implements the Sardar sub-equation and
Sardar modified sub-equation approaches to obtain a complete spectrum of optical solitons for the model. First, the model
is reduced to an ordinary differential equation, and then both approaches are successfully applied to recover the results.

The details are presented in the remainder of the paper. Section 2 outlines the governing model, providing the
foundational framework for understanding the system’s dynamics. Section 3 explores traveling wave solutions within
this framework, analyzing wave propagation characteristics. Section 4 introduces and applies the Sardar Sub-Equation
method to derive analytical solutions for the governing model. Finally, Section 5 concludes the study by summarizing
findings, discussing implications, and suggesting future research directions.

2. Governing model

The HD-NLSE, featuring quadratic-cubic (QC) nonlinearity, is discussed in [8], as presented below
P D +ia1 Py +ar Py + i a3 Prue + A Proe + i05Pryrex + A6 Prvoees + (bl |(I)‘ +b |¢|2> P =0. (D

Here, the dependent variable ® = ® (x, ¢) in the dimensionless form of Equation (1) is derived from the soliton
profile and represents a complex-valued function, where x and ¢ are the independent variables representing spatial and
temporal coordinates, respectively. Subsequently, i = v/—1 serves as the coefficient for the linear temporal evolution of
the pulses. Also, b; for j =1, 2 represents the quadratic and cubic coefficients of the SPM effect. Finally, the IMD, CD,
30D, 40D, 50D, and 60D are sequentially represented by the coefficients of a; for j=1, ..., 6.

3. Travelling wave solution

The solution for Eq. (1) is provided in [9—14], as indicated below

D(x, 1) =u(&)e®"), )

Here, & = x — yr characterizes the wave variable, with representing the soliton speed. Furthermore, the phase
component of the soliton is given by 0 (x, t) = —kx + @t + 6y, where k signifies the soliton frequency, @ denotes the
wavenumber, and 6y stands for the phase constant. Lastly, u (&) denotes the amplitude component of the soliton. By
utilizing Eq. (2) and its derivatives:

iD, = [—ivd — wu] ™1, 3)
@, = [u — kiu] 051, (4)
Dy = (1 —2ik — KPu] €07, Q)
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e = [u) — 3ikad" — 3420+ ] 0, ©

DPoeer = [M — 4iku® — 612" + 4ik>u’ + k4u} 00 1), -
L N—— [u“) —Siku® — 10%u® + 10ik>u” + 5k*u’ — ik5u] o) ®)
S — [u“’) — 6iku'® — 15k%u@ +20ik*u® + 15k*u" — 6ik>u’ — k(’u} 00 1) ©)

Eq. (1) becomes:

[—iyu’ — a)u] +a [iu' + ku] +an [u” —2iku’ — kzu]

vas [iu® 43k — i3k — K u} tas {u<4> ~ 4iku® — 6K + 4ik3u + k4u}
(10)
tas [in® +5ku® — 110263 — 10830 + i5k*u + k5u]
+ag [u® — 6iku® — 15K2u® +20ik3u® + 15k*u" — 6ik°u’ — kﬁu} + (b1 || + by |<1>|2) P =0.
Eq. (10) can be decomposed into real and imaginary parts, which are respectively expressed as
(—o+aik—ak? — a3k + ask® + ask® — agk® ) u+ (a2 + 3ask — 6ask® — 10ask® + 15a6k*) u”
(11)
+ (as + 5ask — 15a6k*) u® +agu'® + (b + b))’ =0,
and
(—y+ ay — 2kar — 3a3k® + dagh’ + Sask* — 6a6k5) W
(12)
+ (a3 — 4ask — 10ask* +20a6k®) u® + (as — 6agk) u'® = 0.
In accordance with Eq. (12), we arrive at
y = ay — 2kay — 3a3k® + dask’ + Sask* — 6agh, (13)
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whenever

az = (4a4k+ 10ask* — 20‘16k3) ] (14

and

as = 6a5k. (15)
Accordingly, Eq. (11) can be represented as

(—w Fark—ark® — 3agk® — 35a6k6) u+ (ay+6ask® +75a6k*) u”
(16)
+ (as + 15a6k*) u™® + agu'® + (by +by)u® = 0.

4. Sardar sub-equation method (SSEM)

The SSEM offers a significant advantage in its ability to produce diverse soliton solutions, ranging from dark, bright,
and singular forms to more complex configurations such as mixed dark-bright, dark-singular, bright-singular, and mixed
singular solitons. Moreover, it facilitates the derivation of rational, periodic, trigonometric, and other solution types. In
this approach, we solve Eq. (16) by assuming that the solution conforms to the form described in [15-21]:

N
u(@) =y W¥" (&), W#0. (17)
n=0
Here, the constants A, (wheren =0, 1, ..., N)) are to be calculated subsequently. The integer N is determined using

the homogeneous balance method, ensuring a balance between the nonlinear term and the highest-order derivative in Eq.
(16). Additionally, the function ¥" () in Eq. (17) must fulfill the following equation:

W (E) = W () +m (&) + o, (18)

where 1; (with [ =0, 1, 2) represents constants.

Accordingly, based on the values of the parameters 7;, Eq. (18) exhibits various known solutions, listed as follows
[22-27]:

Case 1 When 19 =0, n7; > 0, and 1, # 0, soliton solutions are obtained:

WY (§) =+ /—paM /p,sechpg (VINIE), M2 <0, (19)

and
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¥y (&) ==/paM /pyeschp (V) , m2 >0, (20)
where
h £) = 2
sec pq(\/m )* pe\/m’g—i-qe_\ﬂm’
(21)
h _ 2
csc PQ(\/E":) - pemé —qe*\/ﬁ‘g .
2
Case2 Ifng = %Z—l, 12 > 0, and 177 < 0, soliton solutions are derived:
2
W (&) = +, /—n1/2n2tanh,,q( —"21§> : 22)
¥ = :&:,/—nl/ancothpq ( —7121§> , (23)
WE(E) ==/ Moy, (tanhpq (w/fzmg) +i\/pgsech,, (w/fzmg)) , (24)
WE(E) ==/ Moy, (cothpq (,/fznlg) +/pgeschy, (\/—21118;)) , (25)
and
1 _
W (8) = £5,/- Mo, (tanhpq (, /—’Qé) + cothy, ( é“g)) : (26)
where
VIiE _ go—vmié
_pe qe
tanhl’q (\/mé) - pe\/’Tlé -|-qg*\/nil€ )
(27)

N4 -vmé
__ pe +qe
oty (VING) = e ye v
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4.1 Application of the modified Sardar sub-equation method

Our analysis commenced with the application of the homogeneous balance method principle [28—33], balancing the
nonlinear term u(®) with the linear term ? in Eq. (16). This yielded the equation N 46 = 3N, from which we derived
N =3. Consequently, Eq. (17) takes the form:

u(€) = (Ao+M¥+0LP+2A9°), (28)

W (§) = (A +270W+ 30 92) /(¥ + 0¥ + o), 29)

W' = < 1223mF° + 62mW* + (2412 + 943 m1) W° ) (30)

+42om1 P2 4 (A1 +6A3m0) ¥ + 24210

L& _ [ 604 MW+ 2421 +3 (24m2 +943m1) ¥
+8Aom ¥ + (Ai1m1 + 64310)

€2))

X \/(712‘1‘4+771‘P2+770),

360 3227 + 12041220 + 615 (4412 + 68431 ) P
pO +120A,1m, 1’]2‘}'4 + (252)Lgn0n2 +20An1M2 + 81131]12) g3
+(1622m1M1 +722:m010) P2
+ (Mimi? +60 A3nomy + 121041 1m2) W + 8Amom

: (32)

2520 A3 W0 + 7204, M2 W 4 301, (4A1 M2 + 68431y ) P
u®) = +4802 i P + 3 (25243m0m2 + 2041 i + 8124311 2) P2

+2(162miM1 +7222M012) ¥ + (A2 4+ 60 Asnom + +12104112) (33)

x \/(nz‘l"‘ + ¥ +1m0),

and

(6 _ ) 20160 A3 W0 + 50402, 3 W8 4 180m02 (4411 + 1521,) 97
N 42520 A311 227 + 67204, 12 PO

61]2 (2772131]01‘]2 =+ 20/11 mn2 + 81/137'[12) + 307’[11"2 (411 m+ 68131]1) ‘I’S
+61; (252 AsNoNz +20A 1112 + 81131'[12) + 120m1 M2 (42112 + 68A311)
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C

+ [2m2 (73622m1% + 7222m0m2) + 412 (16A2m1 M1 + 7222M07M2) + 4804211212 + 360042012 | P

21 (Mm% 460 A3mony ++1210A112) 4 611 (25243100M2 + 20411112 + 814311%)

\P3
+3m (252131"07]2 +20Am M2 + 812,37712) + 120Mm0m2 (44112 + 684311)

(34)
+ [2m (16Aamim +72221012) + 1440A2m0mima +2 (164201 +7222m0m1°12) | ¥*

+ [m (Aimi® 460 Asnom + 12m0A1m2) + 610 (252431072 + 2041 1112 + 814311%) |
+ 21‘[0 (16)41’]12 —|—72)~21’]0n2)}.

By substituting equations (30), (32), and (34) into equation (16) and considering equation (18), we derive:

(—co Fark —ak® —3agk* —35 a6k6) (Ao + MW + W2 + A3 9)

5 4 3
+(a2+6a4k2+75 a(,k4)< 1223F° + 64, ¥ +(211n2+9)~3n1)‘1’ )

+4A42771‘P2 + (A1 +6A310) ¥+ 24210
+ (aq + 15a6k?) (360131722\1'7 + 120,12 W0 + 615 (4A1 12 + 68231 ) W

+120m P + (252A3m0m2 + 204 i M2 + 81A3m1%) PP + (162om1 M1 + 7242m0n2) W2

+ (Am® +60 A3momy + 1210041 12) ¥ + 821071 )

ra 20160A312° P2 + 5040, 23 W8 + 18012 (441 mp + 1521m1) P
6 +2520 A3n 1’]22“1"7 + 6720421 1’]22"1"6

612 (277223M01M2 + 20411112 + 81431 2) +30m; 1 (44112 + 682311) s
I +61, (252 AsNoNa +20An1m2 + 81),37112) + 120m1m2 (4412 + 68A311)

[ 2, (73622m1% 4+ 720:M01M2) + 412 (16420111 +72221012) N
+4802211%1 + 3600221012

[ 210 (A1 460 Zamoms ++12102172) +6m1 (25223072 + 202112 + 812372 -
+3n1 (252430012 + 20411112 + 81431m1%) + 1201072 (44112 + 684371 )
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+ [2m (1622m1m1 + 72221m0M2) + 144022m0mi M2 +2 (1620m1° + 72A:m07: 12 ) | P2
11 (A +60 A3nom + 121041 12) + 610 (252431012 + 20411112 + 81437, %) W
+210 (162am12 +7221m0m2) } + (b1 + b2) (A0 +320% M¥ +3 (A0° M2 + 2041 %) P2
(35)
+ (113 + 31{)213 + 61{)11/12) w34 (311212 + 312210 +6A0A 13) p
+ (37L] 213 + 312211 + 67(0/1213) LS (213210 + /123 + 61, /1213) o

+3 (13211 + 12213) ¥4 3}1,32},24’8 + )LgSlpg =0.

Collecting and setting the coefficients of the independent functions P/ (£) to zero, we derive the following set of
algebraic equations for each case:

Caselny=0, =0, =0.

Hence, Eq. (35) simplifies to the following equation:

(~o +ark —ak® —3a4k" =35 a6k ) (9 + 5%

+ (a2 + 6614](2 +75 a(,k4) (12&3 T]Q‘PS + 6127]2?4 + 9A3T]1lp3 +4}{'2n]l{12)

+120)QT]1172"P4 + 81137]12 w34 16127]12‘112

(36)

360 A3 27 + 1204, 1,2 W0 + 4081 g
+(a4+15a6k2)< 3127 + 1202126 + 40823711 )

2016043123 W° + 5040 1,123 ¥8 4298804311 122 F7 + 6720411 22 ¥0
6 +11172 T]z}\gnlz [ S 2016}1,217127]2 PLNE 729137"13\1’3 + 64}\,2n13lP2

4 (by +by) (;123\116 32T 430520, + 133\}'9) —0.
As a result, this leads to the derivation of the following set of algebraic equations for ¥/, where j ranges from 2 to 9:
¥ :20160asm2> + (b1 +b2) A% =0,
W8 1 1680agm,” + (b1 +b2) 232 =0,

P72 120 (ag + 15a6k* + 83 Miag) M2 + (b1 +b2) A2 =0,
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PO 1 120 ((as + 15agk®) +56m1a6) 12* + (b1 +b2) 12> =0,
W3 : (ar + 6ask® + 75ack®) +34 (as + 15a6k*) m1 +931agm:® =0,

W4 (ap +6ask® + 75ack*) +20 (as + 15a6k®) m1 +336asm1* = 0,
W (—0-+ark—ak® —3agk? ~ 3506k ) +9 (a2 + 6a4k® + T5ack*) my 37)
+81 (a4 + 15a6k*) 71* +729a¢m:* =0,
W2 (—0 +ark— ak —3agk* — 35a6k") +4 (a2 + 6ask® + 7agk*) my
+16 (as + 15a6k*) m1* + 64agn;” = 0.
The solution to the set of algebraic equations (37) yields:
o=k (m — apk—3agk® — 35a6k5) . (38)

Family 1

315a¢M, 266 (a2 + 6ask* +75ack*)
(b1 +by) & m= 2527 (ag + 15a6k?)

M, A3 =F8/—

30 (ag + 15a6k® + 831n1a6)
A =F24/—
2= \/ (b1 +b2)

Consequently, bright and singular soliton solutions emerge as follows:

D 4(x, 1)= <—qu;> [lzsechz,,q(\/E(x— Yt))+ A3 (—pq:’?;)sech%q (v (x— yt))]

(39)
x expi(—kx+ ot + 6p)], M2 <0,
and
@155 1) = (pa lzzcscthq (=) + 2y (a2 st (/7 5~ m)]
(40)

xexpli(—xx+ wt+6p)], N2> 0,
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respectively.
Family 2

1 2
12:$2\/_30(a4+ Sagk? + 831 ag)

(b1 + b2) n2,
105agm;
A3 =F4y |- ,
3= b1 1 b») 2
266 (ay 4 6a4k® +75ack*)
M= 0527 (s + 15a6k2)

Thus, bright and singular soliton solutions are revealed as

Dy 4(x, 1) = (—qui) [ﬂ,zsecthq(\/ﬂ(x— 1))+ A3 (—pq%)sech%q (VM1 (x— yz))]

xexpli(—kx+ ot +6p)], N2 <0,

and
@2500) = (a2 [azcsch%q (o= 0) + iy (L st (v - w))]
x expi(—kx+ ot + 6p)], 12> 0,
respectively.
Family 3

30 (a4 + 15a6k? + 5614

(b1 +by)

315ag m

A3 =F8 | ———<m,
3=F (b]+b2)n2
266 (az +6a4k> +75a6k”)

M= 507 (aa + 15a6k?)

As a result, bright and singular soliton solutions take form as

(41)

(42)
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s 4 (v, 1) = (—pq?,;) [Azsecthq (AT = 11)) + A (—pq;’;) secht® (V1 (x— w))]

(43)
x expli(—kx+ ot + 6p)], N2 <O,
and
@3.551) = (paye [zzcscthq (Ve )+ 2y (a2 st (/7 5~ w»]
(44)
X exp i (—xkx+ @t + 6y)], n2 >0,
respectively.
Family 4
30 (ag + 15a6k® +56M1a6)
A =7F2
2 \/ (bl ¥ b2) n2u
105 aeT)2
A3 =F4|—
T \\ (b1 +02) 2
266 (ay 4 6a4k” +75 agk®)
M= T 0527 (aa + 15a682)
Accordingly, bright and singular soliton solutions shape up as
®aax)=(-patl) [Azsechzm (e )+ 2y (= sl (7 w))]
(45)
xexpli(—xkx+ ot +6p)], N2 <0,
and
@15 1) = (pa [MCSCthq (v )+ 2y (a2 Jesch (/7 - m)]
(46)

x expi(—kx+ ot +6p)], 12 >0,
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respectively.
Family 5

1 2
12:$2\/_30(a4+ Sagk? + 831 ag)

(b1 + b2) n2,
315ae¢m2
A3 =8/~ :
3=+F b1 1 b») 2
595 (ay 4 6a4k® +75a6k*)
M= 773196 (as + 15a6k2)

Consequently, bright and singular soliton solutions turn out to be

Ds ,(x, 1) = (—qui) [ﬂ,zsecthq(\/ﬂ(x— 1))+ A3 (—pq%)sech%q (VM1 (x— yz))]

xexpli(—kx+ ot +6p)], N2 <0,

and
@s.550) = (a2 [azcsch%q (o= 0) + iy (L st (v - w))]
x expi(—kx+ ot + 6p)], 12> 0,
respectively.
Family 6

30 (aq + 15a6k? + 83114,

(b1 +by)

1056161‘]2
A=Fdy - — 02 p
3=F b1+ b2) n2

595 (a2 + 6ask* +75 agk*)
7196 (as+ 15a6k?)

n =

As a result, bright and singular soliton solutions arise as

(47)

(4%)

Volume 5 Issue 2|2024| 1311 Contemporary Mathematics



B, (x, 1) = (—qu;) [lzsecthq(\/ﬁ (= 70)) + 43 (—qu;)sech%q (T (= m)]

(49)
x exp[i(—xx+ ot + 6p)], M2 <0,
and
s, (3, 1) = (”qZ;) [’chschzm (VA (&= 71)) +7s (qu;)csch%q (Vi (= m)]
(50)
x exp i (—xkx+ ot + 6y)], 12 >0,
respectively.
Family 7
30 (as+ 15a6k® + 56 Niag)
A =7F2
2 + \/ (b] —|—b2) M2,
315 a¢ 2
M=F8/— —= M,
3=F (b1 +b2) &
595 (ay 4 6a4k +75 agk®)
M= 7777196 (an + 15a6k2)
Consequently, bright and singular soliton solutions emerge as follows:
@rac)=(-pall) lazsechzmmof—w)) g (<ol )sech (VT (- m)]
(51)
x expi(—xx+ ot + 6p)], M <0,
and
@05 1) = (pa [MCSCthq(\/m(x—W)) i) (pat Jest (v (- w))]
(52)

X exp[i (—kx+ ot + 6y)], 12 >0,
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respectively.
Family 8

1 2
o \/30 (a4 + 15a6k? + 56 11 ag)

(b]+b2) Tl2a
105 ag M2
MB=F4 |- —"TLm,
3=+ (b1 + b2) 2
595 (az + 6ask* + 75 ack*)

M= 7777196 (as + 15a6k2)

Thus, bright and singular soliton solutions are revealed as

Py o (x. 1) = (—qu;) [Azsechwm(x—w» s (—pq;’;)sech3pq<m<x—w>>]

(53)
X exp i (—xx+ @t + 6y)], M2 <0,
and
g (x, 1) = (qu;) [Mcscthq (VM (x=r1)+2 <pqz;) esch®pg (/111 (x — Yt))]
(54)
x exp [i (—xx+ ot + 6y)], 12 >0,
respectively.
Family 9

30 (a4 + 15a6k? + 83 n1a

(b1 +by)

315 ag 2
A=F8 |- —— 012 p
3=F (b1 + o) Uy

203 (a2 + 6ask* 475 agk*)
1708 (as+ 15a6k?)

n =

As a result, bright and singular soliton solutions take form as
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By o (x, 1) = (—qu;) [Azsech%qwm (—70)+ s (—qu;)sech%q (AT (= m)]

(55)
X exp i (—xx+ @t + 6p)], M2 <0,
and
@55.0) = (a2 llzCSCthq (Ve )+ 2y (a2 s (/1 - m)]
(56)
x exp i (—xkx+ ot + 6y)], 12 >0,
respectively.
Family 10
30(as + 15a6k® 4 83 N1de)
A =F24/— ,
2=F \/ S M2
105 a¢ 2
M=F4/————=m,
3=F b1 1 b2) n2
203 (a2 4 6a4k® +75 agk®)
M= 7779708 (an + 15a6k2)
Accordingly, bright and singular soliton solutions shape up as
@0 00) = (~papt [xzsechzm (e )+ 2y (=t sl (1 (- m)]
(57)
x expli(—xx+ ot + 6p)], M2 <0,
and
@005 1) = (a2 ) [xzcschzm (e )+ 2y (a2 s (/7 - w))]
(58)

X exp[i(—xkx+ ot + 6p)], n2 >0,
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respectively.
Family 11

1 2
o \/30 (a4 + 15a6k? + 56 11 ag)

(b]+b2) Tl2a
315a¢ M2
3=F8 |- —— =
3=+ (b1 1 b) N2,
203 (a2 + 6ask* + 75 ack*)

M= 7771708 (an + 15a6k2)

Consequently, bright and singular soliton solutions turn out to be

D1 alx, 1) = (— pqm> [lzsecthq (VA1 (x—71)) + A3 (- qu;) sech® g (/11 (x — yz))]

n2
(59)
x expli(—kx+ wr+ 6p)], 12 <0,
and
Dy, (x, 1) = <pq$> [ﬂzcscthq (VI (x=71)) + 243 (quD esch® pg (/i1 (x — W))]
(60)
x expli(—kx+ ot +6p)], M2 >0,
respectively.
Family 12

2
P fo (a4 + 15a6k? + 56 11ag)

b1+ b2) N2,
| 105 aq m
)‘ = 4 _——_—
3 + (b] +b2) n2,
n 203 (a2 + 6ask* +75 agk*)
1=

1708 (as + 15a6k?)

As a result, bright and singular soliton solutions arise as
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Bz, o (r, 1) = (—qu;) [Azsecthq (il (= 71)) + 23 (—qu;)sech%q (i (x w»]
(61)

x expli(—xkx+ ot + 6p)], N2 <0,
and

D p(x, 1) = (qu;) llgcscthq (VAT (x—71)) + X3 <pqz;>csch3pq(m(x— yt))]
(62)

x expli(—kx+ @t +6p)], M2 >0,

respectively.

1 2
Case2n027m7%=0, M =0, =0,1m>0.
4m

Eq. (35) is simplified to the following equation:

(~o +ak —ak® —3aik* —35 agk®) (239°) + (a2 + 64k +75 agk’) (122319

27 5
+(9;t3771)‘P3+(6l3710)‘P)+(a4+15a6k2) ( . 360 3" +6mp (6813"1)‘1" >

(25223012 + 81A3m1%) P2 + (60 A310m1) W

+X3a6 {20160 M7 + 180m,2 (152m1) W7 +2520 o> ¥’ 63)
+ [6m2 (2772n0m2 + 81m12) +30m1m2 (6811) + 61> (252 Mon2 + 811 %) + 120m1 12 (6811) | ¥°
+ [2m2 (60 nomy) + 6m1 (2520012 + 81m1) + 31y (25200m2 + 8111%) + 120m0n2 (6871)| ¥°

+ [m1 (60 momy) + 610 (2521072 + 8111%) | W} + (b1 +b2) (A7) = 0.

We reach the following set of algebraic equations for the corresponding ¥/, where j extends from 1 to 9:
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P 20160 agny’ + (by +b2) A2 =0,
g (a4 + 15a6k2) +83agn; =0,

W3 : (ar + 6ask? + 75 agk®) +34 (as + 15a6k?) M1 +ag [1512 nomp +931 m1%] =0,

(64)
W (—0 +ark —ak? —3agk® 35 a6k®) + (a2 + 6k’ +75 agk") 9
+ (as +15a6k*) (252n0m2 +81m12) + a6 (10548 mamom; +729 n1°) =0,
¥ : (ar+6ask® +75 ask*) + (as + 15a6k*) 10 0y +ae [91 y* +252101m2] = 0.
The set of algebraic equations (64) is solved to give:
o=k ( ar —azk —3ask’ —35 a6k5> . (65)
Family 1
Mo = igi 3=4/~ % M, ® =atk —ak® —3ask* —35 agk®, ny = — W

Also, setting " /2112 < 0 and 12 > 0, we acquire the following soliton solutions:
Dark soliton solution is represented by

D3, 4(x, 1) =1/ (—’71/2”2)32.3 tanh® , ( —% (x— yz)> expli(—Kkx+ wr +6p)]. (66)

Singular soliton solution is expressed by

_ 3 3 m .
D3 p(x, 1) =14/ (7111/2772) Az coth’ (~ / Y (x— }/t)) expli(—xx+ wr+6)]. (67)

Complexion solutions are presented as:

CI)137 ¢ (x, t) =1/ <—n1/2n2>3)~3

tanhyy, (v =271 (x— 1))

3
+i \/pgsechyy (/=271 (x—11)) ] X exp [i (—Kkx+ ot + 6y)], (68)
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and

cothyy (v =211 (x—71))
+i /pgeschyg (V=211 (x—y1)

Pi3.a(x, 1) =/ (—’71/2"2)313

Straddled dark-singular soliton solution is formulated as

D3 (x, 1) = l;m ltanhpq (m&) + coth,, ( _8m§>] 3

X expli(—xkx+ ot +6y)], N2> 0.

) 1 x exp i (—kx+ ot + 6p)]. (69)

(70)

Family 2

1 n? 20160 agm> ) 4 6 55 (a2 +6ask* +175 agk*)
=L A=,/ ——== =atk —axk® —3ask* —35ack®, M = — :
=g (b +by) P T @R @l T W= T30 (ot 15a6kY)

Additionally, when "1 /2,72 < 0 and 1, > 0, the following soliton solutions are obtained:

Dark soliton solution is depicted as

Dy q(x, 1) = (—771/2n2>37tg tanh® ,, <\/—721(x— J/t)) expli(—xx+ or + 6)] . (71)

Singular soliton solution is defined as

Dy p(x, 1) =1/ (—n1/2n2)3),3 coth? ,, (\/_»"121()(_ yt)) expi(—kx+ ot + 6p)]. (72)

Complexion solutions are provided by

Dy o (x, 1) = mh

tanhyg (v=211 (x— 1))

3
+i \/pgsechp, (\/Trll(xf}/t)) ‘| x exp[i (—xx+ ot + 6)], (73)

and

cothp, (v/=211 (x— 1))
+i \/pgeschpg (V=211 (x—y1)

Dy 4(x, 1) = mﬂa

Straddled dark-singular soliton solution is characterized by

3
) 1 x exp [i (—kx+ ot + 6p)]. (74)
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3
Dy o (x, 1) = % <_n1/2772>3 |fanhM ( —%5) + cothy, ( _Tm§>1 xexpli(—kx+ot+6)]. (75

Figures 1 and 2 depict surface, contour, and 2D plots of the bright and dark soliton solutions described by Egs. (39)
and (66), respectively. In Figure 1, the chosen parameters include: p=1,g=1,m=—-1L,y=Lk=1l,aa =1, a4 =1,
ag=1,b; =1, and by = 1. Meanwhile, Figure 2 addresses the parameters p=1,g=1, a1 =1,a6 =1, k=1, =1,
by =—-1,bpy=—1,and Y= 1.

IDCx, )l |DCx, 1)l

4 -5

(a) Surface plot (b) Contour plot
. T 2.0 i

|D(x, 0)|
|D(x, 0)]

(c) The effect of fourfth-order dispersion (d) The effect of sixth-order dispersion

Figure 1. Profile of a bright soliton solution (39)
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|DCx, 1)l |DCx, 1)l

(a) Surface plot

|D(x, 0)|
|D(x, 0)]

(c) The effect of fourfth-order dispersion (d) The effect of sixth-order dispersion

Figure 2. Profile of a bright soliton solution (66)

5. Conclusion

This paper has comprehensively explored a wide range of optical solitons within the highly dispersive NLSE, which
was characterized by quadratic—cubic form of SPM. The radiative effects stemming from these dispersion terms were
deliberately disregarded to maintain focus on the derivation of soliton solutions. This study builds upon prior research
conducted through Lie symmetry analysis, which also yielded soliton solutions. In the current work, the Sardar equation
and its modified version were employed to recover a complete spectrum of single solitons for the model.

The findings of this study are intriguing and lay the groundwork for future advancements. Subsequently, the model
will undergo examination with a generalized form of quadratic-cubic nonlinearity. Additionally, perturbation terms will
be integrated to provide a more comprehensive understanding of soliton transmission under such dispersive effects. Once
these results are synthesized and aligned with existing research, they will be disseminated for wider dissemination [29-34].
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