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Abstract: Maize plays a significant role in the African diet and is one of the main staple foods in many parts of the
continent. Accurate yield estimations ensure an adequate food supply, contributing to food security and reducing the risk
of food shortages. They also enable market planning and price setting. Machine learning is well known as one of the most
advanced statistical methods for predicting crop yields. This paper provides extensive experiment results of machine-
learning models on maize production. Thirteen basic supervised learning algorithms classified into classic and ensemble
learning are compared using three datasets of different sizes and from various sources (Kaggle, Zenodo). These datasets
are from three main origins: experimentation, specifically covering crop data with 240 observations; predictions on crop
yield from the FAO (Food and Agriculture Organization) and World Data Bank with 4,121 observations; and historical
data from China with 975 observations. The metrics used to evaluate the models are the coefficient of determination, the
mean absolute error, the root mean square error, and the explained variance score. Moreover, permutation importance is
used on the best models to identify the most relevant predictors for the models according to the data. The results show
that extremely randomized trees (ERT) and extreme gradient boosting (XGBoost) are more suitable for predicting maize
yield with a coefficient of determination between 0.75 and 0.96 and 0.73 and 0.96, respectively. With the other metrics,
the ERT model shows a low performance. Its training time varies between 2,547 and 7,814 seconds as obtained from a
computer with characteristics of HP core i5, CPU @ 1.00 GHz, 1.9 GHz, and 8 GB RAM under 134 Windows 10. ERT
and XGBoost are best suited to these databases of varying dimensions, making them perfect for predicting maize yield
and streamlining decision-making processes.
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1. Introduction
Maize is a vital crop in various regions (Africa, Latin America, and some Asian countries) [1]. It is a source of

phytochemicals and is theworld’s thirdmost cultivated and consumed cereal after wheat and rice [2]. Its annual production
is estimated at 1,162.35 million tons, achieved through average productivity of 5.75 tons per hectare [3]. It has a lot of
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calories and is a rich source of fiber, protein, and carbs [4]. This propriety makes it a special player in the fight against
food insecurity. According to Tech et al. [5], 9.7 billion people will inhabit the planet by 2050. This strong growth leads
to a high request for higher agricultural production. To meet this demand, productivity and production methods must
be improved. According to Singh [6], traditional agriculture confronts several difficulties, including floods, droughts,
crop illnesses, storage, etc. These challenges need to be addressed to ensure the sustainability of agriculture. Precision
agriculture can manage the challenges to reduce environmental impact and maximize yields. Machine learning (ML) is
a promising strategy that enables machines to learn and develop without being explicitly programmed; it is essential to
precision farming [7]. Rao et al. [8] claim that ML opens up new possibilities for big data research in many agricultural
sectors. It might be advantageous for managing crops, caring for animals, maintaining the health of the soil, managing
water, etc. It is a method that promises to guarantee sustainable agriculture and food security in an expanding global
community. Nowadays, accurately predicting crop yields is one of the key components of sustainable agriculture.

Various machine-learning models have been used to predict crop yields. However, the accuracy of these models
depends on multiple factors such as input variables, the number of observations, and hyperparameters. In a recent study,
Ruan et al. [9] used proximal sensing and meteorological data to create an in-season wheat yield forecast model at
the field scale. They used two feature selection techniques and eleven statistical and machine learning (ML) regression
algorithms and concluded that RF and XGBoost had the best overall performance (R2 = 0.74 ∼ 0.78). To estimate maize
yield, Sarijaloo et al. [10] employed a variety of models, including neural networks, gradient boosting machines, random
forests, adaptive boosting, XGBoost, and decision trees. It was discovered that the XGBoost model could accurately
predict maize yield. Ahmad et al. [11] established a model for predicting maize yields that considered temporal variance
in maize yields. He named the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (L.S.T)
variables as essential remote sensing-derived inputs. A study by Dhaliwal et al. [12] compared different models such as
Partial least squares regression (PLS), Multivariate adaptive regression splines (MARS), multiple linear regression (LR),
Regularized regression, and Random forest (RF) to understand the temporal and spatial heterogeneities in sweet maize
yield. The input variables considered included time components, spatial components, genetic factors, crop management
practices, and weather and soil parameters. Random Forest (RF) provided the best predictions with a lower root mean
square error (RMSE = 3.29 Mt/ha). To assess the efficacy of various input variables in predicting yield, Meng et al. [13]
forecast maize yield at the plot level from 1994 to 2007 using various data sources, including monthly climate, satellite
data, and soil data. The results show that using all its data sets with random forests (RF) and AB (adaptive boosting) can
achieve better yield prediction performance (R2 = 0.85 ∼ 0.98). Reddy [14], Kalimuthu et al. [15], and Abbas [16] have
all made accurate crop yield predictions using machine learning techniques.

This paper presents an extensive experiment of machine learning models for maize production. We evaluate the
adaptability ofML techniques for yield prediction and determine the most convincing technique for maize yield prediction.

The study compares the performance of various machine learning techniques to demonstrate their potential for maize
yield prediction. The rest of the paper is organized as follows. Section 2 presents the methodology adopted for data
collection, pre-processing, analysis, and model evaluation criteria. The results are presented and discussed in Section 3,
and Section 4 concludes.

2. Methodology
This session describes the methodology used to evaluate machine learning models for maize production. It covers

the dataset used, the pre-processing steps, the analysis techniques, the metrics used for model evaluation, and predictor
importance analysis.

2.1 Data collection

For data collection, keywords such as “maize yield prediction”, “corn yield prediction”, “corn dataset”, and “maize
datasets” were used to search for datasets from Kaggle and Zenodo repositories. Only datasets containing maize yield
variables or maize productivity were considered. Three different agricultural datasets containing information about maize
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yield were collected. The collected data included experimental data from Mexico, historical data from 91 countries
worldwide from 1990 to 2013 obtained from sources like the Food and Agriculture Organization (FAO) and the World
Bank, and historical data concerning environmental parameters, pollution, and maize yield in China. The datasets are
summarized in Table 1.

Table 1. Datasets summary

Dataset Variables Description of variables used Data size Provenance

Crop yield
prediction

Areas, year, pesticide,
temperature, rainfall

Year, pesticide, temperature,
rainfall 4121

Kaggle
https://www.
kaggle.com/
datasets/patelris/
crop-yield-
prediction-dataset

Cover crop
and irrigation
impacts on
weeds and
maize yield

Year, site,
plot, irrigations,
total amount water,
treatment, cover crop biomass,
weed biomass,
number of corn cobs,
weight of corn cobs
weed biomass at critical period,
weed count before corn harvest

Year, site,
plot, irrigations, total amount of
water, treatment, cover crop
biomass harvested, weed
biomass produced during cover crop
growing period, number of corn cobs
per two 1 meter rows in the weedy
subplot, weight of corn cobs,
weed biomass at critical period,
weed count before harvest.

240
Zenodo
https://zenodo.
org/record/
5905378

Marked impacts
of pollution
mitigation on
crop yields
in China

Year, province, temperature 2m at
plant, temperature 2m growing
season, temperature 2m harvest
season, precipitation plant season,
precipitation growing season,
precipitation harvest season,
aerosol optical depth for plant season,
aerosol optical depth for growing
season,aerosol optical depth for harvest,
surface ozone for plant season, surface
ozone for growing season, surface ozone
for harvest, maize yield.

Year, province, temperature 2m at plant,
temperature 2m growing season,
temperature 2m harvest season,
precipitation plant season, precipitation
growing season, precipitation harvest s
eason, aerosol optical depth for plant
season, aerosol optical depth for growing
season, aerosol optical depth for harvest,
surface ozone for plant
season, surface ozone for growing
season, surface ozone for harvest,
maize yield.

975
Zenodo
https://zenodo.
org/record/7232790

The database input variables are grouped into climatic, edaphic, water stress, irrigation, pesticide factors, treatment,
and collection year, with data sizes of 240, 975 and 4,121 entries. The “Marked Impacts of Pollution Mitigation on
Crop Yields in China” database contains historical data from various Chinese provinces from 1980 to 2018. It includes
climatic parameters and pollution factors collected in different provinces at different stages of maize production (planting,
growing, and harvest). The “Cover crop and irrigation impacts on weeds and maize yield” data comes from an experiment
that evaluated the water requirements to produce aWinter Cover (barley, Austrian winter pea, and mustard) with sufficient
biomass for weed suppression during maize growth at two New Mexico sites. Predictor categories included cover crop
type, irrigation, weed quantity, and water stress characteristics. The “Crop yield prediction” data is derived from World
Bank and FAO websites in several countries between 1990 and 2016. It includes pesticide, climate, and yield variables.
The yield and pesticide variables exhibit very little dispersion around the mean (Figure 1a). Similar observations were
noted for the variables weed count before corn and weed biomass for the growing season” in the dataset “impact of cover
crops and irrigation on weeds and maize yield” (Figure 1b). Regarding the dataset “Market impact of pollution mitigation
on crop yield in China”, most variables showed minimal dispersion around the mean (Figure 1c). For a comprehensive
analysis of the various variables, descriptive statistics of the data were presented in Table 4 in the supplementary file.
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Figure 1. Variable distribution. (a): Crop yield prediction importance, (b): Cover crop and irrigation impacts on weeds and maize yield; (c): Marked
impacts of pollution mitigation on crop yields in China

2.2 Data pre-processing

The data collected were subjected to a complete pre-processing activity before being used for modeling. Firstly,
missing data was removed from the various datasets. Based on the correlation matrices (Tables 1-3 in supplementary
data) the input variables were selected using a selection threshold of 0.8 in absolute value. A correlation of 80% or more
suggests that the retained variable already captures a significant portion of the information in the removed variable. This
approach reduced data redundancy and allowed feature selection for modeling. Afterward, the outliers were eliminated
with interquartile range (IQR) after identifying them with the boxplot, encoded categorical variables into binary variables,
normalized input variables with theMinimaxScaler technique on the scikit-learn library, and partitioned data into training
and test sets. Seventy percent 70% of the data within each dataset was used to train models, and the remaining 30% to
test their performance. This pre-processing ensures data quality, reliability, and compatibility, preparing data for accurate
and robust maize yield prediction modeling. However, before data pre-processing, the yield variables of the various data
are adjusted to the kilogram to facilitate the interpretation of the results.

2.3 Models used

Crop yield prediction involves the use of supervised learning techniques. In this work, thirteen (13) basic supervised
machine-learning models categorized into two groups were applied to the three datasets to forecast maize production
(Table 2). These models included classical learning “support vector machines (SVM), K-nearest neighbors (KNN),
multiple linear regressions (LR), ridge regressions (RR), least absolute shrinkage and selection operations (LASSO),
decision trees (DT)” and ensemble learning “adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost),
gradient boosting regressions (GBR), light gradient-boosting machines (light GBM), extremely randomized trees (ERT),
random forest (RF), and Bagging regression (BR)”. These models are implemented using the scikit-learn package with

Volume 5 Issue 4|2024| 6211 Contemporary Mathematics



Python 3.9.13. The description of the models used is summarized in Table 2. The best models were obtained after
hyperparameter optimization, which involved using grid search to optimize the hyperparameters defined in the models.
The selected hyperparameters for each model are also presented in the Table 2. The scatter plots were performed under
the Matplotlib library to appreciate the relationship between actual and predicted variables. Then, the best four models
derived from the datasets were represented. The best model obtained for each dataset is used to identify the top 10 essential
variables contributing tomaze yield prediction. To achieve this, we employ the variable importance permutation technique.
This method assesses an error’s impact by permuting a given feature’s values. If the permutation of values results in a
significant change in error, it signifies the importance of that feature for the model. Moreover, the accumulated local
effects of “alibi” packages also evaluated the predictor impact.

2.4 Model evaluation and analysis of predictor importance

Various metrics were used to assess the models’ performance and identify the best one for maize prediction. These
metrics examine the models’ final performance by contrasting expected and actual results. They include the coefficient
of determination (R-square), mean absolute error (MAE), root mean square error (RMSE), and explained variance score
(EVS). Models were also evaluated using the execution time function (train time) and predicted time (computing time)in
Python. Analyses were performed on a computer with characteristics of HP core i5, CPU@ 1.00 GHz, 1.9 GHz, and 8 GB
RAMunderWindows 10. The coefficient of adjustment is the proportion of the dependent variable themodel explains, and
the mean absolute error (MAE) is the mean distance between model predictions and actual values. The RMSE calculates
the standard deviation of the residuals. EVS is the variation of the model’s output for which the predictors can account.
We presented below the mathematical expressions for these measures in which n is the number of observations, yi is the
actual maize yield, and ŷi is the predicted maize yield. Var(y) is the variance of prediction errors of actual maize yield
values. The EVS and Rsquare metrics are best when the score is close to 1, while the other metrics are best when their
score tends toward 0. The best model identified from each dataset was used to determine the important variables through
the permutation technique. The method consists of measuring the effect of permuting the values of a variable on the
model’s performance. It quantifies the contribution of each variable to model prediction and selects the most informative
variables to improve performance. The graphical representation of the top 10 most important variables was presented,
highlighting their significance for the models.

R2 = 1− ∑(yi − ŷi)
2

∑(yi − ȳi)2 , (1)

MAE =
∑(|yi − ŷi|)

n
, (2)

RMSE =
√

MSE =

√
1
n

n

∑
i=1

(yi − ŷi)2, (3)

EV S = 1− ∑(yi − ŷi)
2

Var(y)
. (4)
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3. Results and discussion
Three datasets with various input variables were subjected to applying a total of thirteen machine learning techniques.

The metrics derived from the models built are listed in Table 3 while optimum hyperparameters of models for each dataset
are presented in Table 4. The coefficient of determination exceeded 90% for “Cover crop and irrigation impacts” data
for models LM, ERT, XGBoost, RR, and LASSO. In addition, the ERT model recorded low values for the MAE and
RMSEmetrics. It better described the variance score of maize yield than the other models. However, its training time was
significant. Furthermore, in the context of this dataset, the XGBoost and RR models demonstrated stronger predictive
performance, yielding R-squared coefficients of 0.925 and 0.920, respectively. The observed accuracy of the RR model
using ‘cover crop and irrigation impacts’ data attests to its robustness as a regularized linear regression model, thanks
to the incorporation of regularization that penalizes the coefficients of independent variables. This precise and reliable
methodology provides an explicit approach to preventing overfitting and maintaining model stability. The findings align
with previous research conducted by Qin et al. [17], which explored LR, RR, LASSO, and GBR techniques for predicting
the economically optimal nitrogen rate in maize production. In addition, a study by Sun et al. [18] predicts end-of-season
tuber yield and tuber set in potatoes using in-season UAV-based hyperspectral imagery and six machine learning models.
The authors obtained optimal results with the ridge regression model, which yielded an R-squared value of 0.65.

The model’s ERT, XGBoost, BR, GBR, and Light GBM demonstrated strong performance when applied to the ’Crop
yield prediction’ dataset. However, ERT, GBR, andXGBoost exhibited the highest correlation coefficients, each achieving
R-squared values of 0.966. The prediction errors gave the lowest values for the ERTmodel (RMSE = 4,273.668 kg/ha, and
MAE = 2,292.56 kg/ha). Furthermore, it recorded a considerable predictive variance (EVS = 0.967) and outperformed
the XGBoost and GBR models in execution time. The findings are corroborated by Cao et al. [19], who compared
LM, XGBoost, RF, and SVM algorithms to increase winter wheat yield in northern China using satellite, climate, and
S2S atmospheric prediction data. XGBoost demonstrated the highest skill level when utilizing S2S predictions as inputs,
achieving an R-squared value of 0.85. In a similar, Mariadass et al. [20] proposed using XGBoost for annual crop
yield predictions, leveraging a dataset with temperature, rainfall, and pesticide variables. Their experiments yielded an
R-squared value of 98%. It was shown that XGBoost is a helpful model for maize prediction [21]. Using the ”Marked
impacts of pollutionmitigation on crop yields in China” dataset, the coefficient of determination exceeded 70% for the ERT,
XGBoost, light GBM, and GBR models. However, ERT and XGBoost observed the highest coefficient of determination
and explained variance scores. Furthermore, the ERT model achieved the lowest error regarding RMSE and MAE, while
XGBoost observed a longer execution time. The findings reported by Li et al. [22] regarding soybean yield prediction
using the XGBoost model align with an R-squared value of 0.85. In their study, the authors used a combination of spectral,
meteorological, and soil data to establish a framework for county-level soybean yield prediction.

In addition, classical models exhibit high performance compared to ensemble methods, although ERT and XGBoost
remain superior. This could be attributed to the scale of the data or the challenge of capturing non-linear relationships
between variables in less complex datasets. Comparing XGBoost and ERT models to the ensemble models used, the
ensemble methods generally demonstrate acceptable performance across all three datasets. However, ERT and XGBoost
models notably outperform them. The training time of these ensemble models is typically shorter than that of XGBoost
and ERT models, except for the GBR model, which exhibits longer training time. The performance of the ensemble
models can be attributed to their capability to leverage multiple decision trees to minimize errors and optimize yield and
their adaptability to complex variable relationships. However, the AdaBoost model underperforms compared to most
ensemble methods for maize prediction. The effectiveness of this model is more closely dependent on the input variables
used. Models utilizing climatic parameters have shown the best performance, followed by those relying on experimental
data. Conversely, combining climatic and pollution parameters at different stages of maize development yielded lower
performance.

A key finding that emerges from the study is that the ERT consistently outperformed all other models across the
examined datasets. This model has proven a robust and valuable asset for maize yield prediction. It is a strong and
helpful model for maize yield production. The findings from Tyler et al.’s [23] research align with the results. Indeed,
the authors investigated historical patterns in sorghum productivity throughout the United States using a substantial
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dataset of Sorghum bicolor yield and environmental variables. Through the application of machine learning approaches,
including multiple linear regression (MLR), random forest (RF), and extremely randomized trees (ERT), they concluded
that ERT exhibited the highest performance in terms of predictive accuracy. Gao et al. [24] developed predictive
models for optimizing fertilization decisions in maize, rice, and soybean cultivation. They employed a range of machine
learning algorithms, including Random Forest (RF), XGBoost, Support Vector Regression (SVR), Multiple Linear
Regression (MLR), Artificial Neural Networks (ANN), and Extra Trees Regressor (ERT). These models were constructed
using historical data encompassing crop performance, soil nutrient levels, and fertilization characteristics. ERT model
demonstrated good accuracy in simulating crop yields, achieving an R-squared value of 0.749. In addition, Zhang et
al. [25] described using machine learning to predict winter wheat leaf water content using multi-temporal crop canopy
models and vegetation indices. The authors used hyperspectral images to estimate crop yields with reasonable accuracy.
The results showed that ERT can effectively predict the water content of wheat leaves with an R-square equal to 0.88.

The effectiveness of the ERT model in predicting maize yields for the three data sets can be explained by features
intrinsic to the algorithm. Indeed, ERT randomly constructs several decision trees. This randomization in the construction
of the trees helps to reduce the potential bias and improve the generalisability of the model. As a result, it is less likely to
overfit the training data, making it a reliable choice for predicting maize yields. Also, the ERT model can easily handle
complex and heterogeneous datasets, which is standard in agriculture, where data can come from various sources. Its
ability to generate a decision tree and combine their predictions reinforces the model’s stability. The random variations
introduced into each tree help reduce the model’s overall variance, which is particularly beneficial in regression tasks
where it is essential to minimize prediction errors. The model can capture non-linear relationships between the input
and target variables, which can be crucial for modeling complex phenomena such as crop growth. These features make
it a valuable tool for agricultural researchers. Nevertheless, this work has certain limitations that should be taken into
consideration.

The study focused mainly on evaluating the performance of classical and ensemble learning methods. A comparison
with deep learning methods was not undertaken, which could be an exciting avenue for future research. In addition,
the performance of the models was evaluated on three specific datasets. More is needed to generalize the results better
and strengthen the robustness of the conclusions. We recommend extending this analysis to various maize datasets from
multiple sources. Moreover, the “crop yield prediction” data primarily aggregates and provides limited country-specific
information. It is crucial to have region-specific data to enhance the accuracy and relevance of results. This approach
allows for the consideration of local nuances, which can have a significant impact on agricultural yields.
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Table 4. Optimum models hyperparameters

Models Crop yield prediction data Cover crop data Marked impacts of pollution
mitigation data

LR - - -
Lasso alpha:0.001 alpha:0.0001 alpha:0.05
SVR C: 1000; gamma: 1; kernel: linear C: 1000; gamma: 1; kernel: linear C: 1000; gamma: 1; kernel: linear
KNN n neighbors:20 ; weight: Distance n neighbors:20 ; weight: Distance n neighbors: 26 ; weight: Distance
RR alpha:0.03 alpha:0.03 alpha:0.01
DT max depth: 20; max features: 3;

min sample leaf:2
max_depth: 12; max features: 4;
min sample leaf:5

max_depth: 18; max features:12;
min sample leaf:20

RF max depth: 9; max features: 3;
min sample leaf:10

max_depth: 5; max features: 3;
min sample leaf:10

max_depth: 9; max features:9;
min sample leaf:31

GBR learning rate:1, max_depth:19,
n estimators: 100, subsample: 0.5

learning rate:0.02, max_depth:4,
n estimators: 500, subsample: 0.1

learning rate:0.03, max_depth:4,
n estimators: 1500, subsample: 0.5

Light
GBM

Learning rate:0.09, n estimators: 100,
number of leaves:31

Learning rate:0.09, n estimators: 200,
number of leaves:5

Learning rate:0.03, n estimators: 1000,
number of leaves:31

XGBoost gamma: 5, learning rate: 0.04,
min child weight: 1, n estimator: 1000

gamma: 0.5, learning rate: 0.3,
min child weight: 8, n estimator: 100

gamma: 0.5, learning rate: 0.1,
min child weight: 10, n estimators: 500

BR n estimators: 200 n estimators: 100 n estimators: 500
adaboost learning rate: 0.04, number of

estimators: 100
learning rate: 0.03, number of
estimators: 500

learning rate: 1, number of
estimators: 200

ERT max depht: 19, n estimators: 500 max depht: 5, n estimators: 500 max depht: 20, n estimators: 1000

The predicted and actual values of the four best models derived from the different datasets were represented in the
following graphs. The ERT and XGBoost models obtained from the “cover crop dataset” (Figure 2) and the “crop yield
prediction dataset” (Figure 3) showed a positive link between predicted and actual variables. Both models estimated
the actual maize yield values with high accuracy. Only the predicted values of the ERT model were more correlated
with actual values in the pollution dataset. However, compared with the XGBoost, LightGBM, and GBR models, it can
estimate maize yield more accurately (Figure 4). These results confirmed that ERT was a good model for maize yield
prediction.
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Figure 2. Scatter plots between the actual and predicted variables of the four best methods of the cover crop data

3.1 Important variables

The results for the ten most important variables contributing to yield prediction for the three datasets are shown
in Figure 5. The variables “precipitation at growth season” and “aerosol optical depth for growth” were identified
as the main contributors to yield prediction. These variables strongly influenced the model with the dataset “Marked
impacts of pollution mitigation on crop yields in China”. For the “Cover crop and irrigation impacts on weeds and maize
yield”, the variables “number of corn cobs per two 1 meter rows” and “year” had a significant effect on maize yield
prediction. In contrast, the variables “temperatures” and “humidity” had a more significant impact on the model of the
“crop yield prediction” dataset. Their impact on maize yield prediction was particularly significant. This suggests that
these variables played amajor role in the model’s performance, specifically for these datasets. This information is valuable
for understanding the key factors affecting maize yield in the context of this study.
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Figure 3. Scatter plots between the actual and predicted variable of the four best crop yield prediction datasets
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Figure 4. Scatter plots between the actual and predicted variables of the four best methods of Marked impacts of pollution mitigation on crop yields in
China dataset
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Figure 5. Importance variables of the models. (a): Crop yield prediction importance, (b): Marked impacts of pollution mitigation on crop yields in
China, (c): Cover crop and irrigation impacts on weeds and maize yield. Psaiscroiss: precipitation at growth season; aodscaharvest: Aerosol optical
depth for harvest season using scale, O3mid: Ozone in growth season, O3plant: ozone in plant season, ProvinceQinghai: Qinghai province, aodabsplan:
Aerosol optical depth for plant season without scale, ProvinceShaanxi: Shaanxi province, ProvinceShandong: Shandong province, cobcountw: number
of corn cob, SiteLD:leyendecher site, siteLL: Los luno site, TreatB: Treatment with barley, treatF : treatment with fallow, ccbioplot: cover crop biomass
harvested, wcb4ccplot: weed biomass for growing season

Using accumulated local effects on each dataset and keeping other variables constant, it is observed that an increase
in year or pesticide usage resulted in higher maize yield, whereas an increase in temperature reduced crop yield (Figure
6a). The impact of precipitation varies continuously. With cover crop yield data, an increase in the number of corn cobs
leads to an augmentation in maize yield (Figure 6b) while year decreases yield. The yield on the Leyendecker site was
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low compared to the Los Lunas site, which shows a high yield. Concerning pollution impact data, it is observed that an
increase in precipitation during the growth phase, as well as AOD (aerosol optical depth) during this period, increase yield
(Figure 6c). The province of Liaoning had a low yield, whereas the ozone increase during growth made a constant yield.
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Figure 6. Accumulated local effect on model predictors. (a): Crop yield prediction importance, (b): Cover crop and irrigation impacts on weeds and
maize yield; (c): Marked impacts of pollution mitigation on crop yields in China

4. Conclusion
Machine learning algorithms are becoming increasingly popular for estimating crop production. This study provided

extensive experiment results of machine-learning models on maize production using three different data sets. The results,
on the datasets used, show that ERT and XGBoost consistently outperformed competing models regarding coefficient of
determination and explained variance. ERT shows superior performance with the error evaluation metrics, characterized
by lower errors. While most ensemble methods share similarities, ERT stands out through their wholly random and
independent tree construction and reduced sensitivity to noisy data. This feature helps mitigate overall overfitting.
Although it is generally considered a faster ensemble model than others, it is crucial to consider processing time. Based
on the variable permutation analysis, it is evident that “precipitation during the growth season”, “the number of corn cobs
per two 1-meter rows”, and “humidity” are the primary variables that play a significant role in yield prediction across
various datasets. However, The results cannot be generalized as they require further validation using additional datasets.
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