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Abstract: Digital image processing is a constantly evolving field that focuses on digital image analysis, enhancement, and
modification. Another popular approach used to improve the aesthetic appeal and diagnostic usefulness of images is power
law transformation. Power law transformation and the analysis of analytic coefficients obtained from complex functions
within digital image processing have become more popular recently. We demonstrate that analytic coefficients provide a
solid foundation for investigating phase information in images and enhancing certain aspects of images. Complex image
processing tasks, like spatial filtering, picture segmentation, and contrast enhancement, can be efficiently completed by
combining power law transformation with analytical coefficients. This study focuses on applying analytic coefficients
that come from a specific group of Sakaguchi-type functions are used to improve images by transmitting to a domain
shaped like a Limacon. The article also provides a wide range of instances that highlight the usefulness of this method in
the field of medical imaging. The results unequivocally highlight the significance of analytic coefficients and power law
transformation as valuable tools for digital image processing.
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Abbreviation
DIP Digital Image Processing
MSE Mean-Square Error
PSNR Peak-Signal-to-Noise Ratio
SSIM Structural Similarity Index Measure
AMBE Absolute Mean Brightness Error
MRI Magnetic Resonance Imaging
CT Computed Tomography
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1. Introduction
The article discusses mathematical findings from the geometric function theory and sheds light on how it is used in

DIP. Due to its significance in conformal mapping that locally preserves angles, the limacon-shaped domain is taken into
consideration in this work. The aforementioned domain is crucial for region of interest extraction, shape analysis, image
transformation, filtering, and enhancement, as well as geometric image representation and registration, all of which are
aspects of image processing. To accomplish particular image processing objectives, these techniques make use of the
peculiar characteristics of limacon-shaped domains. The momentum of this article is to improve clarity by offering a
provocative option for image processing.

The term “digital image processing” describes the use of mathematical techniques to modify digital images. It
includes methods for improving, modifying, and analysing digital images for a range of purposes, including feature
extraction, image restoration, image segmentation, image compression, and pattern recognition. Computers are used in
digital image processing to execute operations on digital images that can be obtained from a variety of sources, including
digital cameras, scanners, and medical imaging equipment. Each value in the arrays of numerical values that make up
the images represents a pixel in the image. In many multiple industries, including medicine, remote sensing, computer
vision, and entertainment, digital image processing has numerous useful implications. For instance, it is possible to analyse
satellite images to discover land use trends and medical imaging to extract information that is helpful for diagnosis. Image
enhancement, a crucial component of digital image processing, tries to raise the calibre of an image by modifying its
elements to make it more aesthetically pleasing or simpler to comprehend. Following are some justifications for why
image improvement is crucial: Improve visual quality, Enhance details, Remove noise, Correct brightness and contrast
and Aid in analysis.

1.1 Power law transformation in DIP

When adjusting the contrast of images, power law transformation is a typical technique in digital image processing.
It is often referred to as gamma transformation or gamma correction. The following is a definition of the power law
transformation function:

s = crγ ,

where
s = output pixel value.
r = input pixel value.
γ = gamma value.
c = constant.
Gamma values less than 1 decrease the contrast of the image, while values greater than 1 increase the contrast. By

altering the mapping of input pixel values to output pixel values, power law transformation is used to adjust the brightness
and contrast of an image. This method is especially helpful when the image’s dynamic range is either too low or too high
for analysis or display. For instance, in dim lighting, an image could appear overly dark and lacklustre. The brightness
and contrast of a power law transformation with a gamma value larger than 1 can be increased, improving the visibility of
the image. Similar to this, an image may seem overexposed and overly brilliant in high light situations. By reducing the
brightness and enhancing the contrast with a power law transformation, the image can be made more visually appealing.

The effectiveness of image enhancement methods like power law transformation is assessed in digital image
processing using quality metrics. Here there are a few typical quality metrics for rating the effectiveness of power law
transformation: MSE, PSNR, SSIM, AMBE and Entropy.

Image filtering is one of the primary uses of analytical coefficients in DIP. Complex filtering procedures like phase
shifting, frequency translation, and frequency domain filtering can be carried out using analytical coefficients. Edges,
textures, and regions of interest can all be improved or altered in an image by applying these operations on the analytic

Volume 5 Issue 3|2024| 2681 Contemporary Mathematics



coefficients. The ability to selectively modify specific image attributes is one of the key benefits of utilising analytical
coefficients for image enhancement. It is possible to recognise and improve particular features in the image, such as
edges, textures, and regions of interest, by evaluating the phase information in the analytic coefficients. To accomplish
the required augmentation, this can be done using a variety of filtering approaches, such as homomorphic filtering or
phase-only filtering, which alter the magnitude and phase of the analytic coefficients.

1.1.1Power law transformation’s contribution in the realm of medicine

Power law transformation is a type of image enhancement technique that is commonly used in medical imaging
to improve the visual quality and diagnostic accuracy of medical images. There are several reasons why power law
transformation is an important technique for medical image enhancement:

Non-linear contrast adjustment: Power law transformation is a non-linear technique that allows for contrast
adjustment in a way that is different from linear techniques such as histogram equalization. This is particularly important
in medical imaging where subtle variations in contrast can be critical for diagnosis.

Retention of image information: Power law transformation preserves the original information in the image, while
enhancing its contrast. This is important in medical imaging where it is important to retain as much information as possible,
while still improving the quality of the image.

Flexibility in adjustment: The power law transformation parameter (gamma) can be adjusted to obtain different
levels of enhancement. This allows the technique to be tailored to the specific requirements of different imaging modalities
and applications.

Compatibility with other enhancement techniques: Power law transformation can be combined with other
enhancement techniques such as spatial filtering, Fourier transformation, and wavelet transformation to achieve more
advanced image processing tasks.

Speed: Power law transformation is a fast technique that can be implemented in real-time, making it well-suited for
medical imaging applications where quick and accurate diagnoses are critical.

In this study, we offer a novel method for improving images based on the coefficients obtained by Sakaguchi kind
of function defined in Limacon shaped domain. The remainder of this research is structured as: Section 2 covers the
mathematical approach, Section 3 delves into the application of the coefficients calculated, Section 4 provides conclusion
of the entire article and finally Section 5 throws limelight for future work.

2. Mathematical approach
Let A be analytic of the form:

f (ξ ) = ξ +
∞

∑
κ=2

aκ ξ κ , ξ ∈ U, (1)

in U= {ξ ∈C : |ξ |< 1}. Ma and Minda [1] amalgamated various subclasses of starlike and convex functions which are
subordinate to a function ψ ∈ P (P be the class of functions with positive real part consisting of all analytic functions
p : U→ C satisfying p(0) = 1 and Rp(κ)> 0) with ψ(0) = 1, ψ ′(0)> 0, ψ maps U onto a region starlike with respect
to 1 and symmetric with respect to real axis and familiarized the classes as below:

S ∗(ψ) =

{
f ∈ A :

ξ f ′(ξ )
f (ξ )

≺ ψ
}
, (2)

and
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C (ψ) =

{
f ∈ A : 1+

ξ f ′′(ξ )
f ′(ξ )

≺ ψ
}
. (3)

Similarly many authors [2–5] studied for different domains. The equation of cardioid

(9x2 +9y2 −18x+5)2 −16(9x2 +9y2 −6x+1) = 0, (4)

was studied in [6]. Lately, [7] introduced STL(s) and CVL(s) respectively. Geometrically, f ∈ A such that
ξ f ′(ξ )

f (ξ )
and

(ξ f ′(ξ ))′

f ′(ξ )
, respectively, are in

[(u−1)2 + v2 − s4]2 = 4s2[(u−1+ s2)2 + v2], (5)

where

Ls(z = eiθ ) = (1+ seiθ )2 = (1+ s(cosθ + isinθ))2 = u+ iv,

1+2s(cosθ + isinθ)+ s2(cos2θ +2icosθsinθ −2sin2θ) = u+ iv,

u = 1+2scosθ + s2cos2θ ,

v = 2ssinθ(1+ scosθ),

where u = u(θ), v = v(θ) and 0 < s ≤ 1√
2
.

Lately, [8] defined the bean-shaped:

Ω(U) = {w = x+ iy : (4x2 +4y2 −8x−5)2 +8(4x2 +4y2 −12x−3) = 0}, (6)

where s ∈ [−1, 1]\{0}.
If

φ(ξ ) : U→ C, (7)

is the function defined by

φ(ξ ) = 1+
√

2ξ +
1
2

ξ 2, (8)
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is preferred [8].
Definition 1 Let φ : U→ C be analytic and for 0 ≤ Λ ≤ 1 and 0 ≤ τ ≤ 1 but |τ| ̸= 1, we let the class as

SC(ϑ , Λ) =
{

f ∈ A :
(1− τ2)[Λξ 2 f ′′(ξ )+ξ f ′(ξ )]

Λξ [ f ′(ξ )− τ f ′(τξ )]+(1−Λ)[ f (ξ )− f (τξ )]
≺ φ(ξ )

}
, (9)

where ξ ∈ U and φ(ξ ) = 1+
√

2ξ +
1
2

ξ 2.
Lemma 1 See [9]. Suppose that p(ξ ) = 1+ c1ξ + c2ξ 2 + · · · , (Rp1 > 0), ξ ∈ U, then

|cn| ≤ 2 (n = 1, 2, 3, ...),

|c2 −νc2
1| ≤ 2 max{1, |2ν −1|},

and the outcome is sharp for the functions formulated by

p1(ξ ) =
1+ξ 2

1−ξ 2 ,

p1(ξ ) =
1+ξ
1−ξ

.

Lemma 2 See [1]. Suppose that p1(ξ ) = 1+ c1ξ + c2ξ 2 + · · · , (Rp1 > 0), ξ ∈ U. Then,
(i)

|c2 −νc2
1| ≤


−4ν +2 if ν ≤ 0,

2 if 0 ≤ ν ≤ 1,

4ν −2 if ν ≥ 1.

For ν < 0 or ν > 1, equality occurs when p1(ξ ) =
1+ξ
1−ξ

or one of its rotations. When ν = 1, equality holds if and

only if p1(ξ ) is the reciprocal of one of the functions such that equality holds in the case of ν = 0.

(ii) For ν ∈ (0, 1), the equality exists when p1(ξ ) =
1+ξ 2

1−ξ 2 or one of its rotations.

(iii) For ν = 0, the equality happens when

p1(ξ ) =
(

1
2
+

1
2

ϑ
)

1−ξ
1+ξ

+

(
1
2
− 1

2
ϑ
)

1−ξ
1+ξ

,

where 0 ≤ ϑ ≤ 1 or one of its rotations.
Lemma 3 See [10]. If p ∈ P and is given by p(ξ ) = 1+ c1ξ + c2ξ 2 + · · · then
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2c2 = c2
1 + x(4− c2), (10)

4c3 = c2
1 +2(4− c2

1)c1x− c1(4− c2
1)x

2 +2(4− c2
1)(1−|x|2ξ ), (11)

for some x, ξ with |x| ≤ 1 and |ξ | ≤ 1.
Theorem 1 Let the function f ∈ SC(ϑ , Λ) be given by (1) then

|a2| ≤
√

2
(1+Λ)(2− ς2)

,

|a3| ≤
√

2
(1+2Λ)(3− ς3)

max
{

1,
∣∣∣∣ 1
2
√

2
+

√
2ς2

2− ς2

∣∣∣∣}=

√
2

(1+2Λ)(3− ς3)

(
1

2
√

2
+

√
2ς2

2− ς2

)
.

Proof. Since f ∈ SC(ϑ , Λ), there exists w with w(0) = 0 and |w(ξ )|< 1 in U such that

(1− τ2)[Λξ 2 f ′′(ξ )+ξ f ′(ξ )]
Λξ [ f ′(ξ )− τ f ′(τξ )]+(1−Λ)[ f (ξ )− f (τξ )]

= φ(w(ξ )). (12)

Defining the function p1,

p1(ξ ) =
1+w(ξ )
1−w(ξ )

= 1+ c1ξ + c2ξ 2 + · · · , (13)

or equivalently

w(ξ ) =
p1(ξ )−1
p1(ξ )+1

,

=
1
2

[
c1ξ +

(
c2 −

c2
1

2

)
ξ 2 +

(
c3 − c1c2 +

c3
1

4

)
ξ 3 + · · ·

]
,

then p1 is analytic in U with p1(0) = 1 and has a positive real part in U. By using the above equation with (8)

φ(w(ξ )) = φ
(

p1(ξ )−1
p1(ξ +−1

)
= 1+

c1ξ√
2
+

(
1√
2

(
c2 −

c2
1

2

)
+

c2
1

8

)
ξ 2

+

{
1√
2

(
c3 − c1c2 +

c2
1

4

)
+

c1

4

(
c2 −

c2
1

2

)}
ξ 3 + · · ·

(14)

Since,
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(1− τ2)[Λξ 2 f ′′(ξ )+ξ f ′(ξ )]
Λξ [ f ′(ξ )− τ f ′(τξ )]+(1−Λ)[ f (ξ )− f (τξ )]

= 1+
[

c1√
2
+a2ς2(1+Λ)

]
ξ

+

[
1√
2

(
c2 −

c2
1

2

)
+

c2
1

8
+

c1√
2

a2ς2(1+Λ)+a3ς3(1+2Λ)
]

ξ 2

+

[
1√
2

(
c3 − c1c2 +

c3
1

4

)
+

c1

4

(
c2 −

c2
1

2

)
+a2ς2(1+Λ)

(
1√
2

(
c2 −

c2
1

2

)
+

c3
1

8

)

+
c1√

2
a3ς3(1+2Λ)+a4ς4(1+3Λ)

]
ξ 3,

(15)

and equating the coefficients of ξ , ξ 2, ξ 3 from (14) to (15), we get

a2 =
c1√

2(1+Λ)(2− ς2)
, (16)

a3 =
1

4(1+2Λ)(3− ς3)

{(
1−2

√
2

2
+

2ς2

2− ς2

)
c2

1 +2
√

2c2

}
, (17)

a4 =
1

16(1+3Λ)(4− ς4)

{[
2(
√

2−1)+

√
2(1−2

√
2)ς2

2− ς2
+

8
√

2ς3

3− ς3

(
1−2

√
2

8
+

ς2

2(2− ς2)

)]
c3

1

+

[
4(1−2

√
2)+

8ς2

2− ς2
+

8ς3

3− ς3

]
c1c2 +8

√
2c3

}
. (18)

Now applying Lemma 1, we get

|a2| ≤
√

2
(1+Λ)(2− ς2)

, (19)

and also
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|a3|=
1

4(1+2Λ)(3− ς3)

∣∣∣∣{(1−2
√

2
2

+
2ς2

2− ς2

)
c2

1 +2
√

2c2

}∣∣∣∣,
=

1√
2(1+2Λ)(3− ς3)

∣∣∣∣c2 −
(

2
√

2−1
4
√

2
− ς2√

2(2− ς2)

)
c2

1

∣∣∣∣,
=

1√
2(1+2Λ)(3− ς3)

|c2 −κc2
1|,

(20)

where κ =
2
√

2−1
4
√

2
− ς2√

2(2− ς2)
. Now by applying Lemma 1, we get

|a3| ≤
√

2
(1+2Λ)(3− ς3)

max
{

1,
∣∣∣∣ 1
2
√

2
+

√
2ς2

2− ς2

∣∣∣∣}=

√
2

(1+2Λ)(3− ς3)

(
1

2
√

2
+

√
2ς2

2− ς2

)
. (21)

3. Application
This section seeks to show that the suggested image enhancement algorithm based on Power Law Transformation is

validated using the coefficients found in the above section. By assigning suitable values to the parameters Λ, ς2 and ς3 to
be 0, 1 and 1 respectively we obtain a numerical value for a1, a2 and a3 as 1, 1.4142 and 1.2500 respectively. With the
values obtained we design three outcomes, they are as follows:

Outcome 1: s = cra1 .
Outcome 2: s = cra2 .
Outcome 3: s = cra3 .
In the research findings, each image was examined with respect to each Outcome, and the average was also taken into

account. Better outcomes are obtained for our model and at the average with regard to the constraints of the quality metrics
considered. Using MATLAB R2021a and specially written code that takes into account the time and space complexity,
the entire enhancement process is carried out and the obtained results are discussed in the Research Outcomes section and
the algorithm is presented in Algorithm 1.

Algorithm 1
1. Load the test image into a variable ‘I’.
2. Convert the image into grayscale image.
3. Assign variable ‘B’ to the grayscale image.
4. Convert ‘B’ to double precision.
5. Perform the proposed enhancement technique using the coefficients as gamma values.
6. Compute quality metrics (PSNR, SSIM, MSE, AMBE and Entropy).
7. Calculate the average result of three different outcomes.
8. Record the numerical results rounded to four decimal places.
9. Display the resulting images along with the original image.

3.1 Research outcomes

In this study, we examineMRI scans of three different breasts with malignant neoplasms and analyse the image using
our suggested model to see if it performs well over a range of images. The images under consideration are 527× 447, 467
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× 522, and 367× 385 pixels in size, respectively. The image that was obtained after using our algorithm has significantly
clearer tumour cells, making it easier for doctors to diagnose the tumor’s intensity.

The original image is presented along with the three outcomes are displayed in Figure 1, 2 and 3 and the values that
were determined for the quality measures are given in Table 1, 2 and 3 respectively.

Figure 1. MRI of breast with malignant neoplasms image 1

Table 1. Values of the quality metrics obtained for different outcomes of image 1

Quality metrics PSN SSIM MSE AMBE Entropy

Power law transformation: Outcome 1 13.9276 0.0047 2.6322 × 103 46.8317 4.6999
Power law transformation: Outcome 2 13.9047 0.0034 2.6461 × 103 47.0093 4.7643
Power law transformation: Outcome 3 13.9094 0.0036 2.6432 × 103 46.9534 4.7495

Average 13.9139 0.0039 2.6405 × 103 46.9315 4.7379

Table 2. Values of the quality metrics obtained for different outcomes of image 2

Quality metrics PSNR SSIM MSE AMBE Entropy

Power law transformation: Outcome 1 14.4841 0.3282 2.3157 × 103 29.6434 5.3275
Power law transformation: Outcome 2 14.4661 0.3273 2.3252 × 103 29.7415 5.1607
Power law transformation: Outcome 3 14.4729 0.3276 2.3216 × 103 29.7105 5.3281

Average 14.4744 0.3277 2.3208 × 103 29.6985 5.2721
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Figure 2. MRI of breast with malignant neoplasms image 2

Figure 3. MRI of breast with malignant neoplasms image 3
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Table 3. Values of the quality metrics obtained for different outcomes of image 3

Quality metrics PSNR SSIM MSE AMBE Entropy

Power law transformation: Outcome 1 10.8697 0.0093 5.3224 × 103 65.0846 6.1080
Power law transformation: Outcome 2 10.8252 0.0032 5.3772 × 103 65.2859 6.1855
Power law transformation: Outcome 3 10.8375 0.0042 5.3620 × 103 65.2196 6.1723

Average 10.8441 0.0056 5.3538 × 103 65.1967 6.1553

4. Conclusion
The research’s fundamental objective was to employ forefront medical imaging methods to improve our healthcare

system’s overall effectiveness and diagnostic potential. In particular, we investigated the effectiveness of power law
transformation for gamma values larger than 1. We also presented a new technique for gamma value validation utilising
the coefficients of the Sakaguchi type function in a domain with a Limacon shape. The choice of gamma values is
supported by mathematics, as opposed to random assignment techniques. Our model’s efficacy and distinctiveness are
demonstrated by our comparative analysis with earlier research, which is referenced in references [11–16]. Our model
had no known precedents. Our findings show that our method of image enhancement outperforms current methods in
terms of quantitative performance indicators as well as visual quality with respect to [17–28]. Precise value analyses
and improved graphics for each of the three test scenarios are used to display the results, which highlight the important
function of power law transformation coefficients in DIP. This study opens the door to better diagnostic tools in medical
imaging by shedding light on how these coefficients may significantly impact image quality. The works of [29–31] offers
futuristic vision for further customising the current model.

5. Future scope
Adaptive coefficient selection: Based on the unique properties of the input image, future research can concentrate

on creating adaptive algorithms that dynamically choose the best coefficients. This can improve the efficacy of image
enhancement methods on a variety of medical image types, including X-rays, CT scans, and MRIs.

Machine learning integration: By automating the procedure and possibly enhancing accuracy and consistency,
machine learning models can be trained to anticipate the best coefficients for power law transformation.
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