UNIVERSAL WISER
PUBLISHER

Linear Codes Obtained from Projective and Grassmann Bundles on
Curves

E. Ballico

Department of Mathematics, University of Trento, 38123 Povo (TN), Italy
Email: ballico@science.unitn.it

Abstract: We use split vector bundles on an arbitrary smooth curve defined over F, to get linear codes (following the
general set-up considered by S. H. Hansen and T. Nakashima), generalizing two quoted results by T. Nakashima. If p # 2
for all integers d, g > 2, r > 0 such that either r is odd or d is even we prove the existence of a smooth curve C of genus g
defined over F, and a p-semistable vector bundle £ on C such that rank(E) = r, deg(E) = d and E is defined over F,. Most
results for particular curves are obtained taking double coverings or triple coverings of elliptic curves.
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1. Introduction

Fix a prime p and a p-power g. Any subset § < P (F,) spanning P! (F,) defines an [n, k]-code, n = #S, in the
following way. For any P € S pick a representative 4, € ]F: . Use these n representatives Ap, P € S, and an ordering of S to
get a k X n matrix with 4,, P € S, as its columns. This matrix is the generator matrix of a linear code and different choices

of representatives 4, and orderings of S give equivalent linear codes. Hence the only problem for the construction of these
codes is to get nice sets S and nice embedding S — P*! (F,). In our set-up S will be the set X(F,) of all F -points of a
nice projective variety X. The embedding j:S — P! (FF,) is usually obtained in the following way. There is a very ample
line bundle £ on X defined over F, such that dim (H (L)) =k and the embedding j is the restriction to S of the embedding
Jri X —> P*! associated with the complete linear system | £|. We do not claim that in our construction £ will be very
ample.

Fix a smooth projective curve C of genus g defined over F,. Here we follow [5, Remark 4.3] and [10, 11] and use

vector bundles £ on C to get S and the embedding § < P*™! (F,). We only use vector bundles which are direct sums of line
bundles. We use the proofs in [10, 11] to prove the following results.

Theorem 1. Let C be a smooth projective curve of genus g defined over F,. Set a := #(C(F,)). Fix integers 7, s, e, , by,
b,suchthatr>s5>0,0<e <7 g>b,>0. Assume

a>b, (t+te)+b, ©)
thy+b,>g ()
Then there are P e C(F,),L € Pic(C)(F,) and R € Pic” (C)(F,) with the following properties. Set E := L(P)®e &)

12079 and X = P(E). Then the vector bundle sh (E)®R induces a line bundle on X and hence a linear code C over F,.

.
+b11 j(b2+1—g+bl(t+£))and
S

The code C is an [n, k, d]-code withn =a(q" —1)/(g-1),k = (r

d>(q"" +(1-b)g" ) a-b(t+e)-by).

The main point of Theorem 1 is in the case b, > 2, because if b, = 1 we are in the set-up of [4, 8] (projective bundles
over C whose fibers are embedded as a linear subspace of ]P’k_l), where more efficient tools are available.
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For all integers r > s > 0 set

r 1

_ @ -4 -9 (¢ -q"
s—1

q
Ky (¢ -1 -q9)-(q"—q
q

).
)

We have #(G(r,s)(F,)) = [r]q ([7, Th. 24.2.1)).
S

Theorem 2. Let C be a nonsingular projective curve of genus g defined over F,. Set a := #(C(F,)). Fix integers r >
s > 0, t, b, e such that 0 < e < r. Let £ be the vector bundle constructed to prove Theorem 1. Let 7 : Gr,(E) — C be the
Grassmann bundle of rank s quotient bundles of E. Set ¥ := Gr(E). Let f be a fiber of z. Let O,(1) the tautological z-ample
line bundle on Y. Set

N = (0, )=t (O, () +b/), N, = (O, () =s1/)" -

Assume
a>N/N, (3)
st+tb>g 4)

Then there is a line bundle L, , on Y numerically equivalent to Oy(1) + bf, defined over F, and giving an [n, k, d]-linear
code on Y such that

r r
-1 - _
n=a- ,k:[r J(rt+e+1b),dz —q(r S N a1 W),
S — N

S S
q q

The case b, = 1 of Theorem 1 is just the case s =r — 1 and b, = b of Theorem 2.
If e > 0 some parameters of Theorem 1 (resp. Theorem 2) are worst than the ones in [11, Theorem 3.1] (resp. [10,

Theorem 3.2]) (roughly speaking, we take ¢ instead of u(E) = t+£). However, Theorems 1 and Theorem 2 have two key
features. g

Remark 1. To use [10, 11] in the case g > 2 one needs a p-semistable vector bundle with prescribed rank and degree
on a curve of genus g and everything must be defined over F,. If e = 0, then this is easy (Remark 4). In all the other cases,
this was unknown (as far as we know). See Theorem 3 for construction on certain curves when p # 2 and either the degree
is even or the rank is odd. See Theorem 4 for the case in which either d =0 (mod 3) or » =1, 2 (mod 3). Even more difficult
(and more important for the applications) should be the construction of explicit p-semistable vector bundles on explicit
curves. It is easy to find line bundles L, R as above on an arbitrary C with C(F,) # © and for a huge number of other C, L,
R we only need to require an inequality slightly stronger than (2) or (4). Theorems 3 and 4 give explicit curves and explicit
vector bundles.

Remark 2. If g > 3 the assumption b,(¢ + ¢) + b, > g is better than the assumption (¢ +£)bl +b, >2g—2 made in [11,
r
Theorem 3.1] and this is not a small issue for the following reason. This assumption (or an assumption u(£)b, + b, > g - 1
instead of u(E)b, + b,>2g -2 asin [11, Theorem 3.1]) is essential for the computation of the parameter & of the code C: if
e r+b -1 e . . :
b(t+—)+b, < g—1, then | (b2 +1-g+bh (t+—)) <0. If (1) is not satisfied, then the lower bound for d given
r r— s

in Theorem 1 is negative. Hence if (1) is not satisfied, then we may still have an [n, k]-code, but no information on its
minimum distance. Combining (1) and (2) (or (3) and (4)) we get a very strong restriction on a = #C(F,), which often
conflicts with the Hasse-Weil bound, unless g > tb. Hence going from 2g - 2 to g seems to be a good improvement.

Let C be a smooth projective curve defined over a field with characteristic p. Let E be a vector bundle on C. Let F': C
— C be the Frobenius map. We recall that E is p-semistable if all pullbacks F™*(E), m € N, are semistable ([10]).
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Theorem 3. Assume p # 2. Fix integers g, r, d such that g > 2 and either d is even or r is odd. Then there are a smooth
and projective curve C of genus g defined over and a p-semistable vector bundle £ on C such that rank(£) = r, deg(E) = d
and £ is defined over F,.

We may take as C a double covering # : C — W with £ defined over F, and W a suitable elliptic curve (see the proof
of Theorem 3).

Theorem 4. Assume p # 2 and p # 3. Fix integers g, 1, d such that g > 5, g # 6 and either d = 0 (mod 3) or =1, 2 (mod
3). Then there are a smooth projective curve C of genus g defined over F, and a p-semistable vector bundle £ on C defined
over F, such that rank(E) = r and deg(E) = d.

In the statement of Theorem 4 we may take as C an explicitly constructed triple covering of an elliptic curve.

2. THE PROOFS

Remark 3. Let C be a smooth projective curve defined over I, For any integer d there is a degree d line bundle on C
defined over F, ([13, Corollary V.1.1.11]).

Remark 4. Fix a smooth curve C of genus g and integers 7, d such d = 0 (mod r). We claim the existence of a
p-semistable vector bundle on C(IE‘q). Fix any L € Pic””" (C )(F,) (Remark 3) and take E = L% For an alternative approach,
see [11, Remark 2.1].

To compute cohomology groups of vector bundles on C using Serre duality we will silently (i.e. referring to the proofs
in [10, 11]) use the following observation.

Remark 5. Let E,, E, be vector bundles on a scheme Y. For every integer n > 0 we have S"(E, ® E,) = ®/_ S (E,) ®
S"(E,) ([6, p.66]). Hence S"(E")= S"(E)" if E is isomorphic to a direct sum of line bundles. Let C be a smooth
projective curve of genus g defined over a field with characteristic p. Fix an integer n > 0, a p-semistable vector bundle £
on Yand R, M e Pic(C). Since E is p-semistable, S"(E) is semistable ([12, Theorem 3.23]). Hence S"(E)" and S"(E)" ® R
are semistable. Hence 4°(C,S"(E)' ® R") =0 if u(S"(E)" @ R") <0, i.e. if —n- u(E)—deg(R) < 0. Hence Serre duality
gives h'(C,S"(E)®M) =0 if n- u(E)+deg(M) > 2g 2.

Lemma 1. Assume C(F,) # 0. Fix integers ¢ > 0, b, > 0 and b, such that tb, + b, > g. Fix any L € Pic(C)(F, ) such that
deg(L) = t. Then there is R € Pic” (C)(F,) such that h'(C,L>" ® R) =0.

Proof. Since b, + b, > g, there is M  Pic” "2 (C)(F, ) such that '(C, M) = 0 ([2, 3]). Take R := M ® (L')*".

Notation 1. Let C be a smooth curve defined over F, such that C(F, ) # ©. Fix integers 7, » > 2 and e such that 0 <e <
7. Our family of vector bundles with rank » and degree 7t + e are of the form E=L, @---@ L, with L, € Pic”l(C)(Fq) if 1
<i<eand L, ePic (C)F,) if e <i <r. To get Theorems 1 and 2 we fix R and L as in Lemma 1 (with b, = s and b, = b for
Theorem 2) and take L, = L(P)if 1 <i<eand L,=Life+ 1 <i<r.

Lemma 2. Fix a smooth curve C and r, e, L, E as in Notation 1. Set X :=P(E) and let O, (1) the associated relatively
ample tautological line bundle. Call u : X — C the ruling. Fix f € Q and any M e Pic(C). Set y := deg(M). If t + fy >0,
the O, (1) + Su" (M) is nef.

Proof. Fix an integral curve T < X. It is sufficient to prove the inequality T - (O, (1)+ Su"(M)) > 0 for every integral
curve T < X. Fix an integral curve T < X and y € Q such that y > f. It is sufficient to prove that 7-(O, () + yyf) 20,
where f'is a fiber of u : X — C. We may assume r # 0. Write r = a/b with a,b€7Z, b > 0, and (a, b) = 1. To prove the
latter inequality we first prove the existence of an integer ¢ > 0 such that the line bundle Oy (cb) ®u" (M ®c“) is spanned.
Notice that S° (EY®M ®a is a direct sum of line bundles of degree at least tb + ay > 0. Hence for all integers ¢ > 2g + 1
the vector bundle S (E)® M® is a direct sum of very ample line bundles. This is true also for £ ® M ®“. We have
U, (Oy (ch) @u* (M) = S (E)® M. Hence H (X, 0y (ch)®u* (M®) = H*(C,S(E)® M). Hence Oy (ch)®
u*(M®C“) has many sections. The same computation shows that E®P @M% is spanned. By the definition of
Oy (1) there is a surjection u*(E) — Oy (1). Since the tensor product is a right exact functor, we get a surjection
u* (E® @ M®) — Oy (cb) ®u* (M®). Hence Oy (ch) ®u*(M®*“) is spanned for all ¢ > 2g + 1. Hence T - (O (1) +
r¥)20.

Proof of Theorem 1. Fix L, R & Pic(C)(F,) such that deg(L) = 1, deg(R)= b, and h'(C,L”" ® R) =0 (Lemma 1). Set
E=L(P)* ®I% and X :=P(E). Let u : X — C be the associated fibration. Let f'be the numerical equivalence class of
a fiber of u. As a line bundle £ on X we take the line bundle Oy (b,) ® u*(R). Lemma 2 gives that H := Oy (1)~ ¢f is nef. We
have H' ™" -(Oy (b)) +byf)=b(H —(r=1)H"™" - f)+b, = b (deg(E) — (r —=1)t) + b, = b, (t + €) + b,. Hence the proof of [11,
Theorem 3.1] gives the lower bound for the minimum distance. We do not claim that the line bundle Oy (b)) ®u" (R) on X
is very ample. Thus in our set-up S cannot be seen as a subset of PH (F, ). But still, the code has the prescribed parameters,
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even if a priori some of its columns may coincide. To get the very ampleness of Oy (b)) ® u"(R) we would need to assume
too much (e.g. b, +th, >2g + 1).

Lemma 3. Fix C, 1, rand E == L(P)® @ L®U"9 as in Notation 1 and ¥, 7, Oy (1), fas in Theorem 2 with ¥ := P(E). Let
H, be any line bundle on Y numerically equivalent to Oy (1) — (s7) f. Then HS is nef.

Proof. Set Z :=P(A*(E)) and let 7 : Z — C the associated fibration. Call  the numerical class of a fiber of 7z and
O, (1) the tautological relatively ample line bundle of Z. Let ¢:Y — Z denote relative Pliicker embedding. We have
Oy (1) = ¢" (O, (1)). Notice that A*(E) is a direct sum of line bundles isomorphic to % (xP) for some integer x such that 0
<x <s. Applying Lemma 2 to the split vector bundle A® (E) we get that the numerical class of the line bundle Oy (1) - stfis
nef. The restriction of a nef line bundle J of Z to any subvariety 7 of Z is nef , because to test that J is nef we also need to
test the curves contained in 7. Since H = ¢" (O, (1) - stf), we get that H, is nef.

Proof of Theorem 2. Take L, R as in the proof of Theorem 1 and set £ := L(P)®¢ @ L% Set Ly =0y (D®7z"(R).
We have H° Y,Liy)=H O(C AY(E)® 7" (M)). Hence here (as i 1n [10]) to get the value of k of the linear code C associated
to L;, (and not just a lower bound for it) it is equivalent to prove W (C,A*(E)® R) = 0. In our set up it is sufficient to have L,
R such that A' (C, % ® R) =0. Apply Lemma 1 with bi :=s. Apply verbatim the proof of [10, Theorem 3.2] taking the line

bundle H, (which is nef by Lemma 3), instead of the nef line bundle 4 numerically equivalent to Oy (1) —s(# + E) f.
s

Lemma 4. Let /¥ be an elliptic curve defined over F,, g # 2. Fix an integer d > 0. Then there are R € Pic? W)(F, q) and
De |R| such that D is reduced and defined over F,.

Proof. If d = 1, then we may take R := Oy, (O) with O the unity of the group W. Hence we may assume d > 2. By the
Hasse-Weil bound there is Q € W(qu ) not contained in W(qu) for any integer x > 1 dividing d and x # d. Take as D the
orbit in W of Q by the action of the Galois group of the extension qu /T, and set R := Oy (D).

Proof of Theorem 3. First assume d even. Let W be any smooth elliptic curve defined over F, and such that Pic’(W)
has no point of order 2. Any such curve W has_ an affine equation y* = P(x) with P(x) a degree 3 polynomial over F, with
no multiple root over F, and with no root in F4 (and the converse holds). Let /' be any semistable vector bundle on W
with rank » and degree d/2; F exists by [1]. The vector bundle F is p-semistable ([11], Corollary 3.1). Hence for any
smooth curve C and any degree 2 morphism / : C — W the vector bundle /4 (F) is p-semistable ([9, Proposition 5.1]) and
rank(k (F)) = r, deg(h’(F)) = d. Thus it is sufficient to find C and fas above and defined over F,. Here we use p # 2. Any
such pair (C, h) as above with C of genus g is constructed in the following way. Fix M € Picé™! (W)(E, ). Assume the
existence of a reduced divisor D e ‘M ®2‘ and D defined over F,. The pair (M, D) defines a degree 2 Galois covering / :
C — W with D as its branch locus and C sitting in the total space V(M ™) of M™ as an effective divisor with a quadratic
equation. By Lemma 4 there is a reduced divisor D of degree 2g — 2 defined over F,. Hence Oy (D) € Pic8~2 (W)(E,).
Since Pic’() has no point of order 2, the map L > I%? from Picg_l(W)(IFq) into Pic?¢~2 (W)(F,) is injective. Since
#(Pic® ™ (W)(F,)) = #(Pic” > (W)(F,)), this map is surjective. Hence there is M e Pic® ™' (W)(F, ) such that M ** = Oy, (D).

Now assume that both d and r are odd. Hence d + r is even. Take C as above such that there is a p-semistable
vector bundle G on C defined over F, with rank » and degree d + . Fix M € Picl(C )F,) (Remark 3). The vector bundle
E:=GQ®M" is p-semistable, defined over F,, rank(E) = r and deg(E) = d.

Proof of Theorem 4. First assume d = 0 (mod 3). If g is odd, then set y := (g — 5)/2. If g is even and g # 6, then set y := (g
- 8)/2.

(a) Here we assume y = 0,1 (mod 3). Fix an irreducible and monic f € ]Fq [x] such that deg( /') =y + 1. Let Y be the
normalization of the plane curve with y* = £ (x) as its equation. By [13, Proposition VI.3.1] Y is a smooth curve of genus
y defined over F,. Y is equipped with a degree 3 morphism 4:Y — P' defined over FF, and ramified exactly at the point at
infinity and at the roots of /'in Fy. All the roots of f'are conjugate for the Galois group of the extension IF 1 / F,. Since q
=5, thereis S F, and S 'cF r such that #S =4, #S'= 6, S’ is invariant by the action of the Galois group of the extension
]F /F, and S’ contains no root of f. Let m: W — P! be the degree 2 covering ramified exactly at S. Both W and 7z are

deﬁned overF,. Letw: W' — P'bea degree 3 covering ramified ramified only at S" and with ramification of minimal order
at each point of §'. Since p > 3, W'is an elliptic curve. We may find /¥’ and @ defined over F,. First assume g odd. Let X
be the fiber product of / and z. Since the branch loci of 4 and 7 are disjoint, X is a smooth curve equipped with a degree
3 morphism #, : X — W and a degree 2 morphism 7, : X — Y ramified at 12 point. Hence applying the Riemann-Hurwitz
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formula to 7, we get that X has genus 2y — 1 + 6 = g. Let F be a rank » and degree d/3 p-semistable vector bundle on W.
We saw in the proof of Theorem 3 that A (F) is p-semistable. Now assume g even and g # 6. Let X, be the fiber product
of 4 and @ .Since the branch loci of 4 and @ are disjoint, X, is a smooth curve. The curve X is equipped with a degree 3
morphism %, : X; — W’ and a degree 3 morphism @, : X; — Y, both defined over F,. Since @ is ramified at exactly 18
points and with ordinary ramification there, X, has genus 2y — 1 + 9 = g. Use &, as above to get the p-semistable vector
bundle on X,.

(b) Now assume y = 2 (mod 3). Take monic and irreducible polynomials f|, f; € IF, [x] such that deg( f;) = 7, and
deg( f;) = 1. Now take as Y the normalization of the plane curve with y3 = f1(x) f22 (x) as its equation. Since deg( f,) + 2.
deg( f;) =1 (mod 3), we may apply [13, Proposition VI.3.1]1, and get that ¥ has genus y. We conclude as in step (a).

(c) Now assume d = 1, 2 (mod 3). In this case we assumed » = 1, 2 (mod 3). Hence there is x € {1,2} such that d + xr =
0 (mod 3). The first part of the proof gives the existence of a smooth curve C of genus g defined over F, and a p-semistable

vector bundle G on C defined over F, and with rank(G) = r and deg(G) =d + xr. Take any L € Pic* (IFq) (Remark 3) and set
E=GQL".
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