

Linear Codes Obtained from Projective and Grassmann Bundles on Curves

E. Ballico

Department of Mathematics, University of Trento, 38123 Povo (TN), Italy Email: ballico@science.unitn.it

Abstract: We use split vector bundles on an arbitrary smooth curve defined over \mathbb{F}_q to get linear codes (following the general set-up considered by S. H. Hansen and T. Nakashima), generalizing two quoted results by T. Nakashima. If $p \neq 2$ for all integers $d, g \ge 2, r > 0$ such that either r is odd or d is even we prove the existence of a smooth curve C of genus g defined over \mathbb{F}_q and a p-semistable vector bundle E on C such that rank(E) = r, deg(E) = d and E is defined over \mathbb{F}_q . Most results for particular curves are obtained taking double coverings or triple coverings of elliptic curves.

Keywords: vector bundles on curves, linear code, projective bundle, Grassmann code, p-semistable vector bundle

1. Introduction

Fix a prime p and a p-power q. Any subset $S \subseteq \mathbb{P}^{k-1}(\mathbb{F}_q)$ spanning $\mathbb{P}^{k-1}(\mathbb{F}_q)$ defines an [n, k]-code, n := #S, in the following way. For any $P \in S$ pick a representative $A_p \in \mathbb{F}_q^k$. Use these n representatives $Ap, P \in S$, and an ordering of S to get a $k \times n$ matrix with $A_p, P \in S$, as its columns. This matrix is the generator matrix of a linear code and different choices of representatives A_p and orderings of S give equivalent linear codes. Hence the only problem for the construction of these codes is to get nice sets S and nice embedding $S \to \mathbb{P}^{k-1}(\mathbb{F}_q)$. In our set-up S will be the set $X(\mathbb{F}_q)$ of all \mathbb{F}_q -points of a nice projective variety X. The embedding $j : S \to \mathbb{P}^{k-1}(\mathbb{F}_q)$ is usually obtained in the following way. There is a very ample line bundle \mathcal{L} on X defined over \mathbb{F}_q such that dim $(H^0(\mathcal{L})) = k$ and the embedding j is the restriction to S of the embedding $j_{\mathcal{L}} : X \to \mathbb{P}^{k-1}$ associated with the complete linear system $|\mathcal{L}|$. We do not claim that in our construction \mathcal{L} will be very ample.

Fix a smooth projective curve *C* of genus *g* defined over \mathbb{F}_q . Here we follow [5, Remark 4.3] and [10, 11] and use vector bundles *E* on *C* to get *S* and the embedding $S \subset \mathbb{P}^{k-1}(\mathbb{F}_q)$. We only use vector bundles which are direct sums of line bundles. We use the proofs in [10, 11] to prove the following results.

Theorem 1. Let *C* be a smooth projective curve of genus *g* defined over \mathbb{F}_q . Set $a := \#(C(\mathbb{F}_q))$. Fix integers *r*, *s*, *e*, *t*, *b*₁, *b*₂ such that r > s > 0, $0 \le e < r$, $q \ge b_1 > 0$. Assume

$$a > b_1 (t+e) + b_2$$
 (1)

$$tb_1 + b_2 \ge g \tag{2}$$

Then there are $P \in C(\mathbb{F}_q), L \in Pic(C)(\mathbb{F}_q)$ and $R \in Pic^{b_2}(C)(\mathbb{F}_q)$ with the following properties. Set $E := L(P)^{\oplus e} \oplus L^{\oplus (r-e)}$, and $X := \mathbb{P}(E)$. Then the vector bundle $S^{b_1}(E) \otimes R$ induces a line bundle on X and hence a linear code C over \mathbb{F}_q . The code C is an [n, k, d]-code with $n = a(q^r - 1)/(q - 1), k = \binom{r+b_1-1}{r-1}(b_2 + 1 - g + b_1(t + \frac{e}{s}))$ and

$$d \ge (q^{r-1} + (1-b_1)q^{r-2})(a-b_1(t+e) - b_2).$$

The main point of Theorem 1 is in the case $b_1 \ge 2$, because if $b_1 = 1$ we are in the set-up of [4, 8] (projective bundles over *C* whose fibers are embedded as a linear subspace of \mathbb{P}^{k-1}), where more efficient tools are available.

Copyright ©2020 E. Ballico.

DOI: https://doi.org/10.37256/cm.142020449

This is an open-access article distributed under a CC BY license

(Creative Commons Attribution 4.0 International License) https://creativecommons.org/licenses/by/4.0/

For all integers r > s > 0 set

$$\begin{bmatrix} \mathbf{r} \\ \mathbf{s} \end{bmatrix}_{q} = \frac{(q^{r}-1)(q^{r}-q)\cdots(q^{r}-q^{s-1})}{(q^{s}-1)(q^{s}-q)\cdots(q^{s}-q^{s-1})}.$$

We have $\#(G(r,s)(\mathbb{F}_q)) = {r \brack s}_q ([7, \text{Th. 24.2.1}]).$

Theorem 2. Let *C* be a nonsingular projective curve of genus *g* defined over \mathbb{F}_q . Set $a := \#(C(\mathbb{F}_q))$. Fix integers r > s > 0, *t*, *b*, *e* such that $0 \le e < r$. Let *E* be the vector bundle constructed to prove Theorem 1. Let $\pi : Gr_s(E) \to C$ be the Grassmann bundle of rank *s* quotient bundles of *E*. Set $Y := Gr_s(E)$. Let *f* be a fiber of π . Let $\mathcal{O}_Y(1)$ the tautological π -ample line bundle on *Y*. Set

$$\tilde{N} := (\mathcal{O}_{Y}(1) - stf)^{(r-s)s} \cdot (\mathcal{O}_{Y}(1) + bf), \tilde{N}_{1} := (\mathcal{O}_{Y}(1) - stf)^{(r-s)s} \cdot f.$$

Assume

$$a > \tilde{N} / \tilde{N}_1 \tag{3}$$

$$st + b > g \tag{4}$$

Then there is a line bundle $L_{1,b}$ on Y numerically equivalent to $\mathcal{O}_Y(1) + bf$, defined over \mathbb{F}_q and giving an [n, k, d]-linear code on Y such that

$$n = a \cdot \begin{bmatrix} r \\ S \end{bmatrix}_{q}, \ k = \binom{r-1}{s-1} (rt + e + \frac{r}{s}b), \ d \ge \left(\begin{bmatrix} r \\ S \end{bmatrix}_{q} - q^{(r-s)s} \right) (a - \tilde{N} / \tilde{N}_{1}).$$

The case $b_1 = 1$ of Theorem 1 is just the case s = r - 1 and $b_2 = b$ of Theorem 2.

If e > 0 some parameters of Theorem 1 (resp. Theorem 2) are worst than the ones in [11, Theorem 3.1] (resp. [10, Theorem 3.2]) (roughly speaking, we take *t* instead of $\mu(E) = t + \frac{e}{r}$). However, Theorems 1 and Theorem 2 have two key features.

Remark 1. To use [10, 11] in the case $g \ge 2$ one needs a *p*-semistable vector bundle with prescribed rank and degree on a curve of genus *g* and everything must be defined over \mathbb{F}_q . If e = 0, then this is easy (Remark 4). In all the other cases, this was unknown (as far as we know). See Theorem 3 for construction on certain curves when $p \ne 2$ and either the degree is even or the rank is odd. See Theorem 4 for the case in which either $d \equiv 0 \pmod{3}$ or $r \equiv 1, 2 \pmod{3}$. Even more difficult (and more important for the applications) should be the construction of explicit *p*-semistable vector bundles on explicit curves. It is easy to find line bundles *L*, *R* as above on an arbitrary *C* with $C(\mathbb{F}_q) \ne \emptyset$ and for a huge number of other *C*, *L*, *R* we only need to require an inequality slightly stronger than (2) or (4). Theorems 3 and 4 give explicit curves and explicit vector bundles.

in Theorem 1 is negative. Hence if (1) is not satisfied, then we may still have an [n, k]-code, but no information on its minimum distance. Combining (1) and (2) (or (3) and (4)) we get a very strong restriction on $a = \#C(\mathbb{F}_q)$, which often conflicts with the Hasse-Weil bound, unless $q \gg tb_1$. Hence going from 2g - 2 to g seems to be a good improvement.

Let *C* be a smooth projective curve defined over a field with characteristic *p*. Let *E* be a vector bundle on *C*. Let *F* : C \rightarrow *C* be the Frobenius map. We recall that *E* is *p*-semistable if all pullbacks $F^{m^*}(E), m \in \mathbb{N}$, are semistable ([10]).

Theorem 3. Assume $p \neq 2$. Fix integers g, r, d such that $g \ge 2$ and either d is even or r is odd. Then there are a smooth and projective curve C of genus g defined over and a p-semistable vector bundle E on C such that rank(E) = r, deg(E) = dand *E* is defined over \mathbb{F}_{q} .

We may take as C a double covering $h: C \to W$ with h defined over \mathbb{F}_a and W a suitable elliptic curve (see the proof of Theorem 3).

Theorem 4. Assume $p \neq 2$ and $p \neq 3$. Fix integers g, r, d such that $g \ge 5$, $g \neq 6$ and either $d \equiv 0 \pmod{3}$ or $r \equiv 1, 2 \pmod{3}$ 3). Then there are a smooth projective curve C of genus g defined over \mathbb{F}_q and a p-semistable vector bundle E on C defined over \mathbb{F}_{a} such that rank(E) = r and deg(E) = d.

In the statement of Theorem 4 we may take as C an explicitly constructed triple covering of an elliptic curve.

2. The proofs

Remark 3. Let C be a smooth projective curve defined over \mathbb{F}_q . For any integer d there is a degree d line bundle on C defined over \mathbb{F}_{a} ([13, Corollary V.1.1.11]).

Remark 4. Fix a smooth curve C of genus g and integers r, d such $d \equiv 0 \pmod{r}$. We claim the existence of a *p*-semistable vector bundle on $C(\mathbb{F}_q)$. Fix any $L \in \operatorname{Pic}^{d/r}(C)(\mathbb{F}_q)$ (Remark 3) and take $E := L^{\oplus r}$. For an alternative approach, see [11, Remark 2.1].

To compute cohomology groups of vector bundles on C using Serre duality we will silently (i.e. referring to the proofs in [10, 11]) use the following observation.

Remark 5. Let E_1 , E_2 be vector bundles on a scheme Y. For every integer n > 0 we have $S^n(E_1 \oplus E_2) = \bigoplus_{i=0}^n S^i(E_1) \otimes$ $S^{n-i}(E_2)$ ([6, p.66]). Hence $S^n(E^*) \cong S^n(E)^*$ if E is isomorphic to a direct sum of line bundles. Let C be a smooth projective curve of genus g defined over a field with characteristic p. Fix an integer n > 0, a p-semistable vector bundle E on *Y* and $R, M \in Pic(C)$. Since *E* is *p*-semistable, $S^{n}(E)$ is semistable ([12, Theorem 3.23]). Hence $S^{n}(E)^{*} \otimes R^{*}$ are semistable. Hence $h^0(C, S^n(E)^* \otimes R^*) = 0$ if $\mu(S^n(E)^* \otimes R^*) < 0$, i.e. if $-n \cdot \mu(E) - \deg(R) < 0$. Hence Serre duality gives $h^1(C, S^n(E) \otimes M) = 0$ if $n \cdot \mu(E) + \deg(M) > 2g - 2$.

Lemma 1. Assume $C(\mathbb{F}_a) \neq 0$. Fix integers t > 0, $b_1 > 0$ and b_2 such that $tb_1 + b_2 \ge g$. Fix any $L \in Pic(C)(\mathbb{F}_a)$ such that $\deg(L) = t$. Then there is $R \in \operatorname{Pic}^{b_2}(C)(\mathbb{F}_a)$ such that $h^1(C, L^{\otimes b_1} \otimes R) = 0$.

Proof. Since $tb_1 + b_2 \ge g$, there is $M \in \operatorname{Pic}^{tb_1+b_2}(C)(\mathbb{F}_q)$ such that $h^1(C, M) = 0$ ([2, 3]). Take $R := M \otimes (L^*)^{\otimes b_1}$. **Notation 1.** Let *C* be a smooth curve defined over \mathbb{F}_q such that $C(\mathbb{F}_q) \ne \emptyset$. Fix integers $t, r \ge 2$ and e such that $0 \le e \le 1$. r. Our family of vector bundles with rank r and degree rt + e are of the form $E = L_1 \oplus \cdots \oplus L_r$ with $L_i \in \text{Pic}^{t+1}(C)(\mathbb{F}_q)$ if 1 $\leq i \leq e$ and $L_i \in \text{Pic}^t(C)(\mathbb{F}_q)$ if $e \leq i \leq r$. To get Theorems 1 and 2 we fix R and L as in Lemma 1 (with $b_1 = s$ and $b_2 = b$ for Theorem 2) and take $L_i = \dot{L}(P)$ if $1 \le i \le e$ and $L_i = L$ if $e + 1 \le i \le r$.

Lemma 2. Fix a smooth curve C and r, e, L_{i} E as in Notation 1. Set $X := \mathbb{P}(E)$ and let $\mathcal{O}_{X}(1)$ the associated relatively ample tautological line bundle. Call $u: X \to C$ the ruling. Fix $\beta \in \mathbb{Q}$ and any $M \in \text{Pic}(C)$. Set y := deg(M). If $t + \beta y \ge 0$, the $\mathcal{O}_{\chi}(1) + \beta u^*(M)$ is nef.

Proof. Fix an integral curve $T \subset X$. It is sufficient to prove the inequality $T \cdot (\mathcal{O}_X(1) + \beta u^*(M)) \ge 0$ for every integral curve $T \subset X$. Fix an integral curve $T \subset X$ and $\gamma \in \mathbb{Q}$ such that $\gamma > \beta$. It is sufficient to prove that $T \cdot (\mathcal{O}_X(1) + \gamma yf) \ge 0$, where f is a fiber of $u: X \to C$. We may assume $r \neq 0$. Write r = a/b with $a, b \in \mathbb{Z}$, b > 0, and (a, b) = 1. To prove the latter inequality we first prove the existence of an integer c > 0 such that the line bundle $\mathcal{O}_{\chi}(cb) \otimes u^*(M^{\otimes ca})$ is spanned. Notice that $S^{b}(E) \otimes M^{\otimes a}$ is a direct sum of line bundles of degree at least tb + ay > 0. Hence for all integers $c \ge 2g + 1$ the vector bundle $S^{cb}(E) \otimes M^{\otimes ca}$ is a direct sum of very ample line bundles. This is true also for $E^{\otimes cb} \otimes M^{\otimes ca}$. We have $u_*(\mathcal{O}_X(cb)\otimes u^*(M^{\otimes ca}))\cong S^{cb}(E)\otimes M^{ca}$. Hence $H^0(X,\mathcal{O}_X(cb)\otimes u^*(M^{\otimes ca}))\cong H^0(C,S^{cb}(E)\otimes M^{cb})$. Hence $\mathcal{O}_X(cb)\otimes u^*(M^{\otimes ca})$ has many sections. The same computation shows that $E^{\otimes cb}\otimes M^{\otimes ca}$ is spanned. By the definition of $\mathcal{O}_X(1)$ there is a surjection $u^*(E) \to \mathcal{O}_X(1)$. Since the tensor product is a right exact functor, we get a surjection $u^*(E^{\otimes cb} \otimes M^{\otimes ca}) \to \mathcal{O}_X(cb) \otimes u^*(M^{\otimes ca})$. Hence $\mathcal{O}_X(cb) \otimes u^*(M^{\otimes ca})$ is spanned for all $c \ge 2g + 1$. Hence $T \cdot (\mathcal{O}_X(1) + C) \otimes U^*(M^{\otimes ca})$. $\gamma yf) \geq 0.$

Proof of Theorem 1. Fix $L, R \in \text{Pic}(C)(\mathbb{F}_q)$ such that $\deg(L) = t$, $\deg(R) = b_2$ and $h^1(C, L^{\otimes b_1} \otimes R) = 0$ (Lemma 1). Set $E := L(P)^{\oplus e} \oplus L^{\oplus (r-e)}$ and $X := \mathbb{P}(E)$. Let $u : X \to C$ be the associated fibration. Let f be the numerical equivalence class of a fiber of *u*. As a line bundle \mathcal{L} on *X* we take the line bundle $\mathcal{O}_X(b_1) \otimes u^*(R)$. Lemma 2 gives that $H := \mathcal{O}_X(1) - tf$ is nef. We have $H^{r-1} \cdot (\mathcal{O}_X(b_1) + b_2 f) = b_1(H^r - (r-1)H^{r-1} \cdot f) + b_2 = b_1(\deg(E) - (r-1)t) + b_2 = b_1(t+e) + b_2$. Hence the proof of [11, Theorem 3.1] gives the lower bound for the minimum distance. We do not claim that the line bundle $\mathcal{O}_X(b_1) \otimes u^*(R)$ on X is very ample. Thus in our set-up S cannot be seen as a subset of $\mathbb{P}^{k-1}(\mathbb{F}_a)$. But still, the code has the prescribed parameters,

even if a priori some of its columns may coincide. To get the very ampleness of $\mathcal{O}_X(b_1) \otimes u^*(R)$ we would need to assume too much (e.g. $b_2 + tb_1 \ge 2g + 1$).

Lemma 3. Fix *C*, *t*, *r* and $E := L(P)^{\oplus e} \oplus L^{\oplus (r-e)}$ as in Notation 1 and *Y*, π , $\mathcal{O}_Y(1)$, *f* as in Theorem 2 with $Y := \mathbb{P}(E)$. Let H_s be any line bundle on *Y* numerically equivalent to $\mathcal{O}_Y(1) - (st)f$. Then H_s is nef.

Proof. Set $Z := \mathbb{P}(\wedge^s(E))$ and let $\pi : Z \to C$ the associated fibration. Call *f* the numerical class of a fiber of π and $\mathcal{O}_Z(1)$ the tautological relatively ample line bundle of *Z*. Let $\phi: Y \to Z$ denote relative Plücker embedding. We have $\mathcal{O}_Y(1) \cong \phi^*(\mathcal{O}_Z(1))$. Notice that $\wedge^s(E)$ is a direct sum of line bundles isomorphic to $L^{\otimes s}(xP)$ for some integer *x* such that $0 \le x \le s$. Applying Lemma 2 to the split vector bundle $\wedge^s(E)$ we get that the numerical class of the line bundle $\mathcal{O}_Z(1) - stf$ is nef. The restriction of a nef line bundle *J* of *Z* to any subvariety *T* of *Z* is nef , because to test that *J* is nef we also need to test the curves contained in *T*. Since $H_s = \phi^*(\mathcal{O}_Z(1) - stf)$, we get that H_s is nef.

Proof of Theorem 2. Take *L*, *R* as in the proof of Theorem 1 and set $E := L(P)^{\oplus e} \oplus L^{\oplus(r-e)}$. Set $L_{1,b} := \mathcal{O}_Y(1) \otimes \pi^*(R)$. We have $H^0(Y, L_{1,b}) \cong H^0(C, \wedge^s(E) \otimes \pi^*(M))$. Hence here (as in [10]) to get the value of *k* of the linear code *C* associated to $L_{i,b}$ (and not just a lower bound for it) it is equivalent to prove $h^1(C, \wedge^s(E) \otimes R) = 0$. In our set up it is sufficient to have *L*, *R* such that $h^1(C, L^{\otimes s} \otimes R) = 0$. Apply Lemma 1 with bi := s. Apply verbatim the proof of [10, Theorem 3.2] taking the line bundle H_s (which is nef by Lemma 3), instead of the nef line bundle *H* numerically equivalent to $\mathcal{O}_Y(1) - s(t + \frac{e}{2})f$.

Lemma 4. Let *W* be an elliptic curve defined over \mathbb{F}_q , $q \neq 2$. Fix an integer d > 0. Then there are $R \in Pic^{d}(W)(\mathbb{F}_q)$ and $D \in [R]$ such that *D* is reduced and defined over \mathbb{F}_q .

Proof. If d = 1, then we may take $R := \mathcal{O}_W(O)$ with O the unity of the group W. Hence we may assume $d \ge 2$. By the Hasse-Weil bound there is $Q \in W(\mathbb{F}_{q^d})$ not contained in $W(\mathbb{F}_{q^x})$ for any integer $x \ge 1$ dividing d and $x \ne d$. Take as D the orbit in W of Q by the action of the Galois group of the extension $\mathbb{F}_{q^d} / \mathbb{F}_q$ and set $R := \mathcal{O}_W(D)$.

Proof of Theorem 3. First assume d even. Let W be any smooth elliptic curve defined over \mathbb{F}_q and such that $\operatorname{Pic}^0(W)$ has no point of order 2. Any such curve W has an affine equation $y^2 = P(x)$ with P(x) a degree 3 polynomial over \mathbb{F}_q with no multiple root over \mathbb{F}_q and with no root in $\overline{\mathbb{F}}_q$ (and the converse holds). Let F be any semistable vector bundle on W with rank r and degree d/2; F exists by [1]. The vector bundle F is p-semistable ([11], Corollary 3.1). Hence for any smooth curve C and any degree 2 morphism $h : C \to W$ the vector bundle $h^*(F)$ is p-semistable ([9, Proposition 5.1]) and rank $(h^*(F)) = r$, deg $(h^*(F)) = d$. Thus it is sufficient to find C and f as above and defined over \mathbb{F}_q . Here we use $p \neq 2$. Any such pair (C, h) as above with C of genus g is constructed in the following way. Fix $M \in \operatorname{Pic}^{g-1}(W)(\mathbb{F}_q)$. Assume the existence of a reduced divisor $D \in |M^{\otimes 2}|$ and D defined over \mathbb{F}_q . The pair (M, D) defines a degree 2 Galois covering $h : C \to W$ with D as its branch locus and C sitting in the total space $\mathbb{V}(M^*)$ of M^* as an effective divisor with a quadratic equation. By Lemma 4 there is a reduced divisor D of degree 2g - 2 defined over \mathbb{F}_q . Hence $\mathcal{O}_W(D) \in \operatorname{Pic}^{2g-2}(W)(\mathbb{F}_q)$. Since $\operatorname{Pic}^{0}(W)$ has no point of order 2, the map $L \mapsto L^{\otimes 2}$ from $\operatorname{Pic}^{g-1}(W)(\mathbb{F}_q)$ into $\operatorname{Pic}^{2g-2}(W)(\mathbb{F}_q)$ is injective. Since $\#(\operatorname{Pic}^{g-1}(W)(\mathbb{F}_q)) = \#(\operatorname{Pic}^{2g-2}(W)(\mathbb{F}_q))$, this map is surjective. Hence there is $M \in \operatorname{Pic}^{g-1}(W)(\mathbb{F}_q)$ such that $M^{\otimes 2} \cong \mathcal{O}_W(D)$.

Now assume that both *d* and *r* are odd. Hence d + r is even. Take *C* as above such that there is a *p*-semistable vector bundle *G* on *C* defined over \mathbb{F}_q with rank *r* and degree d + r. Fix $M \in \operatorname{Pic}^1(C)(\mathbb{F}_q)$ (Remark 3). The vector bundle $E := G \otimes M^*$ is *p*-semistable, defined over \mathbb{F}_q , rank(E) = r and deg(E) = d.

Proof of Theorem 4. First assume $d \equiv 0 \pmod{3}$. If g is odd, then set $\gamma := (g - 5)/2$. If g is even and $g \neq 6$, then set $\gamma := (g - 8)/2$.

(a) Here we assume $\gamma \equiv 0,1 \pmod{3}$. Fix an irreducible and monic $f \in \mathbb{F}_q[x]$ such that deg $(f) = \gamma + 1$. Let Y be the normalization of the plane curve with $y^3 = f(x)$ as its equation. By [13, Proposition VI.3.1] Y is a smooth curve of genus γ defined over \mathbb{F}_q . Y is equipped with a degree 3 morphism $h: Y \to \mathbb{P}^1$ defined over \mathbb{F}_q and ramified exactly at the point at infinity and at the roots of f in \mathbb{F}_q . All the roots of f are conjugate for the Galois group of the extension $\mathbb{F}_{q^{\gamma+1}} / \mathbb{F}_q$. Since $q \ge 5$, there is $S \subseteq \mathbb{F}_q$ and $S' \subseteq \mathbb{F}_q^6$ such that #S = 4, #S' = 6, S' is invariant by the action of the Galois group of the extension $\mathbb{F}_{q^6} / \mathbb{F}_q$ and S' contains no root of f. Let $\pi: W \to \mathbb{P}^1$ be the degree 2 covering ramified exactly at S. Both W and π are defined over \mathbb{F}_q . Let $\varpi: W' \to \mathbb{P}^1$ be a degree 3 covering ramified only at S' and with ramification of minimal order at each point of S'. Since p > 3, W' is an elliptic curve. We may find W' and ϖ defined over \mathbb{F}_q . First assume g odd. Let X be the fiber product of h and π . Since the branch loci of h and π are disjoint, X is a smooth curve equipped with a degree 3 morphism $\pi_1: X \to Y$ ramified at 12 point. Hence applying the Riemann-Hurwitz

formula to π_1 we get that *X* has genus $2\gamma - 1 + 6 = g$. Let *F* be a rank *r* and degree d/3 p-semistable vector bundle on *W*. We saw in the proof of Theorem 3 that $h_1^*(F)$ is *p*-semistable. Now assume *g* even and $g \neq 6$. Let X_1 be the fiber product of *h* and ϖ . Since the branch loci of *h* and ϖ are disjoint, X_1 is a smooth curve. The curve X_1 is equipped with a degree 3 morphism $h_2 : X_1 \to W'$ and a degree 3 morphism $\varpi_1 : X_1 \to Y$, both defined over \mathbb{F}_q . Since ϖ_1 is ramified at exactly 18 points and with ordinary ramification there, X_1 has genus $2\gamma - 1 + 9 = g$. Use h_2 as above to get the *p*-semistable vector bundle on X_1 .

(b) Now assume $\gamma \equiv 2 \pmod{3}$. Take monic and irreducible polynomials $f_1, f_2 \in \mathbb{F}_q[x]$ such that deg $(f_1) = \gamma$, and deg $(f_2) = 1$. Now take as *Y* the normalization of the plane curve with $y^3 = f_1(x)f_2^2(x)$ as its equation. Since deg $(f_1) + 2$. deg $(f_1) \equiv 1 \pmod{3}$, we may apply [13, Proposition VI.3.1]1, and get that *Y* has genus γ . We conclude as in step (a).

(c) Now assume $d \equiv 1, 2 \pmod{3}$. In this case we assumed $r \equiv 1, 2 \pmod{3}$. Hence there is $x \in \{1, 2\}$ such that $d + xr \equiv 0 \pmod{3}$. The first part of the proof gives the existence of a smooth curve *C* of genus *g* defined over \mathbb{F}_q and a *p*-semistable vector bundle *G* on *C* defined over \mathbb{F}_q and with rank(*G*) = *r* and deg(*G*) = d + xr. Take any $L \in \text{Pic}^x(\mathbb{F}_q)$ (Remark 3) and set $E := G \otimes L^*$.

References

- [1] Aranson, J. K., Elman, E., Jacob, B. On indecomposable vector bundles. Comm. Algebra. 1992; 20: 1323-1351.
- [2] Ballet, S., Le Brigand, D. On the existence of non-special divisors of degree g and g 1 in algebraic function fields over \mathbb{F}_{q} . J. Number Theory. 2006; 116(2): 293-310.
- [3] Ballet, S., Ritzenthaler, C., Rolland, R. On the existence of dimension zero divisors in algebraic function fields defined over \mathbb{F}_{q} . Acta Arith. 2010; 143(4): 377-392.
- [4] Hana, G. M., Johnsen, T. Scroll codes. Des. Codes Cryptogr. 2007; 45(3): 365-377.
- [5] Hansen, S. H. Error-correcting codes from higher-dimensional varieties. Finite Fields Appl. 2001; 7: 530-552.
- [6] Hartshorne, R. Ample vector bundles. Publ. Math. I.H.E.S. 1966; 29: 63-94.
- [7] Hirschfeid, J. W. P., Thas, J. A. *General Galois geometries, Oxford Mathematical Monographs, Oxford Science Publications*. New York: The Clarendon Press, Oxford University Press; 1991.
- [8] Johnsen, T., Rasmussen, N. H. Scroll codes over curves of higher genus. Appl. Algebra Engrg. Comm. Comput. 2010; 21: 397-415.
- [9] Miyaoka, Y. The Chern classes and Kodaira dimension of a minimal variety. Ad. Stud. Pure Math. 1984; 10: 449-476.
- [10] Nakashima, T. Codes on Grassmann bundles and related varieties. J. Pure Appl. Algebra. 2005; 199: 235-244.
- [11] Nakashima, T. Error-correcting codes on projective bundles. Finite Fields Appl. 2006; 12: 222-231.
- [12] Ramanan, S., Ramanathan, A. Some remarks on the instability flag. Tohoku Math. J. 1984; 36: 269-291.
- [13] Stichtenoth, H. Algebraic Function Fields and Codes. Springer, Berlin; 1993.