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Abstract: We use split vector bundles on an arbitrary smooth curve defined over q  to get linear codes (following the 
general set-up considered by S. H. Hansen and T. Nakashima), generalizing two quoted results by T. Nakashima. If p ≠ 2 
for all integers d, g ≥ 2, r > 0 such that either r is odd or d is even we prove the existence of a smooth curve C of genus g 
defined over q  and a p-semistable vector bundle E on C such that rank(E) = r, deg(E) = d and E is defined over q . Most 
results for particular curves are obtained taking double coverings or triple coverings of elliptic curves.
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1. Introduction
Fix a prime p and a p-power q. Any subset 1( )k

qS −⊆    spanning 1( )k
q

−   defines an [n, k]-code, n := #S, in the 
following way. For any P S∈  pick a representative k

P qA ∈ . Use these n representatives Ap, P S∈ , and an ordering of S to 
get a k × n matrix with AP, P S∈ , as its columns. This matrix is the generator matrix of a linear code and different choices 
of representatives AP and orderings of S give equivalent linear codes. Hence the only problem for the construction of these 
codes is to get nice sets S and nice embedding 1( )k

qS −→   . In our set-up S will be the set ( )qX   of all q -points of a 
nice projective variety X. The embedding 1: ( )k

qj S −→    is usually obtained in the following way. There is a very ample
line bundle  on X defined over q  such that dim 0( ( ))H k=  and the embedding j is the restriction to S of the embedding 

1: kj X −→   associated with the complete linear system | | . We do not claim that in our construction  will be very 
ample.

Fix a smooth projective curve C of genus g defined over q . Here we follow [5, Remark 4.3] and [10, 11] and use 
vector bundles E on C to get S and the embedding 1( )k

qS −⊂   . We only use vector bundles which are direct sums of line 
bundles. We use the proofs in [10, 11] to prove the following results.

Theorem 1. Let C be a smooth projective curve of genus g defined over q . Set a := #(C( q )). Fix integers r, s, e, t, b1, 
b2 such that r > s > 0, 0 ≤ e < r, q ≥ b1 > 0. Assume

a > b1 (t + e) + b2                                                                                                                  (1)

tb1 + b2 ≥ g                                                                                                                            (2)

Then there are 2( ), ( )( )  ( )( )b
q q qP C L Pic C and R Pic C∈ ∈ ∈    with the following properties. Set E := ( ): ( ) ,e r eE L P L⊕ ⊕ −= ⊕

( ): ( ) ,e r eE L P L⊕ ⊕ −= ⊕  and : ( )X E=  . Then the vector bundle 1 ( )bS E R⊗  induces a line bundle on X and hence a linear code  over q .

The code  is an [n, k, d]-code with 1
2 1

1
( 1) / ( 1), 1 ( ))

1
(r r b en a q q k b g b t

r s
+ −

= − − = + − + +
−

 
 
 

 and

1 2
1 1 2( (1 ) )( ( ) ).r rd q b q a b t e b− −≥ + − − + −

The main point of Theorem 1 is in the case b1 ≥ 2, because if b1 = 1 we are in the set-up of [4, 8] (projective bundles 
over C whose fibers are embedded as a linear subspace of 1k− ), where more efficient tools are available.
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For all integers r > s > 0 set

1

1
( 1)( ) ( ) .
( 1)( ) ( )

r r r s

s s s s

q

q q q q q
q q q q q

r
s

−

−
− − −

=
− − −

 
 
 





We have #( ( , )( )) [ ]q q

r
G r s

s
=  ([7, Th. 24.2.1]).

Theorem 2. Let C be a nonsingular projective curve of genus g defined over q . Set a := #(C( q )). Fix integers r > 
s > 0, t, b, e such that 0 ≤ e < r. Let E be the vector bundle constructed to prove Theorem 1. Let : ( )sGr E Cπ →  be the 
Grassmann bundle of rank s quotient bundles of E. Set Y := Grs(E). Let f be a fiber of π. Let Y (1) the tautological π-ample 
line bundle on Y. Set

( ) ( )
1: ( (1) ) ( (1) ), : ( (1) ) .r s s r s s

Y Y YN stf bf N stf f− −= − ⋅ + = − ⋅   

Assume

1/a N N>                                                                                                                               (3)

st + b > g                                                                                                                              (4)

Then there is a line bundle L1,b on Y numerically equivalent to Y (1) + bf, defined over q  and giving an [n, k, d]-linear 
code on Y such that

1

1 ( )
, ( ), ( / ).

1
q

r r s srn a k rt e b d a N N
s s

q

r r
q

s s
− −

= ⋅ = + + ≥ −
−

 
 
 

   
−         

 

The case b1 = 1 of Theorem 1 is just the case s = r - 1 and b2 = b of Theorem 2.
If e > 0 some parameters of Theorem 1 (resp. Theorem 2) are worst than the ones in [11, Theorem 3.1] (resp. [10, 

Theorem 3.2]) (roughly speaking, we take t instead of ( ) eE t
r

µ = + ). However, Theorems 1 and Theorem 2 have two key 
features.

Remark 1. To use [10, 11] in the case g ≥ 2 one needs a p-semistable vector bundle with prescribed rank and degree 
on a curve of genus g and everything must be defined over q . If e = 0, then this is easy (Remark 4). In all the other cases, 
this was unknown (as far as we know). See Theorem 3 for construction on certain curves when p ≠ 2 and either the degree 
is even or the rank is odd. See Theorem 4 for the case in which either d ≡ 0 (mod 3) or r ≡ 1, 2 (mod 3). Even more difficult 
(and more important for the applications) should be the construction of explicit p-semistable vector bundles on explicit 
curves. It is easy to find line bundles L, R as above on an arbitrary C with ( ) ØqC ≠  and for a huge number of other C, L, 
R we only need to require an inequality slightly stronger than (2) or (4). Theorems 3 and 4 give explicit curves and explicit 
vector bundles.

Remark 2. If g ≥ 3 the assumption b1(t + e) + b2 ≥ g is better than the assumption 1 2( ) 2 2et b b g
r

+ + > −  made in [11, 
Theorem 3.1] and this is not a small issue for the following reason. This assumption (or an assumption μ(E)b1 + b2 ≥ g - 1 
instead of μ(E)b1 + b2 > 2g - 2 as in [11, Theorem 3.1]) is essential for the computation of the parameter k of the code : if 

1
1 2 2 1

1
( ) 1, then 1 ( ) 0.

1
( )r be eb t b g b g b t

rr s
+ −

+ + < − + − + +


 −


<
 

 If (1) is not satisfied, then the lower bound for d given 

in Theorem 1 is negative. Hence if (1) is not satisfied, then we may still have an [n, k]-code, but no information on its 
minimum distance. Combining (1) and (2) (or (3) and (4)) we get a very strong restriction on a = #C( q ), which often 
conflicts with the Hasse-Weil bound, unless 1q tb . Hence going from 2g - 2 to g seems to be a good improvement.

Let C be a smooth projective curve defined over a field with characteristic p. Let E be a vector bundle on C. Let F : C 
→ C be the Frobenius map. We recall that E is p-semistable if all pullbacks ( ), ,mF E m∗ ∈  are semistable ([10]).
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Theorem 3. Assume p ≠ 2. Fix integers g, r, d such that g ≥ 2 and either d is even or r is odd. Then there are a smooth 
and projective curve C of genus g defined over and a p-semistable vector bundle E on C such that rank(E) = r, deg(E) = d 
and E is defined over q .

We may take as C a double covering h : C → W with h defined over q  and W a suitable elliptic curve (see the proof 
of Theorem 3).

Theorem 4. Assume p ≠ 2 and p ≠ 3. Fix integers g, r, d such that g ≥ 5, g ≠ 6 and either d ≡ 0 (mod 3) or r ≡ 1, 2 (mod 
3). Then there are a smooth projective curve C of genus g defined over q  and a p-semistable vector bundle E on C defined 
over q  such that rank(E) = r and deg(E) = d.

In the statement of Theorem 4 we may take as C an explicitly constructed triple covering of an elliptic curve.

2. The proofs
Remark 3. Let C be a smooth projective curve defined over q . For any integer d there is a degree d line bundle on C 

defined over q  ([13, Corollary V.1.1.11]).
Remark 4. Fix a smooth curve C of genus g and integers r, d such d ≡ 0 (mod r). We claim the existence of a 

p-semistable vector bundle on C( q ). Fix any /Pic ( )( )d r
qL C∈   (Remark 3) and take : rE L⊕= .For an alternative approach, 

see [11, Remark 2.1].
To compute cohomology groups of vector bundles on C using Serre duality we will silently (i.e. referring to the proofs 

in [10, 11]) use the following observation.
Remark 5. Let E1, E2 be vector bundles on a scheme Y. For every integer n > 0 we have 1 2 0 1 2( ) ( ) ( )n n i n i

iS E E S E S E−
=⊕ = ⊕ ⊗ 

1 2 0 1 2( ) ( ) ( )n n i n i
iS E E S E S E−
=⊕ = ⊕ ⊗  ([6, p.66]). Hence ( ) ( )n nS E S E∗ ∗≅  if E is isomorphic to a direct sum of line bundles. Let C be a smooth 

projective curve of genus g defined over a field with characteristic p. Fix an integer n > 0, a p-semistable vector bundle E 
on Y and , Pic( )R M C∈ . Since E is p-semistable, Sn(E) is semistable ([12, Theorem 3.23]). Hence ( )  and ( )n nS E S E R∗ ∗ ∗⊗  
are semistable. Hence 0 ( , ( ) ) 0 if ( ( ) ) 0, i.e.n nh C S E R S E Rµ∗ ∗ ∗ ∗⊗ = ⊗ <  if ( ) deg( ) 0.n E Rµ− ⋅ − <  Hence Serre duality 
gives 1( , ( ) ) 0 if ( ) deg( ) 2 2.nh C S E M n E M gµ⊗ = ⋅ + > −

Lemma 1. Assume C( q ) ≠ 0. Fix integers t > 0, b1 > 0 and b2 such that tb1 + b2 ≥ g. Fix any Pic( )( )qL C∈   such that 
deg(L) = t. Then there is 2 11Pic ( )( )   ( , ) 0.b b

qR C such that h C L R⊗∈ ⊗ =
Proof. Since tb1 + b2 ≥ g, there is 1 2Pic ( )( )tb b

qM C+∈   such that h1(C, M) = 0 ([2, 3]). Take 1: ) .( bR M L ⊗∗= ⊗
Notation 1. Let C be a smooth curve defined over q  such that ( ) ØqC ≠ . Fix integers t, r > 2 and e such that 0 < e < 

r. Our family of vector bundles with rank r and degree rt + e are of the form 1 rE L L= ⊕ ⊕  with 1Pic ( )( )t
i qL C+∈   if 1 

≤ i ≤ e and Pic ( )( )t
i qL C∈   if e < i < r. To get Theorems 1 and 2 we fix R and L as in Lemma 1 (with b1 = s and b2 = b for 

Theorem 2) and take Li = L(P) if 1 ≤ i ≤ e and Li = L if e + 1 ≤ i ≤ r.
Lemma 2. Fix a smooth curve C and r, e, Li, E as in Notation 1. Set : ( )X E=   and let (1)X  the associated relatively 

ample tautological line bundle. Call u : X → C the ruling. Fix β ∈ and any Pic( ).M C∈  Set y := deg(M). If t + βy ≥ 0, 
the (1) ( )X u Mβ ∗+  is nef.

Proof. Fix an integral curve T X⊂ . It is sufficient to prove the inequality ( (1) ( )) 0XT u Mβ ∗⋅ + ≥  for every integral 
curve T X⊂ . Fix an integral curve  and  such that .T X γ γ β⊂ ∈ >  It is sufficient to prove that ( (1) ) 0,XT yfγ⋅ + ≥  
where f is a fiber of u : X → C. We may assume γ ≠ 0. Write γ = a/b with , ,a b∈  b > 0, and (a, b) = 1. To prove the 
latter inequality we first prove the existence of an integer c > 0 such that the line bundle ( ) ( )ca

X cb u M∗ ⊗⊗  is spanned. 
Notice that ( )b aS E M ⊗⊗  is a direct sum of line bundles of degree at least tb + ay > 0. Hence for all integers c ≥ 2g + 1 
the vector bundle ( )cb caS E M ⊗⊗  is a direct sum of very ample line bundles. This is true also for .cb caE M⊗ ⊗⊗  We have 

( ( ) ( )) ( ) .ca cb ca
Xu cb u M S E M∗ ⊗

∗ ⊗ ≅ ⊗  Hence 0 0( , ( ) ( )) ( , ( ) ).ca cb cb
XH X cb u M H C S E M∗ ⊗⊗ ≅ ⊗  Hence ( ) ( )ca

X cb u M∗ ⊗⊗
( ) ( )ca

X cb u M∗ ⊗⊗  has many sections. The same computation shows that cb caE M⊗ ⊗⊗  is spanned. By the definition of 
(1)X  there is a surjection ( ) (1).Xu E∗ →  Since the tensor product is a right exact functor, we get a surjection 

( ) ( ) ( ).cb ca ca
Xu E M cb u M∗ ⊗ ⊗ ∗ ⊗⊗ → ⊗  Hence ( ) ( )ca

X cb u M∗ ⊗⊗  is spanned for all c ≥ 2g + 1. Hence ( (1) ) 0.XT yfγ⋅ + ≥  
( (1) ) 0.XT yfγ⋅ + ≥

Proof of Theorem 1. Fix , Pic( )( )qL R C∈   such that deg(L) = t, deg(R)= b2 and 11( , ) 0bh C L R⊗ ⊗ =  (Lemma 1). Set 
( ): ( )  and : ( ).e r eE L P L X E⊕ ⊕ −= ⊕ =   Let u : X → C be the associated fibration. Let f be the numerical equivalence class of 

a fiber of u. As a line bundle  on X we take the line bundle 1( ) ( ).X b u R∗⊗  Lemma 2 gives that : (1)XH tf= −  is nef. We 
have 1 1

1 2 1 2 1 2 1 2( ( ) ) ( ( 1) ) (deg( ) ( 1) ) ( ) .r r r
XH b b f b H r H f b b E r t b b t e b− −⋅ + = − − ⋅ + = − − + = + +  Hence the proof of [11, 

Theorem 3.1] gives the lower bound for the minimum distance. We do not claim that the line bundle 1( ) ( )X b u R∗⊗  on X 
is very ample. Thus in our set-up S cannot be seen as a subset of 1( ).k

q
−   But still, the code has the prescribed parameters, 
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even if a priori some of its columns may coincide. To get the very ampleness of 1( ) ( )X b u R∗⊗  we would need to assume 
too much (e.g. b2 + tb1 ≥ 2g + 1).

Lemma 3. Fix C, t, r and ( ): ( ) e r eE L P L⊕ ⊕ −= ⊕  as in Notation 1 and Y, π, (1)Y , f as in Theorem 2 with : ( ).Y E=   Let 
Hs be any line bundle on Y numerically equivalent to (1)Y  - (st) f. Then Hs is nef.

Proof. Set : ( ( ))sZ E= ∧  and let π : Z → C the associated fibration. Call f the numerical class of a fiber of π and 
(1)Z  the tautological relatively ample line bundle of Z. Let :Y Zφ →  denote relative Plücker embedding. We have 
(1) ( (1)).Y Zφ∗≅   Notice that ( )s E∧  is a direct sum of line bundles isomorphic to ( )sL xP⊗  for some integer x such that 0 

≤ x ≤ s. Applying Lemma 2 to the split vector bundle ( )s E∧  we get that the numerical class of the line bundle (1)Z  - stf is 
nef. The restriction of a nef line bundle J of Z to any subvariety T of Z is nef , because to test that J is nef we also need to 
test the curves contained in T. Since ( (1) ),s ZH stfφ∗= −  we get that Hs is nef.

Proof of Theorem 2. Take L, R as in the proof of Theorem 1 and set ( ): ( ) .e r eE L P L⊕ ⊕ −= ⊕  Set 1, : (1) ( ).b YL Rπ∗= ⊗  
We have 0 0

1,( , ) ( , ( ) ( )).s
bH Y L H C E Mπ∗≅ ∧ ⊗  Hence here (as in [10]) to get the value of k of the linear code  associated 

to Li,b (and not just a lower bound for it) it is equivalent to prove 1( , ( ) ) 0.sh C E R∧ ⊗ =  In our set up it is sufficient to have L, 
R such that 1( , ) 0.sh C L R⊗ ⊗ =  Apply Lemma 1 with bi := s. Apply verbatim the proof of [10, Theorem 3.2] taking the line 

bundle Hs (which is nef by Lemma 3), instead of the nef line bundle H numerically equivalent to (1) ( ) .Y
es t f
s

− +

Lemma 4. Let W be an elliptic curve defined over q , q ≠ 2. Fix an integer d > 0. Then there are ( )( )d
qR Pic W∈   and 

D R∈  such that D is reduced and defined over q .
Proof. If d = 1, then we may take : ( )WR O=  with O the unity of the group W. Hence we may assume d ≥ 2. By the 

Hasse-Weil bound there is ( )dqQ W∈   not contained in ( )xqW   for any integer x ≥ 1 dividing d and x ≠ d. Take as D the 

orbit in W of Q by the action of the Galois group of the extension /  and set : ( ).d q Wq R D= 
Proof of Theorem 3. First assume d even. Let W be any smooth elliptic curve defined over q  and such that Pic0(W) 

has no point of order 2. Any such curve W has an affine equation y2 = P(x) with P(x) a degree 3 polynomial over q  with 
no multiple root over q  and with no root in q  (and the converse holds). Let F be any semistable vector bundle on W 
with rank r and degree d/2; F exists by [1]. The vector bundle F is p-semistable ([11], Corollary 3.1). Hence for any 
smooth curve C and any degree 2 morphism h : C → W the vector bundle h*(F) is p-semistable ([9, Proposition 5.1]) and 
rank(h*(F)) = r, deg(h*(F)) = d. Thus it is sufficient to find C and f as above and defined over q . Here we use p ≠ 2. Any 
such pair (C, h) as above with C of genus g is constructed in the following way. Fix 1Pic ( )( ).g

qM W−∈   Assume the 
existence of a reduced divisor 2D M ⊗∈  and D defined over q . The pair (M, D) defines a degree 2 Galois covering h : 
C → W with D as its branch locus and C sitting in the total space ( ) of M M∗ ∗  as an effective divisor with a quadratic 
equation. By Lemma 4 there is a reduced divisor D of degree 2g - 2 defined over q . Hence 2 2( ) Pic ( )( ).g

W qD W−∈   
Since Pic0(W) has no point of order 2, the map 2 1 2 2 from Pic ( )( ) into Pic ( )( )g g

q qL L W W⊗ − −
    is injective. Since 

1 2 2#(Pic ( )( )) #(Pic ( )( )),g g
q qW W− −=   this map is surjective. Hence there is 1Pic ( )( )g

qM W−∈   such that 2 ( ).WM D⊗ ≅
Now assume that both d and r are odd. Hence d + r is even. Take C as above such that there is a p-semistable 

vector bundle G on C defined over q  with rank r and degree d + r. Fix 1Pic ( )( )qM C∈   (Remark 3). The vector bundle 
:E G M ∗= ⊗  is p-semistable, defined over q , rank(E) = r and deg(E) = d.

Proof of Theorem 4. First assume d ≡ 0 (mod 3). If g is odd, then set γ := (g - 5)/2. If g is even and g ≠ 6, then set γ := (g 
- 8)/2.

(a) Here we assume γ ≡ 0,1 (mod 3). Fix an irreducible and monic [ ]qf x∈  such that deg( f ) = γ + 1. Let Y be the 
normalization of the plane curve with y3 = f (x) as its equation. By [13, Proposition VI.3.1] Y is a smooth curve of genus 
γ defined over q . Y is equipped with a degree 3 morphism 1:h Y →   defined over q  and ramified exactly at the point at 
infinity and at the roots of f in q . All the roots of f are conjugate for the Galois group of the extension 1 / .qqγ +   Since q 
≥ 5, there is 6 and q qS S ′⊆ ⊆   such that #S = 4, #S' = 6, S' is invariant by the action of the Galois group of the extension 

6 / qq   and S' contains no root of f. Let 1:Wπ →   be the degree 2 covering ramified exactly at S. Both W and π are 
defined over q . Let 1:Wϖ ′→   be a degree 3 covering ramified ramified only at S' and with ramification of minimal order 
at each point of S'. Since p > 3, W' is an elliptic curve. We may find W' and ϖ  defined over q . First assume g odd. Let X 
be the fiber product of h and π. Since the branch loci of h and π are disjoint, X is a smooth curve equipped with a degree 
3 morphism h1 : X → W and a degree 2 morphism π1 : X → Y ramified at 12 point. Hence applying the Riemann-Hurwitz 
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formula to π1 we get that X has genus 2γ - 1 + 6 = g. Let F be a rank r and degree d/3 p-semistable vector bundle on W. 
We saw in the proof of Theorem 3 that 1 ( )h F∗  is p-semistable. Now assume g even and g ≠ 6. Let X1 be the fiber product 
of h and ϖ .Since the branch loci of h and ϖ  are disjoint, X1 is a smooth curve. The curve X1 is equipped with a degree 3 
morphism h2 : X1 → W' and a degree 3 morphism 1 1: ,X Yϖ →  both defined over q . Since 1ϖ  is ramified at exactly 18 
points and with ordinary ramification there, X1 has genus 2γ - 1 + 9 = g. Use h2 as above to get the p-semistable vector 
bundle on X1.

(b) Now assume γ ≡ 2 (mod 3). Take monic and irreducible polynomials 1 2, [ ]qf f x∈  such that deg( f1) = γ, and
deg( f2) = 1. Now take as Y the normalization of the plane curve with 3 2

1 2( ) ( )y f x f x=  as its equation. Since deg( f1) + 2. 
deg( f1) ≡ 1 (mod 3), we may apply [13, Proposition VI.3.1]1, and get that Y has genus γ. We conclude as in step (a).

(c) Now assume d ≡ 1, 2 (mod 3). In this case we assumed r ≡ 1, 2 (mod 3). Hence there is {1,2}x∈  such that d + xr ≡ 
0 (mod 3). The first part of the proof gives the existence of a smooth curve C of genus g defined over q  and a p-semistable 
vector bundle G on C defined over q  and with rank(G) = r and deg(G) = d + xr. Take any Pic ( )x

qL∈   (Remark 3) and set 
: .E G L∗= ⊗
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