UNIVERSAL WISER
PUBLISHER

Linear Codes Obtained from Projective and Grassmann Bundles on Curves

E. Ballico

Department of Mathematics, University of Trento, 38123 Povo (TN), Italy
Email: ballico@science.unitn.it

Abstract

We use split vector bundles on an arbitrary smooth curve defined over \mathbb{F}_{q} to get linear codes (following the general set-up considered by S. H. Hansen and T. Nakashima), generalizing two quoted results by T. Nakashima. If $p \neq 2$ for all integers $d, g \geq 2, r>0$ such that either r is odd or d is even we prove the existence of a smooth curve C of genus g defined over \mathbb{F}_{q} and a p-semistable vector bundle E on C such that $\operatorname{rank}(E)=r, \operatorname{deg}(E)=d$ and E is defined over \mathbb{F}_{q}. Most results for particular curves are obtained taking double coverings or triple coverings of elliptic curves.

Keywords: vector bundles on curves, linear code, projective bundle, Grassmann code, p-semistable vector bundle

1. Introduction

Fix a prime p and a p-power q. Any subset $S \subseteq \mathbb{P}^{k-1}\left(\mathbb{F}_{q}\right)$ spanning $\mathbb{P}^{k-1}\left(\mathbb{F}_{q}\right)$ defines an $[n, k]$-code, $n:=\# S$, in the following way. For any $P \in S$ pick a representative $A_{P} \in \mathbb{F}_{q}^{k}$. Use these n representatives $A p, P \in S$, and an ordering of S to get a $k \times n$ matrix with $A_{P}, P \in S$, as its columns. This matrix is the generator matrix of a linear code and different choices of representatives A_{P} and orderings of S give equivalent linear codes. Hence the only problem for the construction of these codes is to get nice sets S and nice embedding $S \rightarrow \mathbb{P}^{k-1}\left(\mathbb{F}_{q}\right)$. In our set-up S will be the set $X\left(\mathbb{F}_{q}\right)$ of all \mathbb{F}_{q}-points of a nice projective variety X. The embedding $j: S \rightarrow \mathbb{P}^{k-1}\left(\mathbb{F}_{q}\right)$ is usually obtained in the following way. There is a very ample line bundle \mathcal{L} on X defined over \mathbb{F}_{q} such that $\operatorname{dim}\left(H^{0}(\mathcal{L})\right)=k$ and the embedding j is the restriction to S of the embedding $j_{\mathcal{L}}: X \rightarrow \mathbb{P}^{k-1}$ associated with the complete linear system $|\mathcal{L}|$. We do not claim that in our construction \mathcal{L} will be very ample.

Fix a smooth projective curve C of genus g defined over \mathbb{F}_{q}. Here we follow [5, Remark 4.3] and [10, 11] and use vector bundles E on C to get S and the embedding $S \subset \mathbb{P}^{k-1}\left(\mathbb{F}_{q}\right)$. We only use vector bundles which are direct sums of line bundles. We use the proofs in $[10,11]$ to prove the following results.

Theorem 1. Let C be a smooth projective curve of genus g defined over \mathbb{F}_{q}. Set $a:=\#\left(C\left(\mathbb{F}_{q}\right)\right)$. Fix integers r, s, e, t, b_{1}, b_{2} such that $r>s>0,0 \leq e<r, q \geq b_{1}>0$. Assume

$$
\begin{align*}
& a>b_{1}(t+e)+b_{2} \tag{1}\\
& t b_{1}+b_{2} \geq g \tag{2}
\end{align*}
$$

Then there are $P \in C\left(\mathbb{F}_{q}\right), L \in \operatorname{Pic}(C)\left(\mathbb{F}_{q}\right)$ and $R \in \operatorname{Pic}^{b_{2}}(C)\left(\mathbb{F}_{q}\right)$ with the following properties. Set $E:=L(P)^{\oplus e} \oplus$ $L^{\oplus(r-e)}$, and $X:=\mathbb{P}(E)$. Then the vector bundle $S^{b_{1}}(E) \otimes R$ induces a line bundle on X and hence a linear code \mathcal{C} over \mathbb{F}_{q}. The code \mathcal{C} is an $[n, k, d]$-code with $n=a\left(q^{r}-1\right) /(q-1), k=\binom{r+b_{1}-1}{r-1}\left(b_{2}+1-g+b_{1}\left(t+\frac{e}{s}\right)\right)$ and

$$
d \geq\left(q^{r-1}+\left(1-b_{1}\right) q^{r-2}\right)\left(a-b_{1}(t+e)-b_{2}\right) .
$$

The main point of Theorem 1 is in the case $b_{1} \geq 2$, because if $b_{1}=1$ we are in the set-up of [4, 8] (projective bundles over C whose fibers are embedded as a linear subspace of \mathbb{P}^{k-1}), where more efficient tools are available.

For all integers $r>s>0$ set

$$
\left[\begin{array}{l}
r \\
S
\end{array}\right]_{q}=\frac{\left(q^{r}-1\right)\left(q^{r}-q\right) \cdots\left(q^{r}-q^{s-1}\right)}{\left(q^{s}-1\right)\left(q^{s}-q\right) \cdots\left(q^{s}-q^{s-1}\right)} .
$$

We have $\#\left(G(r, s)\left(\mathbb{F}_{q}\right)\right)=\left[{ }_{s}^{r}\right]_{q}([7$, Th. 24.2.1] $)$.
Theorem 2. Let C be a nonsingular projective curve of genus g defined over \mathbb{F}_{q}. Set $a:=\#\left(C\left(\mathbb{F}_{q}\right)\right)$. Fix integers $r>$ $s>0, t, b, e$ such that $0 \leq e<r$. Let E be the vector bundle constructed to prove Theorem 1. Let $\pi: G r_{s}(E) \rightarrow C$ be the Grassmann bundle of rank s quotient bundles of E. Set $Y:=G r_{s}(E)$. Let f be a fiber of π. Let $\mathcal{O}_{Y}(1)$ the tautological π-ample line bundle on Y. Set

$$
\tilde{N}:=\left(\mathcal{O}_{Y}(1)-s t f\right)^{(r-s) s} \cdot\left(\mathcal{O}_{Y}(1)+b f\right), \tilde{N}_{1}:=\left(\mathcal{O}_{Y}(1)-s t f\right)^{(r-s) s} \cdot f .
$$

Assume

$$
\begin{align*}
& a>\tilde{N} / \tilde{N}_{1} \tag{3}\\
& s t+b>g \tag{4}
\end{align*}
$$

Then there is a line bundle $L_{1, b}$ on Y numerically equivalent to $\mathcal{O}_{Y}(1)+b f$, defined over \mathbb{F}_{q} and giving an $[n, k, d]$-linear code on Y such that

$$
n=a \cdot\left[\begin{array}{l}
r \\
s
\end{array}\right]_{q}, k=\binom{r-1}{s-1}\left(r t+e+\frac{r}{s} b\right), d \geq\left(\left[\begin{array}{l}
r \\
s
\end{array}\right]_{q}-q^{(r-s) s}\right)\left(a-\tilde{N} / \tilde{N}_{1}\right)
$$

The case $b_{1}=1$ of Theorem 1 is just the case $s=r-1$ and $b_{2}=b$ of Theorem 2.
If $e>0$ some parameters of Theorem 1 (resp. Theorem 2) are worst than the ones in [11, Theorem 3.1] (resp. [10, Theorem 3.2]) (roughly speaking, we take t instead of $\mu(E)=t+\frac{e}{r}$). However, Theorems 1 and Theorem 2 have two key features.

Remark 1. To use $[10,11]$ in the case $g \geq 2$ one needs a p-semistable vector bundle with prescribed rank and degree on a curve of genus g and everything must be defined over \mathbb{F}_{q}. If $e=0$, then this is easy (Remark 4). In all the other cases, this was unknown (as far as we know). See Theorem 3 for construction on certain curves when $p \neq 2$ and either the degree is even or the rank is odd. See Theorem 4 for the case in which either $d \equiv 0(\bmod 3)$ or $r \equiv 1,2(\bmod 3)$. Even more difficult (and more important for the applications) should be the construction of explicit p-semistable vector bundles on explicit curves. It is easy to find line bundles L, R as above on an arbitrary C with $C\left(\mathbb{F}_{q}\right) \neq \varnothing$ and for a huge number of other C, L, R we only need to require an inequality slightly stronger than (2) or (4). Theorems 3 and 4 give explicit curves and explicit vector bundles.

Remark 2. If $g \geq 3$ the assumption $b_{1}(t+e)+b_{2} \geq g$ is better than the assumption $\left(t+\frac{e}{r}\right) b_{1}+b_{2}>2 g-2$ made in [11, Theorem 3.1] and this is not a small issue for the following reason. This assumption (or an assumption $\mu(E) b_{1}+b_{2} \geq g-1$ instead of $\mu(E) b_{1}+b_{2}>2 \mathrm{~g}-2$ as in [11, Theorem 3.1]) is essential for the computation of the parameter k of the code \mathcal{C} : if $b_{1}\left(t+\frac{e}{r}\right)+b_{2}<g-1$, then $\binom{r+b_{1}-1}{r-1}\left(b_{2}+1-g+b_{1}\left(t+\frac{e}{s}\right)\right)<0$. If (1) is not satisfied, then the lower bound for d given in Theorem 1 is negative. Hence if (1) is not satisfied, then we may still have an $[n, k]$-code, but no information on its minimum distance. Combining (1) and (2) (or (3) and (4)) we get a very strong restriction on $a=\# C\left(\mathbb{F}_{q}\right)$, which often conflicts with the Hasse-Weil bound, unless $q \gg t b_{1}$. Hence going from $2 g-2$ to g seems to be a good improvement.

Let C be a smooth projective curve defined over a field with characteristic p. Let E be a vector bundle on C. Let $F: \mathrm{C}$ $\rightarrow C$ be the Frobenius map. We recall that E is p-semistable if all pullbacks $F^{m^{*}}(E), m \in \mathbb{N}$, are semistable ([10]).

Theorem 3. Assume $p \neq 2$. Fix integers g, r, d such that $g \geq 2$ and either d is even or r is odd. Then there are a smooth and projective curve C of genus g defined over and $a p$-semistable vector bundle E on C such that $\operatorname{rank}(E)=r, \operatorname{deg}(E)=d$ and E is defined over \mathbb{F}_{q}.

We may take as C a double covering $h: C \rightarrow W$ with h defined over \mathbb{F}_{q} and W a suitable elliptic curve (see the proof of Theorem 3).

Theorem 4. Assume $p \neq 2$ and $p \neq 3$. Fix integers g, r, d such that $g \geq 5, g \neq 6$ and either $d \equiv 0(\bmod 3)$ or $r \equiv 1,2(\bmod$ 3). Then there are a smooth projective curve C of genus g defined over \mathbb{F}_{q} and a p-semistable vector bundle E on C defined over \mathbb{F}_{q} such that $\operatorname{rank}(E)=r$ and $\operatorname{deg}(E)=d$.

In the statement of Theorem 4 we may take as C an explicitly constructed triple covering of an elliptic curve.

2. The proofs

Remark 3. Let C be a smooth projective curve defined over \mathbb{F}_{q}. For any integer d there is a degree d line bundle on C defined over $\mathbb{F}_{q}([13$, Corollary V.1.1.11]).

Remark 4. Fix a smooth curve C of genus g and integers r, d such $d \equiv 0(\bmod r)$. We claim the existence of a p-semistable vector bundle on $C\left(\mathbb{F}_{q}\right)$. Fix any $L \in \operatorname{Pic}^{d / r}(C)\left(\mathbb{F}_{q}\right)$ (Remark 3) and take $E:=L^{\oplus r}$.For an alternative approach, see [11, Remark 2.1].

To compute cohomology groups of vector bundles on C using Serre duality we will silently (i.e. referring to the proofs in $[10,11])$ use the following observation.

Remark 5. Let E_{1}, E_{2} be vector bundles on a scheme Y. For every integer $n>0$ we have $S^{n}\left(E_{1} \oplus E_{2}\right)=\oplus_{i=0}^{n} S^{i}\left(E_{1}\right) \otimes$ $S^{n-i}\left(E_{2}\right)\left(\left[6\right.\right.$, p.66]). Hence $S^{n}\left(E^{*}\right) \cong S^{n}(E)^{*}$ if E is isomorphic to a direct sum of line bundles. Let C be a smooth projective curve of genus g defined over a field with characteristic p. Fix an integer $n>0$, a p-semistable vector bundle E on Y and $R, M \in \operatorname{Pic}(C)$. Since E is p-semistable, $S^{n}(E)$ is semistable ([12, Theorem 3.23]). Hence $S^{n}(E)^{*}$ and $S^{n}(E)^{*} \otimes R^{*}$ are semistable. Hence $h^{0}\left(C, S^{n}(E)^{*} \otimes R^{*}\right)=0$ if $\mu\left(S^{n}(E)^{*} \otimes R^{*}\right)<0$, i.e. if $-n \cdot \mu(E)-\operatorname{deg}(R)<0$. Hence Serre duality gives $h^{1}\left(C, S^{n}(E) \otimes M\right)=0$ if $n \cdot \mu(E)+\operatorname{deg}(M)>2 g-2$.

Lemma 1. Assume $C\left(\mathbb{F}_{q}\right) \neq 0$. Fix integers $t>0, b_{1}>0$ and b_{2} such that $t b_{1}+b_{2} \geq g$. Fix any $L \in \operatorname{Pic}(C)\left(\mathbb{F}_{q}\right)$ such that $\operatorname{deg}(L)=t$. Then there is $R \in \operatorname{Pic}^{b_{2}}(C)\left(\mathbb{F}_{q}\right)$ such that $h^{1}\left(C, L^{\otimes b_{1}} \otimes R\right)=0$.

Proof. Since $t b_{1}+b_{2} \geq g$, there is $M \in \operatorname{Pic}^{t b_{1}+b_{2}}(C)\left(\mathbb{F}_{q}\right)$ such that $h^{1}(C, M)=0([2,3])$. Take $R:=M \otimes\left(L^{*}\right)^{\otimes b_{1}}$.
Notation 1. Let C be a smooth curve defined over \mathbb{F}_{q} such that $C\left(\mathbb{F}_{q}\right) \neq \varnothing$. Fix integers $t, r>2$ and e such that $0<e<$ r. Our family of vector bundles with rank r and degree $r t+e$ are of the form $E=L_{1} \oplus \cdots \oplus L_{r}$ with $L_{i} \in \operatorname{Pic}^{t+1}(C)\left(\mathbb{F}_{q}\right)$ if 1 $\leq i \leq e$ and $L_{i} \in \operatorname{Pic}^{t}(C)\left(\mathbb{F}_{q}\right)$ if $e<i<r$. To get Theorems 1 and 2 we fix R and L as in Lemma 1 (with $b_{1}=s$ and $b_{2}=b$ for Theorem 2) and take $L_{i}=L(P)$ if $1 \leq i \leq e$ and $L_{i}=L$ if $e+1 \leq i \leq r$.

Lemma 2. Fix a smooth curve C and r, e, L_{i}, E as in Notation 1 . Set $X:=\mathbb{P}(E)$ and let $\mathcal{O}_{X}(1)$ the associated relatively ample tautological line bundle. Call $u: X \rightarrow C$ the ruling. Fix $\beta \in \mathbb{Q}$ and any $M \in \operatorname{Pic}(C)$. Set $y:=\operatorname{deg}(M)$. If $t+\beta y \geq 0$, the $\mathcal{O}_{X}(1)+\beta u^{*}(M)$ is nef.

Proof. Fix an integral curve $T \subset X$. It is sufficient to prove the inequality $T \cdot\left(\mathcal{O}_{X}(1)+\beta u^{*}(M)\right) \geq 0$ for every integral curve $T \subset X$. Fix an integral curve $T \subset X$ and $\gamma \in \mathbb{Q}$ such that $\gamma>\beta$. It is sufficient to prove that $T \cdot\left(\mathcal{O}_{X}(1)+\gamma y f\right) \geq 0$, where f is a fiber of $u: X \rightarrow C$. We may assume $\Gamma \neq 0$. Write $\Gamma=a / b$ with $a, b \in \mathbb{Z}, b>0$, and $(a, b)=1$. To prove the latter inequality we first prove the existence of an integer $c>0$ such that the line bundle $\mathcal{O}_{X}(c b) \otimes u^{*}\left(M^{\otimes c a}\right)$ is spanned. Notice that $S^{b}(E) \otimes M^{\otimes a}$ is a direct sum of line bundles of degree at least $t b+a y>0$. Hence for all integers $c \geq 2 g+1$ the vector bundle $S^{c b}(E) \otimes M^{\otimes c a}$ is a direct sum of very ample line bundles. This is true also for $E^{\otimes c b} \otimes M^{\otimes c a}$. We have $u_{*}\left(\mathcal{O}_{X}(c b) \otimes u^{*}\left(M^{\otimes c a}\right)\right) \cong S^{c b}(E) \otimes M^{c a}$. Hence $H^{0}\left(X, \mathcal{O}_{X}(c b) \otimes u^{*}\left(M^{\otimes c a}\right)\right) \cong H^{0}\left(C, S^{c b}(E) \otimes M^{c b}\right)$. Hence $\mathcal{O}_{X}(c b) \otimes$ $u^{*}\left(M^{\otimes c a}\right)$ has many sections. The same computation shows that $E^{\otimes c b} \otimes M^{\otimes c a}$ is spanned. By the definition of $\mathcal{O}_{X}(1)$ there is a surjection $u^{*}(E) \rightarrow \mathcal{O}_{X}(1)$. Since the tensor product is a right exact functor, we get a surjection $u^{*}\left(E^{\otimes c b} \otimes M^{\otimes c a}\right) \rightarrow \mathcal{O}_{X}(c b) \otimes u^{*}\left(M^{\otimes c a}\right)$. Hence $\mathcal{O}_{X}(c b) \otimes u^{*}\left(M^{\otimes c a}\right)$ is spanned for all $c \geq 2 g+1$. Hence $T \cdot\left(\mathcal{O}_{X}(1)+\right.$ $\gamma y f) \geq 0$.

Proof of Theorem 1. Fix $L, R \in \operatorname{Pic}(C)\left(\mathbb{F}_{q}\right)$ such that $\operatorname{deg}(L)=t, \operatorname{deg}(R)=b_{2}$ and $h^{1}\left(C, L^{\otimes b_{1}} \otimes R\right)=0$ (Lemma 1). Set $E:=L(P)^{\oplus e} \oplus L^{\oplus(r-e)}$ and $X:=\mathbb{P}(E)$. Let $u: X \rightarrow C$ be the associated fibration. Let f be the numerical equivalence class of a fiber of u. As a line bundle \mathcal{L} on X we take the line bundle $\mathcal{O}_{X}\left(b_{1}\right) \otimes u^{*}(R)$. Lemma 2 gives that $H:=\mathcal{O}_{X}(1)-t f$ is nef. We have $H^{r-1} \cdot\left(\mathcal{O}_{X}\left(b_{1}\right)+b_{2} f\right)=b_{1}\left(H^{r}-(r-1) H^{r-1} \cdot f\right)+b_{2}=b_{1}(\operatorname{deg}(E)-(r-1) t)+b_{2}=b_{1}(t+e)+b_{2}$. Hence the proof of [11, Theorem 3.1] gives the lower bound for the minimum distance. We do not claim that the line bundle $\mathcal{O}_{X}\left(b_{1}\right) \otimes u^{*}(R)$ on X is very ample. Thus in our set-up S cannot be seen as a subset of $\mathbb{P}^{k-1}\left(\mathbb{F}_{q}\right)$. But still, the code has the prescribed parameters,
even if a priori some of its columns may coincide. To get the very ampleness of $\mathcal{O}_{X}\left(b_{1}\right) \otimes u^{*}(R)$ we would need to assume too much (e.g. $b_{2}+t b_{1} \geq 2 g+1$).

Lemma 3. Fix C, t, r and $E:=L(P)^{\oplus e} \oplus L^{\oplus(r-e)}$ as in Notation 1 and $Y, \pi, \mathcal{O}_{Y}(1), f$ as in Theorem 2 with $Y:=\mathbb{P}(E)$. Let H_{s} be any line bundle on Y numerically equivalent to $\mathcal{O}_{Y}(1)-(s t) f$. Then H_{s} is nef.

Proof. Set $Z:=\mathbb{P}\left(\wedge^{s}(E)\right)$ and let $\pi: Z \rightarrow C$ the associated fibration. Call f the numerical class of a fiber of π and $\mathcal{O}_{Z}(1)$ the tautological relatively ample line bundle of Z. Let $\phi: Y \rightarrow Z$ denote relative Plücker embedding. We have $\mathcal{O}_{Y}(1) \cong \phi^{*}\left(\mathcal{O}_{Z}(1)\right)$. Notice that $\wedge^{s}(E)$ is a direct sum of line bundles isomorphic to $L^{\otimes s}(x P)$ for some integer x such that 0 $\leq x \leq s$. Applying Lemma 2 to the split vector bundle $\wedge^{s}(E)$ we get that the numerical class of the line bundle $\mathcal{O}_{Z}(1)-s t f$ is nef. The restriction of a nef line bundle J of Z to any subvariety T of Z is nef, because to test that J is nef we also need to test the curves contained in T. Since $H_{s}=\phi^{*}\left(\mathcal{O}_{Z}(1)-s t f\right)$, we get that H_{s} is nef.

Proof of Theorem 2. Take L, R as in the proof of Theorem 1 and set $E:=L(P)^{\oplus e} \oplus L^{\oplus(r-e)}$. Set $L_{1, b}:=\mathcal{O}_{Y}(1) \otimes \pi^{*}(R)$. We have $H^{0}\left(Y, L_{1, b}\right) \cong H^{0}\left(C, \wedge^{s}(E) \otimes \pi^{*}(M)\right.$). Hence here (as in [10]) to get the value of k of the linear code \mathcal{C} associated to $L_{i, b}$ (and not just a lower bound for it) it is equivalent to prove $h^{1}\left(C, \wedge^{s}(E) \otimes R\right)=0$. In our set up it is sufficient to have L, R such that $h^{1}\left(C, L^{\otimes s} \otimes R\right)=0$. Apply Lemma 1 with $b i:=s$. Apply verbatim the proof of [10, Theorem 3.2] taking the line bundle H_{s} (which is nef by Lemma 3), instead of the nef line bundle H numerically equivalent to $\mathcal{O}_{Y}(1)-s\left(t+\frac{e}{s}\right) f$.

Lemma 4. Let W be an elliptic curve defined over $\mathbb{F}_{q}, q \neq 2$. Fix an integer $d>0$. Then there are $R \in \operatorname{Pic}{ }^{d}(W)\left(\mathbb{F}_{q}\right)$ and $D \in|R|$ such that D is reduced and defined over \mathbb{F}_{q}.

Proof. If $d=1$, then we may take $R:=\mathcal{O}_{W}(O)$ with O the unity of the group W. Hence we may assume $d \geq 2$. By the Hasse-Weil bound there is $Q \in W\left(\mathbb{F}_{q^{d}}\right)$ not contained in $W\left(\mathbb{F}_{q^{x}}\right)$ for any integer $x \geq 1$ dividing d and $x \neq d$. Take as D the orbit in W of Q by the action of the Galois group of the extension $\mathbb{F}_{q^{d}} / \mathbb{F}_{q}$ and set $R:=\mathcal{O}_{W}(D)$.

Proof of Theorem 3. First assume d even. Let W be any smooth elliptic curve defined over \mathbb{F}_{q} and such that $\operatorname{Pic}^{0}(W)$ has no point of order 2. Any such curve W has an affine equation $y^{2}=P(x)$ with $P(x)$ a degree 3 polynomial over \mathbb{F}_{q} with no multiple root over \mathbb{F}_{q} and with no root in $\overline{\mathbb{F}}_{q}$ (and the converse holds). Let F be any semistable vector bundle on W with rank r and degree $d / 2 ; F$ exists by [1]. The vector bundle F is p-semistable ([11], Corollary 3.1). Hence for any smooth curve C and any degree 2 morphism $h: C \rightarrow W$ the vector bundle $h^{*}(F)$ is p-semistable ([9, Proposition 5.1]) and $\operatorname{rank}\left(h^{*}(F)\right)=r, \operatorname{deg}\left(h^{*}(F)\right)=d$. Thus it is sufficient to find C and f as above and defined over \mathbb{F}_{q}. Here we use $p \neq 2$. Any such pair (C, h) as above with C of genus g is constructed in the following way. Fix $M \in \operatorname{Pic}^{g-1}(W)\left(\mathbb{F}_{q}\right)$. Assume the existence of a reduced divisor $D \in\left|M^{\otimes 2}\right|$ and D defined over \mathbb{F}_{q}. The pair (M, D) defines a degree 2 Galois covering h : $C \rightarrow W$ with D as its branch locus and C sitting in the total space $\mathbb{V}\left(M^{*}\right)$ of M^{*} as an effective divisor with a quadratic equation. By Lemma 4 there is a reduced divisor D of degree $2 g-2$ defined over \mathbb{F}_{q}. Hence $\mathcal{O}_{W}(D) \in \operatorname{Pic}^{2 g-2}(W)\left(\mathbb{F}_{q}\right)$. Since $\operatorname{Pic}^{0}(W)$ has no point of order 2, the map $L \mapsto L^{\otimes 2}$ from $\operatorname{Pic}^{g-1}(W)\left(\mathbb{F}_{q}\right)$ into $\operatorname{Pic}^{2 g-2}(W)\left(\mathbb{F}_{q}\right)$ is injective. Since $\#\left(\operatorname{Pic}^{g-1}(W)\left(\mathbb{F}_{q}\right)\right)=\#\left(\operatorname{Pic}^{2 g-2}(W)\left(\mathbb{F}_{q}\right)\right)$, this map is surjective. Hence there is $M \in \operatorname{Pic}^{g-1}(W)\left(\mathbb{F}_{q}\right)$ such that $M^{\otimes 2} \cong \mathcal{O}_{W}(D)$.

Now assume that both d and r are odd. Hence $d+r$ is even. Take C as above such that there is a p-semistable vector bundle G on C defined over \mathbb{F}_{q} with rank r and degree $d+r$. Fix $M \in \operatorname{Pic}^{1}(C)\left(\mathbb{F}_{q}\right)$ (Remark 3). The vector bundle $E:=G \otimes M^{*}$ is p-semistable, defined over $\mathbb{F}_{q}, \operatorname{rank}(E)=r$ and $\operatorname{deg}(E)=d$.

Proof of Theorem 4. First assume $d \equiv 0(\bmod 3)$. If g is odd, then set $\gamma:=(g-5) / 2$. If g is even and $g \neq 6$, then set $\gamma:=(g$ - 8)/2.
(a) Here we assume $\gamma \equiv 0,1(\bmod 3)$. Fix an irreducible and monic $f \in \mathbb{F}_{q}[x]$ such that $\operatorname{deg}(f)=\gamma+1$. Let Y be the normalization of the plane curve with $y^{3}=f(x)$ as its equation. By [13, Proposition VI.3.1] Y is a smooth curve of genus γ defined over $\mathbb{F}_{q^{*}} Y$ is equipped with a degree 3 morphism $h: Y \rightarrow \mathbb{P}^{1}$ defined over \mathbb{F}_{q} and ramified exactly at the point at infinity and at the roots of f in $\overline{\mathbb{F}}_{q}$. All the roots of f are conjugate for the Galois group of the extension $\mathbb{F}_{q^{\gamma+1}} / \mathbb{F}_{q}$. Since q ≥ 5, there is $S \subseteq \mathbb{F}_{q}$ and $S^{\prime} \subseteq \mathbb{F}_{q^{6}}$ such that $\# S=4, \# S^{\prime}=6, S^{\prime}$ is invariant by the action of the Galois group of the extension $\mathbb{F}_{q^{6}} / \mathbb{F}_{q}$ and S^{\prime} contains no root of f. Let $\pi: W \rightarrow \mathbb{P}^{1}$ be the degree 2 covering ramified exactly at S. Both W and π are defined over \mathbb{F}_{q}. Let $\varpi: W^{\prime} \rightarrow \mathbb{P}^{1}$ be a degree 3 covering ramified ramified only at S^{\prime} and with ramification of minimal order at each point of S^{\prime}. Since $p>3, W^{\prime}$ is an elliptic curve. We may find W^{\prime} and ϖ defined over \mathbb{F}_{q}. First assume g odd. Let X be the fiber product of h and π. Since the branch loci of h and π are disjoint, X is a smooth curve equipped with a degree 3 morphism $h_{1}: X \rightarrow W$ and a degree 2 morphism $\pi_{1}: X \rightarrow Y$ ramified at 12 point. Hence applying the Riemann-Hurwitz
formula to π_{1} we get that X has genus $2 \gamma-1+6=g$. Let F be a rank r and degree $d / 3 p$-semistable vector bundle on W. We saw in the proof of Theorem 3 that $h_{1}^{*}(F)$ is p-semistable. Now assume g even and $g \neq 6$. Let X_{1} be the fiber product of h and ϖ.Since the branch loci of h and ϖ are disjoint, X_{1} is a smooth curve. The curve X_{1} is equipped with a degree 3 morphism $h_{2}: X_{1} \rightarrow W^{\prime}$ and a degree 3 morphism $\varpi_{1}: X_{1} \rightarrow Y$, both defined over \mathbb{F}_{q}. Since ϖ_{1} is ramified at exactly 18 points and with ordinary ramification there, X_{1} has genus $2 \gamma-1+9=g$. Use h_{2} as above to get the p-semistable vector bundle on X_{1}.
(b) Now assume $\gamma \equiv 2(\bmod 3)$. Take monic and irreducible polynomials $f_{1}, f_{2} \in \mathbb{F}_{q}[x]$ such that $\operatorname{deg}\left(f_{1}\right)=\gamma$, and $\operatorname{deg}\left(f_{2}\right)=1$. Now take as Y the normalization of the plane curve with $y^{3}=f_{1}(x) f_{2}^{2}(x)$ as its equation. Since $\operatorname{deg}\left(f_{1}\right)+2$. $\operatorname{deg}\left(f_{1}\right) \equiv 1(\bmod 3)$, we may apply [13, Proposition VI.3.1]1, and get that Y has genus γ. We conclude as in step (a).
(c) Now assume $d \equiv 1,2(\bmod 3)$. In this case we assumed $r \equiv 1,2(\bmod 3)$. Hence there is $x \in\{1,2\}$ such that $d+x r \equiv$ $0(\bmod 3)$. The first part of the proof gives the existence of a smooth curve C of genus g defined over \mathbb{F}_{q} and a p-semistable vector bundle G on C defined over \mathbb{F}_{q} and with $\operatorname{rank}(G)=r$ and $\operatorname{deg}(G)=d+x r$. Take any $L \in \operatorname{Pic}^{x}\left(\mathbb{F}_{q}\right)($ Remark 3$)$ and set $E:=G \otimes L^{*}$.

References

[1] Aranson, J. K., Elman, E., Jacob, B. On indecomposable vector bundles. Comm. Algebra. 1992; 20: 1323-1351.
[2] Ballet, S., Le Brigand, D. On the existence of non-special divisors of degree g and $g-1$ in algebraic function fields over $\mathbb{F}_{q} . J$. Number Theory. 2006; 116(2): 293-310.
[3] Ballet, S., Ritzenthaler, C., Rolland, R. On the existence of dimension zero divisors in algebraic function fields defined over \mathbb{F}_{q}. Acta Arith. 2010; 143(4): 377-392.
[4] Hana, G. M., Johnsen, T. Scroll codes. Des. Codes Cryptogr. 2007; 45(3): 365-377.
[5] Hansen, S. H. Error-correcting codes from higher-dimensional varieties. Finite Fields Appl. 2001; 7: 530-552.
[6] Hartshorne, R. Ample vector bundles. Publ. Math. I.H.E.S. 1966; 29: 63-94.
[7] Hirschfeid, J. W. P., Thas, J. A. General Galois geometries, Oxford Mathematical Monographs, Oxford Science Publications. New York: The Clarendon Press, Oxford University Press; 1991.
[8] Johnsen, T., Rasmussen, N. H. Scroll codes over curves of higher genus. Appl. Algebra Engrg. Comm. Comput. 2010; 21: 397-415.
[9] Miyaoka, Y. The Chern classes and Kodaira dimension of a minimal variety. Ad. Stud. Pure Math. 1984; 10: 449-476.
[10] Nakashima, T. Codes on Grassmann bundles and related varieties. J. Pure Appl. Algebra. 2005; 199: 235-244.
[11] Nakashima, T. Error-correcting codes on projective bundles. Finite Fields Appl. 2006; 12: 222-231.
[12] Ramanan, S., Ramanathan, A. Some remarks on the instability flag. Tohoku Math. J. 1984; 36: 269-291.
[13] Stichtenoth, H. Algebraic Function Fields and Codes. Springer, Berlin; 1993.

