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Abstract: This paper delves into the Dunkl-Bessel operator on Rd+1
+ and its corresponding harmonic analysis. A

generalized form of Heisenberg-type uncertainty inequality is established. Schatten-von Neumann properties for the two-
wavelet multiplier within the Dunkl-Bessel theory framework are elucidated. Additionally, the trace formula for a two-
wavelet Dunkl-Bessel multiplier is proven as a bounded linear operator in the trace class from L2

k, β (R
d+1
+ ) into L2

k, β (R
d+1
+ ).

Furthermore, subject to appropriate conditions, the Lp
k, β boundedness and compactness of these Dunkl-Bessel two-wavelet

multipliers are proven, applicable to Lp
k, β (R

d+1
+ ), 1 ≤ p ≤ ∞. Finally, using a class of concentration operators for the

Dunkl-Bessel two-wavelet, we show that the eigenfunctions of the Dunkl-Bessel two-wavelet are maximally concentrated
in the time-frequency domain. Leveraging this result, we derive approximation inequalities for functions that exhibit
significant concentration within specific regions of the time-frequency plane.
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1. Introduction
The term “localization operators” was first introduced by Daubechies in 1988 [1], utilized as a mathematical tool

to localize signals on the time-frequency plane. These operators are also referred to as Toeplitz operators or short-time
Fourier transformmultipliers. Operators that localize in both time and frequency domains hold significance across various
applications in optics and signal analysis, serving as amathematical framework for defining function restrictions to specific
regions in the time-frequency plane.

Extensive research on localization operators has been conducted, notably by Slepian and Pollak in a series of
excellent papers [2], with further contributions from Landau and Pollak [3, 4], as well as Slepian [5, 6]. Consequently,
wavelet multiplier operators can be considered as a variant of localization operators. Subsequently, the theory of wavelet
multipliers has been initiated by He and Wong in [7], developed in the paper [8] by Du and Wong, and detailed in the
book [9] by Wong. Next, this subject has been extended for the generalized Fourier transforms (see [10–15] and others).
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In classical scenarios, quantitative uncertainty principles, which are special inequalities, provide insights into the
relationship between a function and its Fourier transform. These principles draw parallels to the classical Heisenberg
inequality, which has played a significant role in advancing quantum physics. Numerous authors have investigated
quantitative uncertainty principles for various Fourier transforms, including examples from literature [16–23]).

The Dunkl-Bessel transform is an important tool which has the scope of and potential for applications in many areas
of the mathematical sciences. Very recently, many authors have been investigating the behavior of the Dunkl-Bessel
transform to several problems already studied for the Fourier transform; for instance, men value theorem [24], uncertainty
principles [25, 26], Dunkl-Bessel Gabor transform [27], Sobolev spaces of exponential type [28], Dunk-Bessel wavelet
transform [29], time-frequency analysis [30] and so on. We mention that the Dunkl-Bessel transform generalize the
usual Fourier transform, the Weinstein transform [17, 31–33] and the multi-variables Bessel transform [34], which give
an impact for any subject studied in the Dunkl-Bessel setting.

The first focus of this paper is to extend the study of uncertainty principles for the Dunkl-Bessel transform by
comparing different measures of localization. Specifically, we concentrate on uncertainty principles where concentration
is assessed in terms of dispersion or the smallest support. Furthermore, we aim to expose and study the two-wavelet
multipliers in the setting of the Dunkl-Bessel transform.

The second aim of this paper is to prove results on the Lp-boundedness and the Lp-compactness of the two-wavelet
multipliers associated with the Dunkl-Bessel transform.

The third aim is to construct and study an example of generalized two-wavelet multipliers. Indeed, we prove that
the generalized two-wavelet multiplier is unitary equivalent to a scalar multiple of the generalized Landau-Pollak-Slepian
Operator.

The fourth aim is to give some applications on the generalized two-wavelet multipliers. In fact, in the first application
we use the ε-localization measure introduced in [35] to state a new uncertainty inequality involving the generalized two-
wavelet multiplier. More precisely, we present a proof of an uncertainty principle of Donoho-Stark type which involve in
a new way generalized two-wavelet multipliers, the concept of ε-concentration and the standard deviation of L2 functions.
We show how our results improve the classical Donoho-Stark estimate.

The second application, on the fundamental example constructed, is the study of some spectral problems. In particular,
we prove that a signal which is almost time and almost bandlimited can be approximated by its projection on the span
of the first eigenfunctions of the phase space restriction operator (special case of the generalized Landau-Pollak-Slepian
operator), corresponding to the largest eigenvalues which are close to one.

We recall that, the time-limited functions and bandlimited functions are basic tools of signal and image processing.
Unfortunately, the simplest form of the uncertainty principle tells us that a signal cannot be simultaneously time and
bandlimited. This leads to the investigation of the set of almost time and almost bandlimited functions, which was initially
carried by Landau, Pollak [4, 36] and then by Donoho, Stark [37].

The structure of this paper is as follow:
In Section 2, we recall the main results about the harmonic analysis associated with the Dunkl-Bessel theory.

In Section 3, we obtain new uncertainty inequalities by means of local uncertainty principles for functions either in
L2

k, β (R
d+1
+ ) or in L1

k, β (R
d+1
+ )∩ L2

k, β (R
d+1
+ ). In Section 4, we introduce and we study the two-wavelet multipliers in

the setting of the Dunkl-Bessel transform. More precisely, the Schatten-von Neumann properties of these two-wavelet
multipliers are established, and for trace class generalized two-wavelet multipliers, the traces and the trace class norm
inequalities are presented. Next, we investigate the Lp-boundedness and compactness of these two-wavelet multipliers,
when suitable conditions on the symbols and two admissible wavelets are satisfied. In the last section, firstly we introduce
the generalized Landau-Pollak-Slepian operator. We give the link between this operator and the generalized two-wavelet
multipliers. As applications we prove the Donoho-Stark uncertainty principle for the Dunkl-Bessel transform, next we
study some spectral problems associated for the generalized Landau-Pollak-Slepian operator. More precisely, we use the
compositions of time and bandlimiting operators and consider the eigenvalue problem associated with these operators.
The resulting operators yield an orthonormal set of eigenfunctions (well-known as prolate spheroidal functions in the
Euclidean Analysis) which satisfy some optimality in concentration in a region in the time-frequency domain. We prove
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a characterization of functions that are approximately time and bandlimited in the region of interest, and we obtain
approximation inequalities for such functions using a finite linear combination of eigenfunctions.

2. Preliminaries
In this section we recall some basic results in the Dunkl theory, harmonic analysis associated with the Dunkl-Bessel

Laplace operator and Schatten-von Neumann classes. Main references are [24, 38–40].

2.1 The Dunkl operators
Let Rd , be the Euclidean space equipped with a scalar product 〈, 〉 and let ||x||=

√
〈x, x〉. For α in Rd\{0}, let σα

be the reflection in the hyperplane Hα ⊂ Rd orthogonal to α , i.e. for x ∈ Rd ,

σα(x) = x−2
〈α, x〉
||α||2

α.

A finite set R ⊂ Rd\{0} is called a root system if R∩R α = {α, −α} and σα R = R for all α ∈ R. For a given
root system R reflections σα , α ∈ R, generate a finite group W ⊂ O(d − 1), called the reflection group associated with
R. We fix a β ∈ Rd\

⋃
α∈R

Hα and define a positive root system R+ =
{

α ∈ R: 〈α, β 〉 > 0
}
. We normalize each α ∈ R+

as 〈α, α〉 = 2. A function k: R −→ C on R is called a multiplicity function if it is invariant under the action of W . We
introduce the index γ as

γ = γ(k) = ∑
α∈R+

k(α).

Throughout this paper, we will assume that k(α)≥ 0 for all α ∈ R. We denote by ωk the weight function onRd given
by

ωk(x) = ∏
α∈R+

|〈α, x〉|2k(α),

which is invariant and homogeneous of degree 2γ .
The Dunkl operators Tj, j = 1, 2, . . . , d, on Rd associated with the positive root system R+ and the multiplicity

function k are given by

Tj f (x) =
∂ f
∂x j

(x)+ ∑
α∈R+

k(α)α j
f (x)− f (σα(x))

〈α, x〉
, f ∈C1(Rd).

We define the Dunkl-Laplace operator4k on Rd for f of class C2 on Rd by

4k f (x) =
d

∑
j=1

T 2
j f (x) =4 f (x)+2 ∑

α∈R+

k(α)
( 〈∇ f (x), α〉

〈α, x〉
− f (x)− f (σα(x))

〈α, x〉2

)
,
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where 4 and ∇ are the usual Euclidean Laplacian and nabla operators on Rd respectively. Then for each y ∈ Rd , the
system

Tju(x, y) = y ju(x, y), j = 1, ..., d,

u(0, y) = 1

admits a unique analytic solution K(x, y), x ∈ Rd , called the Dunkl kernel.

2.2 Harmonic analysis associated with the Dunkl-Bessel Laplace operator

In this subsection we collect some notations and results on the Dunkl-Bessel kernel, the Dunkl-Bessel transform, and
the Dunkl-Bessel convolution. (cf. [24]).

In the following we denote by

Rd+1
+ = Rd × [0, ∞).

x = (x1, ..., xd , xd+1) = (x′, xd+1) ∈ Rd+1
+ .

χU the characteristic function of the measurable subset U .
C∗(Rd+1) the space of continuous functions on Rd+1, even with respect to the last variable.
Cp
∗ (Rd+1) the space of functions of class Cp on Rd+1, even with respect to the last variable.

E∗(Rd+1) the space of C∞-functions on Rd+1, even with respect to the last variable.
S∗(Rd+1) the Schwartz space of rapidly decreasing functions on Rd+1, even with respect to the last variable.
D∗(Rd+1) the space of C∞-functions on Rd+1 which are of compact support, even with respect to the last variable.
We consider the Dunkl-Bessel Laplace operator4k, β defined by ∀x = (x′, xd+1) ∈ Rd × [0, ∞),

4k, β f (x) =4k, x′ f (x′, xd+1)+Lβ , xd+1
f (x′, xd+1), f ∈C2

∗(Rd+1), (1)

where4k is the Dunkl-Laplace operator on Rd , and Lβ the Bessel operator on [0, ∞) given by

Lβ =
d2

dx2
d+1

+
2β +1
xd+1

d
dxd+1

, β >−1
2
.

The Dunkl-Bessel kernel Λ is given by

Λk, β (x, z) = K(ix′, z′) jβ (xd+1zd+1), (x, z) ∈ Rd+1
+ ×Cd+1, (2)

whereK(ix′, z′) is the Dunkl kernel and jβ (xd+1zd+1) is the normalized Bessel function. The Dunkl-Bessel kernel satisfies
the following properties:

i) For all z, t ∈ Cd+1, we have
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Λk, β (z, t) = Λk, β (t, z); Λk, β (z, 0) = 1 and Λk, β (λ z, t) = Λk, β (z, λ t), for all λ ∈ C. (3)

ii) For all ν ∈ Nd+1, x ∈ Rd+1
+ and z ∈ Cd+1, we have

|Dν
z Λk, β (x, z)| ≤ ||x|||ν | exp(||x|| ||Imz||), (4)

where Dν
z = ∂ ν

∂ z
ν1
1 ...∂ z

νd+1
d+1

and |ν |= ν1 + ...+νd+1. In particular

|Λk, β (x, y)| ≤ 1, forall x, y ∈ Rd+1
+ . (5)

We denote by Lp
k, β (R

d+1
+ ) the space of measurable functions on Rd+1

+ such that

|| f ||Lp
k, β

=
(∫

Rd+1
+

| f (x)|pdµk, β (x)
) 1

p
< ∞, if 1 ≤ p < ∞,

|| f ||L∞
k, β

= ess sup
x∈Rd+1

+

| f (x)|< ∞,

where dµk, β is the measure on Rd+1
+ given by

dµk, β (x
′, xd+1) =

1
mk, β

ωk(x′)x
2β+1
d+1 dx′dxd+1.

Here

mk, β =
∫
Rd+1

e−
||x||2

2 ωk(x′)x
2β+1
d+1 dx′dxd+1. (6)

For p = 2, we provide this space with the scalar product

〈 f , g〉L2
k, β

: =
∫
Rd+1
+

f (x)g(x)dµk, β (x).

The Dunkl-Bessel transform is given for f in L1
k, β (R

d+1
+ ) by

Fk, β ( f )(y) =
∫
Rd+1
+

f (x)Λk, β (−x, y)dµk, β (x), forall y = (y′, yd+1) ∈ Rd+1
+ . (7)

i) For f in L1
k, β (R

d+1
+ ),
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||Fk, β ( f )||L∞
k, β

≤ || f ||L1
k, β

. (8)

ii) For all f in L1
k, β (R

d+1
+ ), if Fk, β ( f ) belongs to L1

k, β (R
d+1
+ ), then

f (y) =
∫
Rd+1
+

Fk, β ( f )(x)Λk, β (x, y)dµk, β (x). a.e. (9)

iii) The Dunkl-Bessel transform Fk, β provides a natural generalization of the usual Fourier transform, to which it
reduces in the case k = 0 and β =− 1

2 , and if f (x) = F(||x||) is a radial function on Rd+1, then

∀y ∈ Rd+1, Fk, β ( f )(y) = F
γ+β+ d

2
β (F)(||y||), (10)

where the transform F
γ+β+ d

2
β is the Bessel transform given by

∀λ ≥ 0, F
γ+β+ d

2
β g(λ ) =

1

2γ+β+ d
2 Γ(γ +β + d+2

2 )

∫ ∞

0
g(r) jγ+β+ d

2
(λ r)r2γ+2β+d+1dr. (11)

iv) For f ∈ S∗(Rd+1), if we define

Fk, β ( f )(y) = Fk, β ( f )(−y),

then

Fk, β Fk, β = Fk, β Fk, β = Id.

v) Let λ > 0. The dilation operator Dλ , is defined by

Dλ f (x) =
1

λ Ad
γ, β

f (
x
λ
),

where Ad
γ, β = γ +β +1+ d

2 . This operator satisfies

Fk, β Dλ = D 1
λ
Fk, β . (12)

Proposition 1 i) Plancherel’s formula. The Dunkl-Bessel transform Fk, β is a topological isomorphism from
S∗(Rd+1) onto itself and for all f in S∗(Rd+1),
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∫
Rd+1
+

| f (x)|2dµk, β (x) =
∫
Rd+1
+

|Fk, β ( f )(ξ )|2dµk, β (ξ ). (13)

ii) In particular, The Dunkl-Bessel transform f → Fk, β ( f ) can be uniquely extended to an isometric isomorphism
on L2

k, β (R
d+1
+ ).

iii) Parseval’s formula. For all f , g ∈ L2
k, β (R

d+1
+ ), we have

∫
Rd+1
+

f (x)g(x)dµk, β (x) =
∫
Rd+1
+

Fk, β ( f )(ξ )Fk, β (g)(ξ )dµk, β (ξ ). (14)

By using the Dunkl-Bessel kernel, we introduce a generalized translation and a convolution structure. For a function
f ∈ S∗(Rd+1) and y ∈ Rd+1

+ the Dunkl-Bessel translation τk, β
y f is defined by the following relation:

Fk, β (τk, β
y f )(x) = Λk, β (x, y)Fk, β ( f )(x). (15)

By using the Dunkl-Bessel translation, we define the Dunkl-Bessel convolution product f ∗k, β g of functions f , g ∈
S∗(Rd+1) as follows:

f ∗k, β g(x) =
∫
Rd+1
+

τk, β
x f (−y)g(y)dµk, β (y). (16)

This convolution is commutative and associative and satisfies the following :
Proposition 2 i) For all f , g ∈ S∗(Rd+1

+ ), f ∗k, β g belongs to S∗(Rd+1
+ ) and

∀y ∈ Rd+1
+ , Fk, β ( f ∗k, β g)(y) = Fk, β ( f )(y)Fk, β (g)(y). (17)

ii) Let 1 ≤ p, q, r ≤ ∞ such that 1
p +

1
q −

1
r = 1. If f ∈ Lp

k, β (R
d+1
+ ) and g ∈ Lq

k, β (R
d+1
+ ) is radial, then f ∗k, β g ∈

Lr
k, β (R

d+1
+ ) and

∥∥ f ∗k, β g
∥∥

Lr
k, β

≤ ‖ f‖Lp
k, β

‖g‖Lq
k, β

. (18)

iii) Moreover, for f , g in L2
k, β (R

d+1
+ ), the function f ∗k, β g belongs to L2

k, β (R
d+1
+ ) if and only if the function

Fk, β ( f )Fk, β (g) belongs to L2
k, β (R

d) and (17) holds.

2.3 Schatten-von Neumann classes

Notations. We denote by
• lp(N) the set of all infinite sequences of real (or complex) numbers x: = (x j) j∈N, such that
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||x||p: =
( ∞

∑
j=1

|x j|p
) 1

p
< ∞, if 1 ≤ p < ∞,

||x||∞: = sup
j∈N

|x j|< ∞.

For p = 2, we provide this space l2(N) with the scalar product

〈x, y〉2: =
∞

∑
j=1

x jy j.

• B(L2
k, β (R

d+1
+ )) the space of bounded operators from L2

k, β (R
d+1
+ ) into itself.

Definition 1 (i) The singular values (sn(A))n∈N of a compact operator A in B(L2
k, β (R

d+1
+ )) are the eigenvalues of

the positive self-adjoint operator |A|=
√

A∗A.
(ii) For 1 ≤ p < ∞, the Schatten class Sp is the space of all compact operators whose singular values lie in lp(N).

The space Sp is equipped with the norm

||A||Sp : =
( ∞

∑
n=1

(sn(A))p
) 1

p
. (19)

Remark 1 We note that the space S2 is the space of Hilbert-Schmidt operators, and S1 is the space of trace class
operators.

Definition 2 The trace of an operator A in S1 is defined by

tr(A) =
∞

∑
n=1

〈Avn, vn〉L2
k, β

(20)

where (vn)n is any orthonormal basis of L2
k, β (R

d+1
+ ).

Remark 2 If A is positive, then

tr(A) = ||A||S1 . (21)

Moreover, a compact operator A on the Hilbert space L2
k, β (R

d+1
+ ) is Hilbert-Schmidt, if the positive operator A∗A is

in the space of trace class S1. Then

||A||2HS: = ||A||2S2
= ||A∗A||S1 = tr(A∗A) =

∞

∑
n=1

||Avn||2L2
k, β

< ∞ (22)

for any orthonormal basis (vn)n of L2
k, β (R

d+1
+ ).
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Definition 3 We define S∞: = B(L2
k, β (R

d+1
+ )), equipped with the norm,

||A||S∞ : = sup
v∈L2

k, β : ||v||L2
k, β

=1
||Av||L2

k, β
. (23)

3. Uncertainty principles by means of the frequency limiting operator
Let define firstly, for σ ∈ L∞

k, β (R
d+1
+ ), the linear operator Mσ : L2

k, β (R
d+1
+ )→ L2

k, β (R
d+1
+ ) by

Mσ ( f ) = F−1
k, β (σFk, β ( f )). (24)

This operator is called the Dunkl-Bessel multiplier. Involving Plancherel’s formula (13), we deduce that Mσ is
bounded with

||Mσ ||S∞ ≤ ||σ ||L∞
k, β

.

Notice that, ifσ is a characteristic function (σ = χA), thenwewriteMA instead ofMσ . The operatorMA: L2
k, β (R

d+1
+ )→

L2
k, β (R

d+1
+ ), is a self-adjoint projection, which is known as the frequency limiting operator on L2

k, β (R
d+1
+ ) and has many

applications in time-frequency analysis.
We would like to find non-zero functions f ∈ L2

k, β (R
d+1
+ ), which are time-limited on a subset S ⊂ Rd+1

+ (i.e. f ⊂ S)
and bandlimited on a subset Σ⊂Rd+1

+ (i.e.Fk, β f ⊂ Σ), for sets S and Σwith finite measure. Unfortunately, such functions
do not exist, because if f is time and bandlimited on subsets of finite measure, then f = 0 (see [19]). As a result, it is natural
to replace the exact support by the essential support, and to focus on functions that are essentially time and bandlimited
to a bounded region like S×Σ in the time-frequency plane. To do this, we define the time limiting operator

ES f = χS f , f ∈ L1
k, β (R

d+1
+ )∪L2

k, β (R
d+1
+ ).

We recall the following notions.
Definition 4 Let 0 ≤ ε < 1 and let S, Σ ⊂ Rd+1

+ . Then
1. a nonzero function f ∈ L2

k, β (R
d+1
+ ) is ε-concentrated on S if ‖ESc f‖L2

k, β
≤ ε‖ f‖L2

k, β
,

2. a nonzero function f ∈ L1
k, β (R

d+1
+ ) is ε-timelimited on S if ‖ESc f‖L1

k, β
≤ ε‖ f‖L1

k, β
,

3. a nonzero function f ∈ L2
k, β (R

d+1
+ ) is ε-bandlimited on Σ if ‖MΣc f‖L2

k, β
≤ ε‖ f‖L2

k, β
,

4. a nonzero function f ∈ L2
k, β (R

d+1
+ ) is ε-localized with respect to an operator

L: L2
k, β (R

d+1
+ )→ L2

k, β (R
d+1
+ )

if

‖L f − f‖L2
k, β

≤ ε‖ f‖L2
k, β

.
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Here Ac = Rd+1
+ \A is the complement of A in Rd+1

+ . It is clear that, if f is ε-bandlimited on Σ then by Inequality
(13), Fk, β f is ε-concentrated on Σ and we recall that, the time limiting operator, ES: L2

k, β (R
d+1
+ ) → L2

k, β (R
d+1
+ ) is a

self-adjoint projection.
Let ε1, ε2 ∈ (0, 1) and let S, Σ two measurable subsets of Rd+1

+ such that

0 < µk, β (S): =
∫

S
dµk, β (t), µk, β (Σ): =

∫
Σ

dµk, β (t)< ∞,

We denote by L2
k, β (ε1, ε2, S, Σ) the subspace of L2

k, β (R
d+1
+ ) consisting of functions that are ε1-concentrated on S

and ε2-bandlimited on Σ (clearly L2
k, β (0, 0, S, Σ) = /0). We denote also by L1

k, β ∩ L2
k, β (ε1, ε2, S, Σ) the subspace of

L1
k, β (R

d+1
+ )∩L2

k, β (R
d+1
+ ) consisting of functions that are ε1-timelimited on S and ε2-bandlimited on Σ. And if ε1 = ε2,

we denote by L2
k, β (ε, S, Σ) insteed of L2

k, β (ε, ε, S, Σ).
In the next subsection, we will use local uncertainty principles to obtain new uncertainty inequalities.

3.1 Uncertainty principles on the space L2
k, β(ε1,ε2,S,Σ)

The first known result for functions in L2
k, β (ε1, ε2, S, Σ) is the following Donoho-Stark type uncertainty principle,

see [19, Inequality (3.4)].
Theorem 1 Let ε1, ε2 ∈ (0, 1) such that ε2

1 + ε2
2 < 1. Then if f ∈ L2

k, β (ε1, ε2, S, Σ) we have

µk, β (S)µk, β (Σ)≥
(

1−
√

ε2
1 + ε2

2

)2

. (25)

In the case of the usual Fourier transform,the last inequality has been proven by to Donoho and Stark [37]. Inequality
(25) implies that the essential support of f and Fk, β f can’t be too small.

Now, recall the following Faris-local uncertainty inequalities, see [19].
Theorem 2
1. If 0 < s < Ad

γ, β , then there exists C > 0 such that for every f ∈ L2
k, β (R

d+1
+ ) and all measurable subset Σ ⊂ Rd+1

+

of finite measure 0 < µk, β (Σ)< ∞,

‖MΣ f‖2
L2

k, β
≤C

(
µk, β (Σ)

) s
Ad

γ, β ‖|x|s f‖2
L2

k, β
. (26)

2. If s > Ad
γ, β , then there exists a positive constant C such that for all f ∈ L2

k, β (R
d+1
+ ) and all measurable subset

Σ ⊂ Rd+1
+ of finite measure 0 < µk, β (Σ)< ∞,

‖MΣ f‖2
L2

k, β
≤C µk, β (Σ)‖ f‖2−

2Ad
γ, β
s

L2
k, β

‖|x|s f‖
2Ad

γ, β
s

L2
k, β

. (27)

Next, take s = Ad
γ, β . Then, if we apply the first inequality (26) with Ad

γ, β (1− ε), ε ∈ (0, 1), replacing s and then
apply the following classical inequality
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‖|x|A
d
γ, β−Ad

γ, β ε f‖L2
k, β

≤C‖ f‖ε
L2

k, β

∥∥∥|x|Ad
γ, β f

∥∥∥1−ε

L2
k, β

, (28)

we obtain for all ε ∈ (0, 1),

‖MΣ f‖2
L2

k, β
≤C

(
µk, β (Σ)

)1−ε ‖ f‖2ε
L2

k, β
‖|x|A

d
γ, β f‖2−2ε

L2
k, β

. (29)

Consequently we deduce the following first corollary comparing the support of Fk, β ( f ) and the generalized time
dispersion ‖|x|s f‖L2

k, β
for function in the range of MΣ:

Im(MΣ) = { f ∈ L2
k, β (R

d+1
+ ) : Fk, β ( f )⊂ Σ}.

Corollary 1 Let s > 0. Then there exists C > 0 such that for every f ∈ Im(MΣ),

µk, β
(
Fk, β ( f )

)
‖|x|s f‖

2Ad
γ, β
s

L2
k, β

≥C‖ f‖
2Ad

γ, β
s

L2
k, β

. (30)

Proof. Let s > 0 and f ∈ Im(MΣ). Then f = MΣ f , and we apply (26), (27), (29) to obtain the desired result.
Notice that, if µk, β

(
Fk, β ( f )

)
is finite, then µk, β ( f ) is infinite, because f and Fk, β ( f ) cannot be simultaneously

supported on subsets of finite measure, see [19, Corollary 3.7]. This result is known as the Benedicks-Amrein-Berthier
uncertainty principle.

Moreover, we can also obtain an inequality comparing the essential support of Fk, β ( f ) and the generalized time
dispersion ‖|x|s f‖L2

k, β
for functions that are ε2-bandlimited on Σ.

Corollary 2 Let s > 0.
1. If 0 < s < Ad

γ, β , then there exists C > 0 such that for every function f that is ε2-bandlimited on Σ,

(
µk, β (Σ)

) s
Ad

γ, β ‖|x|s f‖2
L2

k, β
≥C

(
1− ε2

2
)
‖ f‖2

L2
k, β

. (31)

2. If s > Ad
γ, β , then there exists C > 0 such that for every function f that is ε2-bandlimited on Σ,

(
µk, β (Σ)

) s
Ad

γ, β ‖|x|s f‖2
L2

k, β
≥C

(
1− ε2

2
) s

Ad
γ, β ‖ f‖2

L2
k, β

. (32)

3. For all ε ∈ (0, 1), there exists C > 0 such that for every function f that is ε2-bandlimited on Σ,

µk, β (Σ)
∥∥∥|x|Ad

γ, β f
∥∥∥2

L2
k, β

≥C(1− ε2
2 )

1
1−ε ‖ f‖2

L2
k, β

. (33)
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Proof. Since f ∈ L2
k, β (R

d+1
+ ) is ε2-bandlimited on Σ, then

‖MΣ f‖2
L2

k, β
= ‖ f‖2

L2
k, β

−‖MΣc f‖2
L2

k, β
≥ (1− ε2

2 )‖ f‖2
L2

k, β
.

For the first result, we use the local inequalities (26). Analogously, for the second inequality, we use (27), and finally,
for the third inequality, we use (29).

Now, since, ‖MΣ f‖L2
k, β

=
∥∥EΣFk, β ( f )

∥∥
L2

k, β
, then by interchanging the roles of f and Fk, β ( f ) in Theorem 2,

Corollary 1 and Corollary 2, we obtain the following results involving the time limiting operator instead of the frequency
limiting operator, and the frequency dispersion instead of the time dispersion.

Theorem 3 Let t > 0.
1. If 0 < t < Ad

γ, β , then
(a) there exists a constantC > 0 such that for all f ∈ L2

k, β (R
d+1
+ ) and all measurable subset S ⊂Rd+1

+ of finite measure
0 < µk, β (S)< ∞,

‖ES f‖2
L2

k, β
≤C

(
µk, β (S)

) t
Ad

γ, β ‖|x|tFk, β ( f )
∥∥2

L2
k, β

, (34)

(b) there exists a constant C > 0 such that for every function f which is ε1-concentrated on S,

(
µk, β (S)

) t
Ad

γ, β ‖|ξ |tFk, β ( f )‖2
L2

k, β
≥C

(
1− ε2

1
)
‖ f‖2

L2
k, β

. (35)

2. If t > Ad
γ, β , then

(a) there exists a constantC > 0 such that for all f ∈ L2
k, β (R

d+1
+ ) and all measurable subset S ⊂Rd+1

+ of finite measure
0 < µk, β (S)< ∞,

‖ES f‖2
L2

k, β
≤C µk, β (S)‖ f‖2−

2Ad
γ, β
t

L2
k, β

‖|ξ |β Fk, β ( f )‖
2Ad

γ, β
t

L2
k, β

, (36)

(b) there exists a constant C > 0 such that for every function f which is ε1-concentrated on S,

(
µk, β (S)

) t
Ad

γ, β ‖|ξ |tFk, β ( f )‖2
L2

k, β
≥C

(
1− ε2

1
) t

Ad
γ, β ‖ f‖2

L2
k, β

. (37)

3. For all ε ∈ (0, 1),
(a) there exists C > 0 such that for every f ∈ L2

k, β (R
d+1
+ ) and all measurable subset S ⊂ Rd+1

+ of finite measure
0 < µk, β (S)< ∞,

‖ES f‖2
L2

k, β
≤C

(
µk, β (S)

)1−ε ‖ f‖2ε
L2

k, β
‖|ξ |A

d
γ, β Fk, β ( f )‖2−2ε

L2
k, β

, (38)

Contemporary Mathematics 1190 | Saifallah Ghobber, et al.



(b) there exists a constant C > 0 such that for every function f which is ε1-concentrated on S,

µk, β (S)
∥∥∥|ξ |Ad

γ, β Fk, β ( f )
∥∥∥2

L2
k, β

≥C
(
1− ε2

1
) 1

1−ε ‖ f‖2
L2

k, β
. (39)

4. There exists a constant C > 0 such that for all f ∈ Im(ES) = {L2
k, β (R

d+1
+ ) : f ⊂ S},

µk, β ( f )‖|ξ |tFk, β ( f )‖
2a
t

L2
k, β

≥C‖ f‖
2Ad

γ, β
t

L2
k, β

. (40)

Finally we can formulate our new Heisenberg-type uncertainty inequalities for functions in L2
k, β (ε1, ε2, S, Σ), with

constants that depend on ε1, ε2, S and Σ.
Theorem 4 Let s, t > 0. Then for any f ∈ L2

k, β (ε1, ε2, S, Σ):
1. if 0 < s, t < Ad

γ, β ,

‖|x|s f‖t
L2

k, β
‖|ξ |tFk, β ( f )‖s

L2
k, β

≥C
(1− ε2

1 )
s/2(1− ε2

2 )
t/2(

µk, β (S)µk, β (Σ)
) st

2Ad
γ, β

‖ f‖s+t
L2

k, β
, (41)

2. if s, t > Ad
γ, β ,

‖|x|s f‖t
L2

k, β
‖|ξ |tFk, β ( f )‖s

L2
k, β

≥C
(
(1− ε2

1 )(1− ε2
2 )

µk, β (S)µk, β (Σ)

) st
2Ad

γ, β ‖ f‖s+t
L2

k, β
, (42)

3. for all ε ∈ (0, 1),

∥∥∥|x|Ad
γ, β f

∥∥∥
L2

k, β

∥∥∥|ξ |Ad
γ, β Fk, β ( f )

∥∥∥
L2

k, β

≥C

(
(1− ε2

1 )(1− ε2
2 )
) 1

2−2ε√
µk, β (S)µk, β (Σ)

‖ f‖2
L2

k, β
. (43)

Remark 3
1. Notice that Corollary 2 and Inequalities (35), (37) and (39) give separately a lower bounds for the measures of the

time dispersion ‖|x|s f‖L2
k, β

and the frequency dispersion ‖|ξ |tFk, β ( f )‖L2
k, β

, which give more information than a lower
bound of the product between them in Theorem 4.

2. On the other hand, from Corollary 2 and Inequalities (35), (37) and (39), we can obtain separately a lower bounds,
that depend of the signal f ∈ L2

k, β (ε1, ε2, S, Σ), for the measures of µk, β (S) and µk, β (Σ), from which we deduce, in the
spirit of [41], the following lower bounds for the product between them:
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µk, β (S)µk, β (Σ)≥



C.C f (s, Ad
γ, β , t)

(
(1− ε2

1 )
1
t (1− ε2

2 )
1
s
)Ad

γ, β , 0 < s, t < Ad
γ, β ,

C.C f (s, Ad
γ, β , t)(1− ε2

1 )(1− ε2
2 ), s, t > Ad

γ, β ,

C.C f (Ad
γ, β , Ad

γ, β , Ad
γ, β )

(
(1− ε2

1 )(1− ε2
2 )
) 1

1−ε , otherwise,

(44)

where C is a constant that depend only on s, Ad
γ, β , t, ε, and

C f (s, Ad
γ, β , t) =

 ‖ f‖s+t
L2

k, β

‖xs f‖t
L2

k, β
‖|ξ |tFk, β ( f )‖s

L2
k, β


2Ad

γ, β
st

. (45)

3.2 Uncertainty principles on the space L1
k, β ∩ L2

k, β(ε1,ε2,S,Σ)

The first known result for functions in L1
k, β ∩ L2

k, β (ε1, ε2, S, Σ) is the following Donoho-Stark type uncertainty
inequality, see [20, Proposition 2.6].

Theorem 5 Let ε1, ε2 ∈ (0, 1). Then if f ∈ L1
k, β ∩L2

k, β (ε1, ε2, S, Σ) we have

µk, β (S)≥
‖ f‖2

L1
k, β

‖ f‖2
L2

k, β

(1− ε1)
2, µk, β (Σ)≥

‖ f‖2
L2

k, β

‖ f‖2
L1

k, β

(1− ε2
2 ), (46)

and then

µk, β (S)µk, β (Σ)≥ (1− ε1)
2(1− ε2

2 ). (47)

Theorem 5 is stronger then Theorem 1, in the sense that the previous theorem give a lower bound of µk, β (S) and
µk, β (Σ) separately, which is not possible in Theorem 1.

We proceed as [20, Proposition 2.2, Proposition 2.3], we prove the following Carlson-type and Nash-type inequalities.
Theorem 6 Let s, t > 0. Then we have:
1. A Carlson-type inequality: there exists a constant C1 = C(s, Ad

γ, β ) > 0 such that for all f ∈ L1
k, β (R

d+1
+ ) ∩

L2
k, β (R

d+1
+ ),

‖ f‖
1+ s

Ad
γ, β

L1
k, β

≤C1‖ f‖
s

Ad
γ, β

L2
k, β

‖|x|s f‖L1
k, β

. (48)

2. A Nash-type inequality: there exists a constantC2 =C(t, Ad
γ, β )> 0 such that for all f ∈ L1

k, β (R
d+1
+ )∩L2

k, β (R
d+1
+ ),
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‖ f‖
1+ t

Ad
γ, β

L2
k, β

≤C2‖ f‖
t

Ad
γ, β

L1
k, β

‖|ξ |tFk, β ( f )‖L2
k, β

. (49)

Consequently we obtain a lower bounds for the time and frequency dispersions:

‖|x|s f‖L1
k, β

≥C1

‖ f‖L1
k, β

‖ f‖L2
k, β

 s
Ad

γ, β
‖ f‖L1

k, β
and ‖|ξ |tFk, β ( f )‖L2

k, β
≥C2

‖ f‖L2
k, β

‖ f‖L1
k, β

 t
Ad

γ, β
‖ f‖L2

k, β
. (50)

Corollary 3 Let s, t > 0. Then
1. there exists a constant C3 =C(k, β , t, s, d)> 0 such that for all f ∈ L1

k, β (R
d+1
+ )∩L2

k, β (R
d+1
+ ),

‖|x|s f‖t
L1

k, β
‖|ξ |tFk, β ( f )‖s

L2
k, β

≥C3 ‖ f‖t
L1

k, β
‖ f‖s

L2
k, β

, (51)

2. there exists a constant C4 =C(k, β , s, d) > 0 such that for all f ∈ L1
k, β (R

d+1
+ )∩L2

k, β (R
d+1
+ ) and all measurable

subset of Σ of finite measure,

‖MΣ f‖2
L2

k, β
≤C4 µk, β (Σ)‖ f‖

2s
Ad

γ, β +s

L2
k, β

‖|x|s f‖

2Ad
γ, β

Ad
γ, β +s

L1
k, β

, (52)

3. there exists a constant C5 = C(k, β , t, d) > 0 such that for all f ∈ L1
k, β (R

d+1
+ )∩L2

k, β (R
d+1
+ ) and all measurable

subset S of finite measure,

‖ES f‖2
L1

k, β
≤C5 µk, β (S)‖ f‖

2t
Ad

γ, β +t

L1
k, β

‖|ξ |β Fk, β ( f )‖

2Ad
γ, β

Ad
γ, β +t

L2
k, β

, (53)

4. there exists a constant C6 =C(k, β , s, d)> 0 such that for all f ∈ L1
k, β (R

d+1
+ )∩L2

k, β (R
d+1
+ ) with Fk, β ( f )⊂ Σ,

µk, β
(
Fk, β ( f )

)
‖|x|s f‖

2Ad
γ, β

Ad
γ, β +s

L1
k, β

≥C6 ‖ f‖

2Ad
γ, β

Ad
γ, β +s

L2
k, β

, (54)

5. there exists a constant C7 =C(k, β , t, d)> 0 such that for all f ∈ L1
k, β (R

d+1
+ )∩L2

k, β (R
d+1
+ ) with f ⊂ S,

µk, β
(

f
)
‖|ξ |tFk, β ( f )‖

2Ad
γ, β

Ad
γ, β +t

L2
k, β

≥C7 ‖ f‖

2Ad
γ, β

Ad
γ, β +t

L1
k, β

. (55)
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Proof. The first inequality follows by combining the Carlson’s inequality (48) and the Nash’s inequality (49). Next
by (13) and (8),

‖MΣ f‖2
L2

k, β
=
∥∥χΣFk, β ( f )

∥∥2
L2

k, β
≤ µk, β (Σ)

∥∥Fk, β ( f )
∥∥2

∞ ≤ µk, β (Σ)‖ f‖2
L1

k, β
,

and by the Carlson’s inequality (48) we obtain (52). Now by the Cauchy-Schwartz’s inequality we have,

‖ES f‖2
L1

k, β
≤ µk, β (S)‖ f‖2

L2
k, β

,

and by the Nash type inequality (49) we deduce (53). Finally (54) follows directly from (52) by taking Σ = Fk, β ( f ) and
if we take S = f in (53) we obtain (55).

Remark 4 Clearly, the inequalities in (50) imply also that there exist a positive constantC , for all f ∈ L1
k, β (R

d+1
+ )∩

L2
k, β (R

d+1
+ ),

‖|x|s f‖
Ad

γ, β+t

L1
k, β

‖|ξ |tFk, β ( f )‖
Ad

γ, β+s

L2
k, β

≥ C ‖ f‖
Ad

γ, β+s

L1
k, β

‖ f‖
Ad

γ, β+t

L2
k, β

. (56)

Corollary 4 Let s, t > 0. Then
1. there exists a constant C > 0 such that for every function f , which is ε1-timelimited on S,

(
µk, β (S)

) Ad
γ, β +t

2Ad
γ, β ‖|ξ |tFk, β ( f )‖L2

k, β
≥C (1− ε1)

Ad
γ, β +t

Ad
γ, β ‖ f‖L1

k, β
, (57)

2. there exists a constant C > 0 such that for every function f , which is ε2-bandlimited on Σ,

(
µk, β (Σ)

) Ad
γ, β +s

2Ad
γ, β ‖|x|s f‖L1

k, β
≥C

(
1− ε2

2
) Ad

γ, β +s

2Ad
γ, β ‖ f‖L2

k, β
, (58)

3. there exists a constant C such that for all f ∈ L1
k, β ∩L2

k, β (ε1, ε2, S, Σ),

‖|x|s f‖
Ad

γ, β+t

L1
k, β

‖|ξ |tFk, β ( f )‖
Ad

γ, β+s

L2
k, β

≥C
(
(1− ε1)

2(1− ε2
2 )

µk, β (S)µk, β (Σ)

) (Ad
γ, β +s)(Ad

γ, β +t)

2Ad
γ, β ‖ f‖

Ad
γ, β+s

L1
k, β

‖ f‖
Ad

γ, β+t

L2
k, β

. (59)

Proof. If f is ε1-timelimited, then

‖ES f‖L1
k, β

≥ ‖ f‖L1
k, β

−‖ESc f‖L1
k, β

≥ (1− ε1)‖ f‖L1
k, β

,

and if f is ε2-bandelimited, then
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‖MΣ f‖2
L2

k, β
= ‖ f‖2

L2
k, β

−‖MΣc f‖2
L2

k, β
≥ (1− ε2

2 )‖ f‖2
L2

k, β
.

Hence the desired result follows from (52) and (53).
Remark 5 Let s, t > 0 and let f ∈ L1

k, β (R
d+1
+ )∩L2

k, β (R
d+1
+ ).

1. If f is ε1-timelimited on S, then

µk, β (S)≥C

 ‖ f‖L1
k, β

‖|ξ |tFk, β ( f )‖L2
k, β


2Ad

γ, β
Ad

γ, β +t

(1− ε1)
2. (60)

2. If f is ε2-bandlimited on Σ, then

µk, β (Σ)≥C

 ‖ f‖L2
k, β

‖|x|s f‖L1
k, β


2Ad

γ, β
Ad

γ, β +s

(1− ε2
2 ). (61)

3. If f ∈ L1
k, β ∩L2

k, β (ε1, ε2, S, Σ), then

µk, β (S)µk, β (Σ)≥C.C̃ f (Ad
γ, β , s, t)(1− ε1)

2(1− ε2
2 ), (62)

where

C̃ f (Ad
γ, β , s, t) =

 ‖ f‖
Ad

γ, β+s

L1
k, β

‖ f‖
Ad

γ, β+t

L2
k, β

‖|x|s f‖
Ad

γ, β+t

L1
k, β

‖|ξ |tFk, β ( f )‖
Ad

γ, β+s

L2
k, β


2Ad

γ, β
(Ad

γ, β +t)(Ad
γ, β +s)

. (63)

4. Dunkl-Bessel two-wavelet multipliers
Our motivation in this section comes mainly from results established in [11, 42, 43]
Definition 5 Let u, v, σ be measurable functions on Rd+1

+ , we define the Dunkl-Bessel two-wavelet multiplier
operator noted by Pu, v(σ), on Lp

k, β (R
d+1
+ ), 1 ≤ p ≤ ∞, by

Pu, v(σ)( f )(y) =
∫
Rd+1
+

σ(ξ )Fk, β (u f )(ξ )Λk, β (y, ξ )v(y)dµk, β (ξ ), y ∈ Rd+1
+ . (64)
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In the case when σ = χA is the characteristic function of the subset A ⊂ Rd+1
+ , then we write Pu, v(σ) as Pu, v(A),

if u 6= v and by Pu(A) if u = v.
Often, it is more convenient to interpret the definition of Pu, v(σ) in a weak sense, that is, for f in Lp

k, β (R
d+1
+ ),

p ∈ [1, ∞], and g in Lp′

k, β (R
d+1
+ ),

〈Pu, v(σ)( f ), g〉L2
k, β

=
∫
Rd+1
+

σ(ξ )Fk, β (u f )(ξ )Fk, β (vg)(ξ )dµk, β (ξ ) (65)

Proposition 3 Let p ∈ [1, ∞). The adjoint of linear operator

Pu, v(σ): Lp
k, β (R

d+1
+ )→ Lp

k, β (R
d+1
+ )

is Pv, u(σ): Lp′

k, β (R
d+1
+ )→ Lp′

k, β (R
d+1
+ ).

Proof. For all f in Lp
k, β (R

d+1
+ ) and g in Lp′

k, β (R
d+1
+ ) it follows immediately from (64)

〈Pu, v(σ)( f ), g〉L2
k, β

=
∫
Rd+1
+

σ(ξ )Fk, β (u f )(ξ )Fk, β (vg)(ξ )dµk, β (ξ )

=
∫
Rd+1
+

σ(ξ )Fk, β (u f )(ξ )Fk, β (vg)(ξ )dµk, β (ξ )

= 〈Pv, u(σ)(g), f 〉L2
k, β

= 〈 f , Pv, u(σ)(g)〉L2
k, β

.

Thus we get

P∗
u, v(σ) = Pv, u(σ). (66)

Proposition 4 Let σ ∈ L1
k, β (R

d+1
+ )∪L∞

k, β (R
d+1
+ ) and let u, v ∈ L2

k, β (R
d+1
+ )∩L∞

k, β (R
d+1
+ ). Then

〈Pu, v(σ)( f ), g〉L2
k, β

= 〈v̄Mσ (u f ), g〉L2
k, β

. (67)

Proof. For all f , g in L2
k, β (R

d+1
+ ), it follows by the use of the relations (65) and (24) and Parseval’s formula (14) that

〈Pu, v(σ)( f ), g〉L2
k, β

=
∫
Rd+1
+

Mσ (u f )(x)(vg)(x)dµk, β (x) = 〈v̄Mσ (u f ), g〉L2
k, β

.

So, the prove is achieved.
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4.1 Boundedness for Pu, v(σ) on S∞
In this subsection, using interpolation theorem we will prove the boundedness of the operators Pu, v(σ) for σ ∈

Lp
k, β (R

d+1
+ ), 1 ≤ p ≤ ∞ on S∞.

In sequel, in this subsection, u and v will be any functions in L2
k, β (R

d+1
+ )∩L∞

k, β (R
d+1
+ ) such that

‖u‖L2
k, β

= ‖v‖L2
k, β

= 1.

Proposition 5 Let σ be in L1
k, β (R

d+1
+ ), then, Pu, v(σ) is in S∞ and

||Pu, v(σ)||S∞ ⩽ ‖σ‖L1
k, β

. (68)

Proof. From (64), it’s easy to see, for every functions f and g in L2
k, β (R

d+1
+ ), that

|〈Pu, v(σ)( f ), g〉L2
k, β

|⩽ ‖Fk, β (u f )‖L∞
k, β

‖Fk, β (vg)‖L∞
k, β

‖σ‖L1
k, β

.

On the other hand, from (5) and the Cauchy-Schwarz’s inequality, we get

‖Fk, β (u f )‖L∞
k, β

≤ ‖u‖L2
k, β

‖ f‖L2
k, β

, ‖Fk, β (vg)‖L∞
k, β

≤ ‖v‖L2
k, β

‖g‖L2
k, β

.

Therefore, since ‖u‖L2
k, β

= ‖v‖L2
k, β

= 1, we obtain

|〈Pu, v(σ)( f ), g〉L2
k, β

|⩽ ‖ f‖L2
k, β

‖g‖L2
k, β

‖σ‖L1
k, β

.

Using (23), we derive the result.
Proposition 6 Let σ be in L∞

k, β (R
d+1
+ ), then the operator Pu, v(σ) is in S∞ and we have

||Pu, v(σ)||S∞ ⩽ ‖u‖L∞
k, β

‖v‖L∞
k, β

‖σ‖L∞
k, β

.

Proof. Using Cauchy-Schwarz’s inequality, we infer

|〈Pu, v(σ)( f ), g〉L2
k, β

|⩽ ‖σ‖L∞
k, β

‖Fk, β (u f )‖L2
k, β

‖Fk, β (vg)‖L2
k, β

.

Involving Plancherel’s formula (13), we derive that

|〈Pu, v(σ)( f ), g〉L2
k, β

|⩽ ‖u‖L∞
k, β

‖v‖L∞
k, β

‖σ‖L∞
k, β

‖ f‖L2
k, β

‖g‖L2
k, β

.
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From this and (23), we obtain the result.
Theorem 7 Let σ be in Lp

k, β (R
d+1
+ ), 1 ≤ p ≤ ∞. Then there exists a unique bounded linear operator Pu, v(σ):

L2
k, β (R

d+1
+ )→ L2

k, β (R
d+1
+ ), such that

||Pu, v(σ)||S∞ ⩽ (‖u‖L∞
k, β

‖v‖L∞
k, β

)
p−1

p ‖σ‖Lp
k, β

.

Proof. Let f be in L2
k, β (R

d+1
+ ). We consider the following operator

T : L1
k, β (R

d+1
+ )

⋂
L∞

k, β (R
d+1
+ ) → L2

k, β (R
d+1
+ ),

given by

T (σ): = Pu, v(σ)( f ).

Then by Proposition 5 and Proposition 6

||T (σ)||L2
k, β

⩽ || f ||L2
k, β

‖σ‖L1
k, β

(69)

and

||T (σ)||L2
k, β

≤ ‖u‖L∞
k, β

‖v‖L∞
k, β

|| f ||L2
k, β

‖σ‖L∞
k, β

. (70)

Thus, by (69), (70) and the Riesz-Thorin interpolation’s theorem (see [[44], Theorem 2] we see also [[9], Theorem
2.11]). We obtain the following result

||Pu, v(σ)( f )||L2
k, β

= ||T (σ)||L2
k, β

≤ (‖u‖L∞
k, β

‖v‖L∞
k, β

)
p−1

p || f ||L2
k, β

‖σ‖Lp
k, β

. (71)

Since (71) is true for arbitrary functions f in L2
k, β (R

d+1
+ ), then we obtain the desired result.

4.2 Shatten class properties

In this subsection, u and v will be any functions in L2
k, β (R

d+1
+ )∩L∞

k, β (R
d+1
+ ) such that

‖u‖L2
k, β

= ‖v‖L2
k, β

= 1.

Let us begin with the following theorem
Theorem 8 Let σ be in L1

k, β (R
d+1
+ ), then Pu, v(σ) is an Hilbert Schmidt operator and
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‖Pu, v(σ)‖S2 ⩽ ‖σ‖L1
k, β

.

Proof. Let {ϕ j, j = 1, 2...} be an orthonormal basis for L2
k, β (R

d+1
+ ). Then by (65), Fubini’s theorem and Parseval’s

identity (13), we obtain

∞

∑
j=1

||Pu, v(σ)(ϕ j)||2L2
k, β

=
∞

∑
j=1

〈Pu, v(σ)(ϕ j), Pu, v(σ)(ϕ j)〉L2
k, β

=
∞

∑
j=1

∫
Rd+1
+

σ(ξ )〈ϕ j, ūΛk, β (ξ , .)〉L2
k, β

〈Pu, v(σ)(ϕ j), v̄Λk, β (ξ , .)〉L2
k, β

dµk, β (ξ )

=
∫
Rd+1
+

σ(ξ )
∞

∑
j=1

〈P∗
u, v(σ)(v̄Λk, β (ξ , .)), ϕ j〉L2

k, β
〈ϕ j, ūΛk, β (ξ , .)〉L2

k, β
dµk, β (ξ )

=
∫
Rd+1
+

σ(ξ )〈P∗
u, v(σ)(v̄Λk, β (ξ , .)), ūΛk, β (ξ , .)〉L2

k, β
dµk, β (ξ ).

Therefore from Proposition 5, the relation (5), we derive

∞

∑
j=1

||Pu, v(σ)(ϕ j)||2L2
k, β

≤
∫
Rd+1
+

|σ(ξ )| ||P∗
u, v(σ)||S∞dµk, β (ξ )≤ ‖σ‖2

L1
k, β

< ∞. (72)

So, by (72) and the Proposition 2.8 in the book [9], by Wong,

Pu, v(σ): L2
k, β (R

d+1
+ )→ L2

k, β (R
d+1
+ )

is in the Hilbert-Schmidt class S2 and hence compact.
Proposition 7 Let σ be a symbol in Lp

k, β (R
d+1
+ ), 1 ⩽ p < ∞. Then the operator Pu, v(σ) is compact.

Proof. Let (σn)n∈N be a sequence of functions in L1
k, β (R

d+1
+ )

⋂
L∞

k, β (R
d+1
+ ) such that σn → σ in Lp

k, β (R
d+1
+ ) as

n → ∞. Then by Theorem 7 we get:

||Pu, v(σn)−Pu, v(σ)||S∞ ≤ (‖u‖L∞
k, β

‖v‖L∞
k, β

)
p−1

p ||σn −σ ||Lp
k, β

.

Therefore Pu, v(σn)→ Pu, v(σ) in S∞ as n → ∞. Now, since by Theorem 8, the operators are Pu, v(σn) in S2 and
hence compact, and since the set of compact operators is closed subspace of S∞ it follows that Pu, v(σ) is also compact.
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Theorem 9 Let σ be in L1
k, β (R

d+1
+ ). Then,

1. Pu, v(σ): L2
k, β (R

d+1
+ )→ L2

k, β (R
d+1
+ ) is trace class and we have

2
‖u‖2

L∞
k, β

+‖v‖2
L∞

k, β

‖σ̃‖L1
k, β

⩽ ‖Pu, v(σ)‖S1 ⩽ ‖σ‖L1
k, β

, (73)

where σ̃ is given by

σ̃(ξ ) = 〈Pu, v(σ)Λk, β (ξ , .)u, Λk, β (ξ , .)v〉L2
k, β

, ξ ∈ Rd+1
+ .

2. We have the following trace formula

tr(Pu, v(σ)) =
∫
Rd+1
+

σ(ξ )〈v̄Λk, β (ξ , .), ūΛk, β (ξ , .)〉L2
k, β

dµk, β (ξ ). (74)

Proof. 1. Since σ is in L1
k, β (R

d+1
+ ), by Theorem 8, Pu, v(σ) is in S2. Using [9, Theorem 2.2], there exists an

orthonormal basis {ϕ j, j = 1, 2...} for the orthogonal complement of the kernel of the operator Pu, v(σ), consisting of
eigenvectors of |Pu, v(σ)| and {ψ j, j = 1, 2...} an orthonormal set in L2

k, β (R
d+1
+ ), such that

Pu, v(σ)( f ) =
∞

∑
j=1

s j〈 f , ϕ j〉L2
k, β

ψ j, (75)

where s j, j = 1, 2... are the positive singular values of Pu, v(σ) corresponding to ϕ j. Then, we get

‖Pu, v(σ)‖S1 =
∞

∑
j=1

s j =
∞

∑
j=1

〈Pu, v(σ)(ϕ j), ψ j〉L2
k, β

.

Thus, by Fubini’s theorem, Parseval’s identity, Bessel’s inequality, Cauchy-Schwarz’s inequality, (5), and ||u||L2
k, β

=

||u||L2
k, β

= 1, we get

‖Pu, v(σ)‖S1 =
∞

∑
j=1

〈Pu, v(σ)(ϕ j), ψ j〉L2
k, β

=
∞

∑
j=1

∫
Rd+1
+

σ(ξ )Fk, β (uϕ j)(ξ )Fk, β (vψ j)(ξ )dµk, β (ξ )

=
∫
Rd+1
+

σ(ξ )
∞

∑
j=1

〈ϕ j, ūΛk, β (ξ , .)〉L2
k, β

〈v̄Λk, β (ξ , .), ψ j〉L2
k, β

dµk, β (ξ )
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≤
∫
Rd+1
+

|σ(ξ )|
( ∞

∑
j=1

|〈ϕ j, ūΛk, β (ξ , .)〉L2
k, β

|
) 1

2
( ∞

∑
j=1

|〈v̄Λk, β (ξ , .), ψ j〉L2
k, β

|
) 1

2
dµk, β (ξ )

≤
∫
Rd+1
+

|σ(ξ )| ||ūΛk, β (ξ , .)||L2
k, β

||v̄Λk, β (ξ , .)||L2
k, β

dµk, β (ξ )

⩽‖σ‖L1
k, β

.

Thus

‖Pu, v(σ)‖S1 ⩽ ‖σ‖L1
k, β

.

We now prove that Pu, v(σ) satisfies the first member of (73). It is easy to see that σ̃ belongs to L1
k, β (R

d+1
+ ), and

using formula (75), we get

|σ̃(ξ )| =
∣∣∣〈Pu, v(σ)( Λk, β (ξ , .)u), Λk, β (ξ , .)v〉L2

k, β

∣∣∣
=

∣∣∣ ∞

∑
j=1

s j〈 Λk, β (ξ , .)u, ϕ j〉L2
kβ
〈ψ j, Λk, β (ξ , .)v〉L2

k, β

∣∣∣

⩽ 1
2

∞

∑
j=1

s j

(∣∣∣〈 Λk, β (ξ , .)u, ϕ j〉L2
k, β

∣∣∣2 + ∣∣∣〈 Λk, β (ξ , .)v, ψ j〉L2
k, β

∣∣∣2).
Then, using Plancherel’s formula given by relation (13) and Fubini’s theorem, we obtain

∫
Rd+1
+

|σ̃(ξ )dµk, β (ξ ) ≤ 1
2

∞

∑
j=1

s j

(∫
Rd+1
+

|〈 Λk, β (ξ , .)u, ϕ j〉L2
k, β

|2dµk, β (ξ )

+
∫
Rd+1
+

|〈 Λk, β (ξ , .)v, ψ j〉L2
k, β

|2dµk, β (ξ )
)
.

Thus

∫
Rd+1
+

|σ̃(ξ )|dµk, β (ξ )≤
‖u‖2

L∞
k, β

+‖v‖2
L∞

k, β

2

∞

∑
j=1

s j =
‖u‖2

L∞
k, β

+‖v‖2
L∞

k, β

2
‖Pu, v(σ)‖S1 ,

this allows to conclude.
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2. Let {ϕ j, j = 1, 2...} be an orthonormal basis for L2
k, β (R

d+1
+ ). From the previous assertion, the Dunkl-Bessel two-

wavelet multiplier Pu, v(σ) belongs to S1, then by the definition of the trace given by the relation (20), Fubini’s theorem
and Parseval’s identity, we have

tr(Pu, v(σ)) =
∞

∑
j=1

〈Pu, v(σ)(ϕ j), ϕ j〉L2
k, β

=
∞

∑
j=1

∫
Rd+1
+

σ(ξ )〈ϕ j, Λk, β (ξ , .)u〉L2
k, β

〈ϕ j, Λk, β (ξ , .)v〉L2
k, β

dµk, β (ξ )

=
∫
Rd+1
+

σ(ξ )
∞

∑
j=1

〈ϕ j, Λk, β (ξ , .)u〉L2
k, β

〈Λk, β (ξ , .)v, ϕ j〉L2
k, β

dµk, β (ξ )

=
∫
Rd+1
+

σ(ξ )〈Λk, β (ξ , .)v, Λk, β (ξ , .)u〉L2
k, β

dµk, β (ξ ).

Thus thee proof is complete.
Involving Theorem 7, relation (73) and by interpolation argument (See [9, Theorem 2.10 and Theorem 2.11]), we

deduce the following result.
Corollary 5 Letσ be in Lp

k, β (R
d+1
+ ), 1⩽ p⩽∞. Then, theDunkl-Bessel two-waveletmultiplierPu, v(σ): L2

k, β (R
d+1
+ )

−→ L2
k, β (R

d+1
+ ) is in Sp and we have

‖Pu, v(σ)‖Sp ⩽ (‖u‖L∞
k, β

‖v‖L∞
k, β

)
p−1

p ‖σ‖Lp
k, β

.

Remark 6 If u = v and if σ is a real valued and nonnegative function in L1
k, β (R

d+1
+ ) then

Pu, v(σ): L2
k, β (R

d+1
+ )→ L2

k, β (R
d+1
+ )

is a positive operator. Moreover, using (21) and relation (74), we obtain

||Pu, v(σ)||S1 =
∫
Rd+1
+

σ(ξ )||Λk, β (ξ , .)u||2L2
k, β

dµk, β (ξ ). (76)

The trace of products of Dunkl-Bessel two-wavelet multipliers is given in the following result.
Corollary 6 Let σ1 and σ2 be any real-valued and non-negative functions in L1

k, β (R
d+1
+ ). We assume that u = v and

u is a function in L2
k, β (R

d+1
+ ) such that ||u||L2

k, β
= 1. Then, the Dunkl-Bessel two-wavelet multipliersPu, v(σ1), Pu, v(σ2)

are positive trace class operators and

∣∣∣∣∣∣(Pu, v(σ1)Pu, v(σ2)
)n∣∣∣∣∣∣

S1
≤

∣∣∣∣∣∣Pu, v(σ1)
∣∣∣∣∣∣n

S1

∣∣∣∣∣∣Pu, v(σ2)
∣∣∣∣∣∣n

S1
,
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for all natural numbers n.
Proof. By Theorem 1 in the paper [45] by Liu we know that if A and B are in the trace class S1 and are positive

operators, then

∀n ∈ N, tr(AB)n ≤
(

tr(A)
)n(

tr(B)
)n

.

So, if we take A = Pu, v(σ1), B = Pu, v(σ2) and we invoke the previous remark, the proof is complete.

4.3 LpBoundedness of Pu, v(σ)

The aim of this subsection is to give a sufficient conditions on the symbols σ and the functions u and v, for which
Pu, v(σ): Lp

k, β (R
d+1
+ )→ Lp

k, β (R
d+1
+ ), 1 ≤ p ≤ ∞ be bounded.

Let us start with the following propositions.
Proposition 8 Let σ be in L1

k, β (R
d+1
+ ), u ∈ L∞

k, β (R
d+1
+ ) and v ∈ L1

k, β (R
d+1
+ ), then the Dunkl-Bessel two-wavelet

multiplier Pu, v(σ): L1
k, β (R

d+1
+ )−→ L1

k, β (R
d+1
+ ) is a bounded linear operator and we have

||Pu, v(σ)||B(L1
k, β (R

d+1
+ ))

⩽ ‖u‖L∞
k, β

‖v‖L1
k, β

‖σ‖L1
k, β

.

Proof. For every function f in L1
k, β (R

d+1
+ ), we have

||Pu, v(σ)( f )||L1
k, β

⩽
∫
Rd+1
+

∫
Rd+1
+

|σ(ξ )| |Fk, β (u f )(ξ )| |Λk, β (ξ , y)v(y)|dµk, β (ξ )dµk, β (y),

Involving the relations (8) and (5), we derive

||Pu, v(σ)( f )||L1
k, β

⩽ ‖ f‖L1
k, β

||u||L∞
k, β

||v||L1
k, β

‖σ‖L1
k, β

,

then we obtain the desire result.
Therefore we have the following result.
Proposition 9 Let σ be in L1

k, β (R
d+1
+ ) and let u ∈ L1

k, β (R
d+1
+ ), v ∈ L∞

k, β (R
d+1
+ ), then the Dunkl-Bessel two-wavelet

multiplier

Pu, v(σ): L∞
k, β (R

d+1
+ )−→ L∞

k, β (R
d+1
+ )

is a bounded linear operator such that

||Pu, v(σ)||B(L∞
k, β )

⩽ ‖u‖L1
k, β

‖v‖L∞
k, β

‖σ‖L1
k, β

.

Proof. Since the adjoint of Pv, u(σ): L1
k, β (R

d+1
+ )→ L1

k, β (R
d+1
+ ) is
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Pu, v(σ): L∞
k, β (R

d+1
+ )→ L∞

k, β (R
d+1
+ ),

then by the Proposition 8 we obtain

||Pu, v(σ)||B(L∞
k, β )

= ||Pv, u(σ)||B(L1
k, β )

⩽ ‖u‖L1
k, β

‖v‖L∞
k, β

‖σ‖L1
k, β

.

This completes the proof
Using an interpolation of Propositions 8 and 9, we obtain the following result.
Theorem 10 Let u and v be functions in L1

k, β (R
d+1
+ )∩ L∞

k, β (R
d+1
+ ). Then for all σ in L1

k, β (R
d+1
+ ), there exists a

unique bounded linear operator Pu, v(σ): Lp
k, β (R

d+1
+ )−→ Lp

k, β (R
d+1
+ ), 1 ≤ p ≤ ∞, such that

||Pu, v(σ)||B(Lp
k, β )

⩽ ‖u‖
1
p′

L1
k, β

‖v‖
1
p

L1
k, β

‖u‖
1
p
L∞

k, β
‖v‖

1
p′
L∞

k, β
‖σ‖L1

k, β
.

We can give another version of the Lp
k, β -boundedness. Firstly we generalize and we improve Proposition 9.

Proposition 10 Let σ be in L1
k, β (R

d+1
+ ), v ∈ Lp

k, β (R
d+1
+ ) and u ∈ Lp′

k, β (R
d+1
+ ), for 1 < p ≤ ∞, then the Dunkl-Bessel

two-wavelet multiplier Pu, v(σ): Lp
k, β (R

d+1
+ )−→ Lp

k, β (R
d+1
+ ) is a bounded linear operator, and we have

||Pu, v(σ)||B(Lp
k, β )

⩽ ‖u‖
Lp′

k, β
‖v‖Lp

k, β
‖σ‖L1

k, β
.

Proof. For any f ∈ Lp
k, β (R

d+1
+ ), consider the linear functional

I f : Lp′

k, β (R
d+1
+ ) → C

g 7→ 〈g, Pu, v(σ)( f )〉L2
k, β

.

From the relation (65)

|〈Pu, v(σ)( f ), g〉L2
k, β

| ⩽
∫
Rd+1
+

|σ(ξ )||Fk, β (u f )(ξ )| |Fk, β (vg)(ξ )|dµk, β (ξ )

⩽ ‖σ‖L1
k, β

‖Fk, β (u f )‖L∞
k, β

‖Fk, β (vg)‖L∞
k, β

.

Using the relation (7), (5) and Hölder’s inequality, we get

|〈Pu, v(σ)( f ), g〉L2
k, β

|⩽ ‖σ‖L1
k, β

‖u‖
Lp′

k, β
‖v‖Lp

k, β
‖ f‖Lp

k, β
‖g‖

Lp′
k, β

.
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Thus, the operator I f is a continuous linear functional on Lp′

k, β (R
d+1
+ ), and the operator norm

||I f ||B(Lp′
k, β )

⩽ ‖u‖
Lp′

k, β
‖v‖Lp

k, β
‖ f‖Lp

k, β
‖σ‖L1

k, β
.

As I f (g) = 〈g, Pu, v(σ)( f )〉L2
k, β

, by the Riesz representation theorem, we have

||Pu, v(σ)( f )||B(Lp
k, β )

= ||I f ||B(Lp′
k, β )

⩽ ‖u‖
Lp′

k, β
‖v‖Lp

k, β
‖ f‖Lp

k, β
‖σ‖L1

k, β
,

which establishes the proposition.
Combining Proposition 8 and Proposition 10, we have the following theorem.
Theorem 11 Let σ be in L1

k, β (R
d+1
+ ), v ∈ Lp

k, β (R
d+1
+ ) and u ∈ Lp′

k, β (R
d+1
+ ), for 1 ≤ p ≤ ∞, then the Dunkl-Bessel

two-wavelet multiplier Pu, v(σ): Lp
k, β (R

d+1
+ )−→ Lp

k, β (R
d+1
+ ) is a bounded linear operator, and we have

||Pu, v(σ)||B(Lp
k, β )

⩽ ‖u‖
Lp′

k, β
‖v‖Lp

k, β
‖σ‖L1

k, β
.

With a Schur technique, we can obtain an Lp
k, β -boundedness result as in the Theorem 10, but the estimate for the

norm ||Pu, v(σ)||B(Lp
k, β )

is cruder.

Theorem 12 Let σ be in L1
k, β (R

d+1
+ ), u and v in L1

k, β (R
d+1
+ )

⋂
L∞

k, β (R
d+1
+ ). Then there exists a unique bounded

linear operator Pu, v(σ): Lp
k, β (R

d+1
+ )−→ Lp

k, β (R
d+1
+ ), 1 ≤ p ≤ ∞ such that

||Pu, v(σ)||B(Lp
k, β )

⩽ max(‖u‖L1
k, β

‖v‖L∞
k, β

, ‖u‖L∞
k, β

‖v‖L1
k, β

)‖σ‖L1
k, β

.

Proof. Let N be the function defined on Rd+1
+ ×Rd+1

+ by

N (y, z) =
∫
Rd+1
+

σ(ξ )Λk, β (ξ , y)v(y)Λk, β (−ξ , z)u(z)dµk, β (ξ ). (77)

We have

Pu, v(σ)( f )(y) =
∫
Rd+1
+

N (y, z) f (z)dµk, β (z).

By simple calculations, it is easy to see that

∫
Rd+1
+

|N (y, z)|dµk, β (y)≤ ‖u‖L∞
k, β

‖v‖L1
k, β

‖σ‖L1
k, β

, z ∈ Rd+1
+ ,

and
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∫
Rd+1
+

|N (y, z)|dµk, β (z)≤ ‖u‖L1
k, β

‖v‖L∞
k, β

‖σ‖L1
k, β

, y ∈ Rd+1
+ .

Thus by Schur Lemma (cf. [46]), we can conclude that

Pu, v(σ): Lp
k, β (R

d+1
+ )−→ Lp

k, β (R
d+1
+ )

is a bounded linear operator for 1 ≤ p ≤ ∞, and we have

||Pu, v(σ)||B(Lp
k, β )

⩽ max(‖u‖L1
k, β

‖v‖L∞
k, β

, ‖u‖L∞
k, β

‖v‖L1
k, β

)‖σ‖L1
k, β

.

Remark 7 The previous Theorem tells us that the unique bounded linear operator on Lp
k, β (R

d+1
+ ), 1 ≤ p ≤ ∞,

obtained by interpolation in Theorem 10 is in fact the integral operator on Lp
k, β (R

d+1
+ ) with kernel N given by (77).

We can now state and prove the main result in this subsection.
Theorem 13 Let σ be in Lr

k, β (R
d+1
+ ), r ∈ [1, 2], and u, v ∈ L1

k, β (R
d+1
+ )

⋂
L∞

k, β (R
d+1
+ ). Then there exists a unique

bounded linear operator Pu, v(σ): Lp
k, β (R

d+1
+ )−→ Lp

k, β (R
d+1
+ ) for all p ∈ [r, r′], and we have

||Pu, v(σ)||B(Lp
k, β )

⩽Ct
1C1−t

2 ‖σ‖Lp
k, β

‖u‖
Lp′

k, β
‖v‖Lp

k, β
, (78)

where

C1 =
(
‖u‖L∞

k, β
‖v‖L1

k, β

) 2
r −1(

‖u‖L∞
k, β

‖v‖L∞
k, β

) 1
r′
,

C2 =
(
‖u‖L1

k, β
‖v‖L∞

k, β

) 2
r −1(

‖u‖L∞
k, β

‖v‖L∞
k, β

) 1
r′
,

and

t
r
+

1− t
r′

=
1
p
.

Proof. Consider the linear functional

I :
(

L1
k, β (R

d+1
+ )∩L2

k, β (R
d+1
+ )

)
×
(

L1
k, β (R

d+1
+ )∩L2

k, β (R
d+1
+ )

)
→ L1

k, β (R
d+1
+ )∩L2

k, β (R
d+1
+ )

(σ , f ) 7→ Pu, v(σ)( f ).
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Then by Proposition 8 and Theorem 7

||I (σ , f )||L1
k, β

⩽ ‖u‖L∞
k, β

‖v‖L1
k, β

|| f ||L1
k, β

‖σ‖L1
k, β

(79)

and

||I (σ , f )||L2
k, β

≤
√
‖u‖L∞

k, β
‖v‖L∞

k, β
|| f ||L2

k, β
‖σ‖L2

k, β
. (80)

Therefore, by (79), (80) and the the multi-linear interpolation theory, see Section 10.1 in [47] for reference, we get a
unique bounded linear operator

I (σ , f ): Lr
k, β (R

d+1
+ )×Lr

k, β (R
d+1
+ )→ Lr

k, β (R
d+1
+ )

such that

||I (σ , f )||Lr
k, β

≤C1|| f ||Lr
k, β

‖σ‖Lr
k, β

, (81)

where

C1 =
(
‖u‖L∞

k, β
‖v‖L1

k, β

)θ(
‖u‖L∞

k, β
‖v‖L∞

k, β

) 1−θ
2

and

θ
1
+

1−θ
2

=
1
r
.

By the definition of I , we have

||Pu, v(σ)||B(Lr
k, β )

⩽C1‖σ‖Lr
k, β

.

As the adjoint of Pu, v(σ) is Pv, u(σ), so Pu, v(σ) is a bounded linear map on Lr′
k, β (R

d+1
+ ) with its operator norm

||Pu, v(σ)||B(Lr′
k, β )

= ||Pv, u(σ)||B(Lr
k, β )

≤C2‖σ‖Lr
k, β

, (82)

where
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C2 =
(
‖u‖L1

k, β
‖v‖L∞

k, β

)θ(
‖u‖L∞

k, β
‖v‖L∞

k, β

) 1−θ
2
.

Using an interpolation of (81) and (82), we have that, for any p ∈ [r, r′],

||Pu, v(σ)||B(Lp
k, β )

⩽Ct
1C1−t

2 ‖σ‖Lp
k, β

‖u‖
Lp′

k, β
‖v‖Lp

k, β
,

with

t
r
+

1− t
r′

=
1
p
.

4.4 Compactness of Pu, v(σ)

In this section we will give sufficient conditions on σ , u, v so that the bounded operator Dunkl-Bessel two-wavelet
multiplier Pu, v(σ): Lp

k, β (R
d+1
+ )−→ Lp

k, β (R
d+1
+ ) is compact. Our first result is the following proposition.

Proposition 11 Under the same hypothesis of Theorem 10, the Dunkl-Bessel two-wavelet multiplier Pu, v(σ):
L1

k, β (R
d+1
+ )−→ L1

k, β (R
d+1
+ ) is compact.

Proof. Let ( fn)n∈N ∈ L1
k, β (R

d+1
+ ) such that fn ⇀ 0 weakly in L1

k, β (R
d+1
+ ) as n → ∞. It is enough to prove that

lim
n→∞

||Pu, v(σ)( fn)||L1
k, β

= 0.

We have

||Pu, v(σ)( fn)||L1
k, β

⩽
∫
Rd+1
+

∫
Rd+1
+

|σ(ξ )| |〈 fn, Λk, β (ξ , .)u〉L2
k, β

| |Λk, β (ξ , y)v(y)|dµk, β (ξ )dµk, β (y). (83)

Now as fn ⇀ 0 weakly in L1
k, β (R

d+1
+ ) as n → ∞, then on the one hand

∀ξ , y ∈ Rd+1
+ , lim

n→∞
|σ(ξ )| |〈 fn, Λk, β (ξ , .)u〉L2

k
| |Λk, β (ξ , y)v(y)|= 0. (84)

Moreover, as fn ⇀ 0 weakly in L1
k, β (R

d+1
+ ) as n → ∞, then there exists a positive constantC such that || fn||L1

k, β
≤C.

Hence by simple calculations we get

∀ξ , y ∈ Rd+1
+ , |σ(ξ )| |〈 fn, Λk, β (ξ , .)u〉L2

k, β
| |Λk, β (ξ , y)v(y)| ≤C|σ(ξ )| ||u||L∞

k, β
|v(y)|. (85)

Therefore, by Fubini’s theorem and relation (5), we have
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∫
Rd+1
+

∫
Rd+1
+

|σ(ξ )| |〈 fn, Λk, β (ξ , .)u〉L2
k, β

| |Λk, β (ξ , y)v(y)|dµk, β (ξ )dµk, β (y)

≤C||u||L∞
k, β

∫
Rd+1
+

|σ(ξ )|
∫
Rd+1
+

|v(y)|dµk, β (y)dµk, β (ξ )

≤C||u||L∞
k, β

||v||L1
k, β

‖σ‖L1
k, β

< ∞. (86)

Thus from the Lebesgue dominated convergence’s theorem and the relations (83), (84), (85), (86) we deduce that

lim
n→∞

||Pu, v(σ)( fn)||L1
k, β

= 0

and the proof is complete.
Consequently we have the following three results for compactness of the Dunkl-Bessel two-wavelet multiplier

operators.
Theorem 14 Under the hypothesis of Theorem 10, the bounded linear operator

Pu, v(σ): Lp
k, β (R

d+1
+ )−→ Lp

k, β (R
d+1
+ )

is compact for 1 ≤ p ≤ ∞.
Proof. From the previous proposition, we only need to show that the conclusion holds for p=∞. In fact, the operator

Pu, v(σ): L∞
k, β (R

d+1
+ )−→ L∞

k, β (R
d+1
+ ) is the adjoint of the operator

Pv, u(σ): L1
k, β (R

d+1
+ )−→ L1

k, β (R
d+1
+ ),

which is compact by the previous Proposition. Thus by the duality property,

Pu, v(σ): L∞
k, β (R

d+1
+ )−→ L∞

k, β (R
d+1
+ )

is compact. Finally, by an interpolation of the compactness on L1
k, β (R

d+1
+ ) and on L∞

k, β (R
d+1
+ ) such as the one given on

pages 202 and 203 of the book [48] by Bennett and Sharpley, the proof is complete.
The following result is an analogue of Theorem 13 for compact operators.
Theorem 15 Under the hypotheses of Theorem 13, the bounded linear operator

Pu, v(σ): Lp
k, β (R

d+1
+ )−→ Lp

k, β (R
d+1
+ )

is compact for all p ∈ [r, r′].
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Proof. The result is an immediate consequence of an interpolation of Corollary 5 and Proposition 11. See again
pages 202 and 203 of the book [48] by Bennett and Sharpley for the interpolation used.

Using similar ideas as above we can prove the following.
Theorem 16 Under the hypothesis of Theorem 11, the bounded linear operator

Pu, v(σ): Lp
k, β (R

d+1
+ )−→ Lp

k, β (R
d+1
+ )

is compact for 1 ≤ p ≤ ∞.

5. The generalized Landau-Pollak-Slepian Operator
Let U ⊂ Rd+1, be a measurable subset. As above, we define µk, β (U) by

µk, β (U): =
∫

U
dµk, β (t).

5.1 Traces formula
Let R and R1 and R2 be positive numbers. We define the linear operators

QR: L2
k, β (R

d+1
+ )−→ L2

k, β (R
d+1
+ ),

PR1 : L2
k, β (R

d+1
+ )−→ L2

k, β (R
d+1
+ ),

PR2 : L2
k, β (R

d+1
+ )−→ L2

k, β (R
d+1
+ ),

as

QR f : = EB(0, R) = χB(0, R) f , PRi f : = MB(0, Ri) = (Fk, β )
−1(χB(0, Ri)Fk, β ( f )), i = 1, 2.

We adapt the proof of Proposition 20.1 in the book [9] by Wong, we prove the following.
Proposition 12 The linear operators QR: L2

k, β (R
d+1
+ ) −→ L2

k, β (R
d+1
+ ), PR1 : L2

k, β (R
d+1
+ ) −→ L2

k, β (R
d+1
+ ) and

PR2 : L2
k, β (R

d+1
+ )−→ L2

k, β (R
d+1
+ ), are self-adjoint projections.

The bounded linear operator PR2QRPR1 : L2
k, β (R

d+1
+ ) −→ L2

k, β (R
d+1
+ ), it is called the generalized Landau-Pollak-

Slepian operator. We can show that this operator is a Dunkl-Bessel two-wavelet multiplier.
Theorem 17 Let u and v be the functions on Rd+1

+ defined by

u =
1√

µk, β (B(0, R1))
χB(0, R1), v =

1√
µk, β (B(0, R2))

χB(0, R2).
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Then the generalized Landau-Pollak-Slepian operator PR2QRPR1 : L2
k, β (R

d+1
+ ) −→ L2

k, β (R
d+1
+ ) is unitary equivalent

to a scalar multiple of the Dunkl-Bessel two-wavelet multiplier

Pu, v(χB(0, R)): L2
k, β (R

d+1
+ )−→ L2

k, β (R
d+1
+ ).

In fact

PR2QRPR1 =Ck, β (R1, R2)(Fk, β )
−1(Pu, v(χB(0, R)))Fk, β , (87)

where

Ck, β (R1, R2): =
√

µk, β (B(0, R1)µk, β (B(0, R2)).

Proof. It is easy to see that u and v belong to L2
k, β (R

d+1
+ )∩L∞

k, β (R
d+1
+ ) and

||u||L2
k, β

= ||v||L2
k, β

= 1.

On the other hand we have

〈Pu, v(χB(0, R))( f ), g〉L2
k, β

=
∫
Rd+1
+

MχB(0, R)(u f )(ξ )(vg)(ξ )dµk, β (ξ ).

By simple calculations we find

〈Pu, v(χB(0, R))( f ), g〉L2
k, β (R

d+1
+ )

=
1

Ck, β (R1, R2)

∫
Rd+1
+

χB(0, R)(ξ )PR1(F
−1
k, β ( f ))(ξ )PR2(F

−1
k, β (g))(ξ )dµk, β (ξ )

=
1

Ck, β (R1, R2)

∫
B(0, R)

PR1(F
−1
k, β ( f ))(ξ )PR2(F

−1
k, β (g))(ξ )dµk, β (ξ )

=
1

Ck, β (R1, R2)

∫
Rd+1
+

QRPR1(F
−1
k, β ( f ))(ξ )PR2(F

−1
k, β (g))(ξ )dµk, β (ξ )

=
1

Ck, β (R1, R2)
〈QRPR1(F

−1
k, β ( f )), PR2(F

−1
k, β (g)〉L2

k, β

=
1

Ck, β (R1, R2)
〈PR2QRPR1(F

−1
k, β ( f )), (F−1

k, β (g)〉L2
k, β
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=
1

Ck, β (R1, R2)
〈Fk, β PR2QRPR1(F

−1
k, β ( f )), g〉L2

k, β

for all f , g in S∗(Rd+1) and hence the proof is complete.
The next result gives a formula for the trace of the generalized Landau-Pollak-Slepian operatorPR2QRPR1 : L2

k, β (R
d+1
+ )−→

L2
k, β (R

d+1
+ ).

Corollary 7 We have

tr(PR2QRPR1) =Ck, β (R1, R2)
∫

B(0, R)

∫
B(0, min(R1, R2))

|Λk, β (ξ , y)|2dµk, β (y)dµk, β (ξ ).

Proof. The result is an immediate consequence of Theorem 17 and relation (74).
Remark 8 (i) The analogues of the previous results were studied for the classical wavelet multipliers by Catană (cf.

[49]).
(ii) Let S, Σ1, Σ2 ⊂Rd+1

+ be a measurable subsets with 0 < µk, β (Σi), µk, β (S)< ∞, i = 1, 2. Using similar ideas used
in Theorem 17, we prove that

MΣ2ESMΣ1 =Ck, β (Σ1, Σ2)(Fk, β )
−1(Pu, v(χS))Fk, β , (88)

where

ESh = χSh, MΣih = (Fk, β )
−1(χΣiFk, β (h)), i = 1, 2,

u =
1√

µk, β (Σ1)
χΣ1 , v =

1√
µk, β (Σ2)

χΣ2

and

Ck, β (Σ1, Σ2): =
√

µk, β (Σ1)µk, β (Σ2).

5.2 Donoho-Stark type uncertainty principle
In this subsection we will assume that u and v satisfy ‖u‖L∞

k, β
‖v‖L∞

k, β
= 1.

Now let σ1 = χS and σ2 = χΣ and let L1 = Pu, v(σ1) and L2 = Pu, v(σ2).
The main of this subsection is to prove the following Donoho-Stark type uncertainty principle.
Theorem 18 Let ε1, ε2 ∈ (0, 1) such that ε1 + ε2 < 1. If f ∈ L2

k, β (R
d+1
+ ) is ε1-localized with respect to L1 and

ε2-localized with respect to L2 then,

µk, β (S)µk, β (Σ)≥ (1− ε1 − ε2) . (89)
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Proof. From Proposition 6,

‖ f −L2L1 f‖L2
k, β

≤ ‖ f −L2 f‖L2
k, β

+‖L2 f −L2L1 f‖L2
k, β

≤ ‖L2 f − f‖L2
k, β

+‖L2‖S∞‖L1 f − f‖L2
k, β

≤ (ε2 + ε1)‖ f‖L2
k, β

.

Therefore

‖L2L1 f‖L2
k, β

≥ ‖ f‖L2
k, β

−‖ f −L2L1 f‖L2
k, β

≥ (1− ε1 − ε2)‖ f‖L2
k, β

.

Thus from Proposition 5 it follows that

1− ε1 − ε2 ≤ ‖L2L1‖S∞

≤ ‖L1‖S∞‖L2‖S∞

≤ µk, β (S)µk, β (Σ).

This proves the desired result.
We proceed as above theorem we obtain the following result.
Corollary 8 If f ∈ L2

k, β (R
d+1
+ ) is an eigenfunction of L1 and L2 corresponding to the same eigenvalue 1, then

µk, β (S)µk, β (Σ)≥ 1. (90)

Proof. Notice that, when ε1 = ε2 = 0 we have in this case S = f , Σ =Fk, β ( f ) and we proceed as above theorem we
obtain the result.

Remark 9 (1) As a first result, we can remark that the essential supports S and Σ cannot be too small.
(2) The result involves the couple (L2 f , L1 f ) and the rectangle Σ× S analogously to the Donoho-Stark UP which

involves the couple ( f , Fk, β ( f )) and the same rectangle.
(3) The estimate

µk, β (S)µk, β Σ)≥ 1− ε1 − ε2

is stronger then the classical Donoho-Stark estimate
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µk, β (S)µk, β (Σ)≥ (1− ε1 − ε2)
2.

5.3 Approximation inequalities
In this subsection, we prove that the Dunkl-Bessel wavelet multiplier is unitary equivalent to a scalar multiple of the

phase space restriction operator LS, Σ = ESMΣES on L2
k, βR

d+1
+ arising from the Landau theory in signal analysis ([4]). For

this we define the phase space restriction operator by

LS, Σ = ESMΣES = (MΣES)
∗MΣES.

And in the case when σ = χA is the characteristic function of the subsetA⊂Rd+1
+ , then we writePu, v(σ) asPu, v(A)

if u 6= v and Pu(A) if u = v.
The operator MΣES is Hilbert-Schmidt, and since the pair (S, Σ) is strongly annihilating, then we have

‖LS, Σ‖S∞ = ‖ESMΣ‖2
S∞ = ‖MΣES‖2

S∞ < 1. (91)

Moreover, the operator LS, Σ is self-adjoint, positive and from (22) it is compact and even trace class with

‖LS, Σ‖S1 = ‖MΣES‖2
S2
, (92)

The compact operator LS, Σ: L2
k, β (R

d+1
+ )→ L2

k, β (R
d+1
+ ) is self-adjoint and then can be diagonalized as

LS, Σ f =
∞

∑
n=1

λn〈 f , φn〉L2
k, β

φn, (93)

where {λn = λn(S, Σ)}∞
n=1 are the positive eigenvalues arranged in a non-increasing manner

λn ≤ ·· · ≤ λ1 < 1, (94)

and {φn = φn(S, Σ)}∞
n=1 is the corresponding orthonormal set of eigenfunctions. In particular

‖LS, Σ‖S∞ = λ1, (95)

where λ1 is the first eigenvalue corresponding to the first eigenfunctionφ1 of the compact operator LS, Σ. This eigenfunction
realizes the maximum of concentration on the set S×Σ. On the other hand, since φn is an eigenfunction of LS, Σ with
eigenvalue λn, then
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‖LS, Σφn −φn‖L2
k, β

= 〈φn −LS, Σφn, φn〉L2
k, β

= 1−λn, (96)

and

‖LS, Σ (LS, Σφn)−LS, Σφn‖L2
k, β

= λ−1
n 〈LS, Σφn −LS, Σ (LS, Σφn) , LS, Σφn〉L2

k, β

= λn(1−λn) = (1−λn)‖LS, Σφn‖L2
k, β

. (97)

Thus, for all n, the functions φn and LS, Σφn are (1−λn)-localized with respect to LS, Σ. More generally, we have the
following comparisons of the measures of localization.

Proposition 13 Let ε, ε1, ε2 ∈ (0, 1).
1. If f ∈ L2

k, β (ε1, ε2, S, Σ), then f is (ε1 + ε2)-localized with respect to MΣES and (2ε1 + ε2)-localized with respect
to LS, Σ.

2. If f ∈ L2
k, β (R

d+1
+ ) is ε-localized with respect to LS, Σ, then

〈 f −LS, Σ f , f 〉L2
k, β

≤ (ε2 + ε)‖ f‖2
L2

k, β
. (98)

3. If f ∈ L2
k, β (R

d+1
+ ) satisfies

〈 f −LS, Σ f , f 〉L2
k, β

≤ ε‖ f‖2
L2

k, β
, (99)

then f is
√

ε-localized with respect to LS, Σ.
4. If f ∈ L2

k, β (ε1, ε2, S, Σ), then

〈 f −LS, Σ f , f 〉L2
k, β

< (2ε1 + ε2)‖ f‖2
L2

k, β
. (100)

Proof. Recall that ‖ES‖S∞ = ‖MΣ‖S∞ = 1. First we have

‖MΣES f − f‖L2
k, β

≤ ‖MΣ f − f‖L2
k, β

+‖MΣES f −MΣ f‖L2
k, β

≤ ‖MΣc f‖L2
k, β

+‖MΣ‖S∞‖ESc f‖L2
k, β

≤ (ε1 + ε2)‖ f‖L2
k, β

.

Moreover,
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‖LS, Σ f − f‖L2
k, β

≤ ‖ESMΣES f −ES f‖L2
k, β

+‖ES f − f‖L2
k, β

≤ ‖ES‖S∞‖MΣES f − f‖L2
k, β

+‖ES f − f‖L2
k, β

≤ (2ε1 + ε2)‖ f‖L2
k, β

.

Now since

2〈 f −LS, Σ f , f 〉L2
k, β

= ‖LS, Σ f − f‖2
L2

k, β
+‖ f‖2

L2
k, β

−‖LS, Σ f‖2
L2

k, β

≤ ‖LS, Σ f − f‖2
L2

k, β
+

(
‖LS, Σ f − f‖L2

k, β
+‖LS, Σ f‖L2

k, β

)2

−‖LS, Σ f‖2
L2

k, β

= 2‖LS, Σ f − f‖2
L2

k, β
+2‖LS, Σ f − f‖L2

k, β
‖LS, Σ f‖L2

k, β
,

and since ‖LS, Σ‖S∞
≤ 1, then

〈 f −LS, Σ f , f 〉L2
k, β

≤ ‖LS, Σ f − f‖2
L2

k, β
+‖LS, Σ f − f‖L2

k, β
‖ f‖L2

k, β
≤ (ε2 + ε)‖ f‖2

L2
k, β

, (101)

and the second result follows.
On the other hand, since

〈
(LS, Σ)

2 f , f
〉

L2
k, β

≤ 〈LS, Σ f , f 〉L2
k, β

, (102)

and since LS, Σ is self-adjoint, then

‖LS, Σ f − f‖2
L2

k, β
=
〈
(I −LS, Σ)

2 f , f
〉

L2
k, β

≤ 〈(I −LS, Σ) f , f 〉L2
k, β

≤ ε‖ f‖2
L2

k, β
. (103)

Finally, since

〈 f −LS, Σ f , f 〉L2
k, β

= 〈ESc f , f 〉L2
k, β

+ 〈ES f , MΣc f 〉L2
k, β

+ 〈MΣES f , ESc f 〉L2
k, β

,

then we obtain the last result.
The estimate (99) is equivalent to
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〈LS, Σ f , f 〉L2
k, β

≥ (1− ε)‖ f‖2
L2

k, β
, (104)

and we denote by L2
k, β (ε, S, Σ) the subspace of L2

k, β (R
d+1
+ ) consisting of functions f ∈ L2

k, β (R
d+1
+ ) satisfying (104).

Hence from (96) and (97) we have,

∀n ≥ 1, φn, LS, Σφn ∈ L2
k, β (1−λn, S, Σ). (105)

Moreover from Proposition 13, if f ∈ L2
k, β (ε1, ε2, S, Σ), then f ∈ L2

k, β (2ε1 + ε2, S, Σ), and if f is ε-localized with
respect to LS, Σ, then f ∈ L2

k, β (2ε, S, Σ). Therefore we are interested to study the following optimization problem

Maximize 〈LS, Σ f , f 〉L2
k, β

, ‖ f‖L2
k, β

= 1, (106)

which aims to look for orthonormal functions in L2
k, β (R

d+1
+ ), which are approximately time and band-limited to a bounded

region like S×Σ. It follows that the number of eigenfunctions of LS, Σ whose eigenvalues are very close to one, are an
optimal solutions to the problem (106), since if φn is an eigenfunction of LS, Σ with eigenvalue λn ≥ (1−ε), we have from
the spectral representation,

〈LS, Σφn, φn〉L2
k, β

= λn ≥ (1− ε). (107)

We denote by n(ε, S, Σ) for the number of eigenvalues λn of LS, Σ which are close to one, in the sense that

λ1 ≥ ·· · ≥ λn(ε, S, Σ) ≥ 1− ε > λ1+n(ε, S, Σ) ≥ ·· · , (108)

and we denote by Vn(ε, S, Σ) = span{φn}n(ε, S, Σ)
n=1 the span of the first eigenfunctions of LS, Σ corresponding to the largest

eigenvalues {λn}n(ε, S, Σ)
n=1 . Therefore, by (107) and (105), each eigenfunction φn and its resulting function LS, Σφn are in

L2
k, β (ε, S, Σ), if and only if 1 ≤ n ≤ n(ε, S, Σ). Now, if f ∈Vn(ε, S, Σ), then

n(ε, S, Σ)

∑
n=1

λn

∣∣∣∣〈 f , φn〉L2
k, β

∣∣∣∣2 ≥ λn(ε, S, Σ)

n(ε, S, Σ)

∑
n=1

∣∣∣∣〈 f , φn〉L2
k, β

∣∣∣∣2 ≥ (1− ε)‖ f‖2
L2

k, β
.

Thus Vn(ε, S, Σ) determines the subspace of L2
k, β (R

d+1
+ ) with maximum dimension that is in L2

k, β (ε, S, Σ). Based on
the paper [50], we obtain the following theorem that characterizes functions that are in L2

k, β (ε, S, Σ).
Theorem 19 Let fker denote the orthogonal projection of f onto the kernel Ker(LS, Σ) of LS, Σ. Then a function f is

in L2
k, β (ε, S, Σ) if and only if,
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n(ε, S, Σ)

∑
n=1

(λn + ε −1)
∣∣∣∣〈 f , φn〉L2

k, β

∣∣∣∣2 ≥ (1− ε)‖ fker‖2
L2

k, β
+

∞

∑
n=1+n(ε, S, Σ)

(1− ε −λn)

∣∣∣∣〈 f , φn〉L2
k, β

∣∣∣∣2.
Proof. The eigenfunctions

{
φΣ

n
}∞

n=1 form an orthonormal subset in L2
k, β (R

d+1
+ ), possibly incomplete if Ker(Lψ

Σ ) 6=
{0}; hence, we can write

f =
∞

∑
n=1

〈 f , φn〉L2
k, β

φn + fker, (109)

where fker ∈ Ker(LS, Σ). Then

〈LS, Σ f , f 〉L2
k, β

=
∞

∑
n=1

λn

∣∣∣∣〈 f , φn〉L2
k, β

∣∣∣∣2. (110)

So the function f is in L2
k, β (ε, S, Σ) if and only if

∞

∑
n=1

λn

∣∣∣∣〈 f , φn〉L2
k, β

∣∣∣∣2 ≥ (1− ε)

(
‖ fker‖2

L2
k, β

+
∞

∑
n=1

∣∣∣∣〈 f , φn〉L2
k, β

∣∣∣∣2
)
, (111)

and the conclusion follows.
While a function f that is in L2

k, β (ε, S, Σ) does not necessarily lies in some subspace VN = span{φn}N
n=1, it can

be approximated using a finite number of such eigenfunctions. Let ε0 ∈ (0, 1) be a fixed real number and let P the
orthogonal projection onto the subspace Vn(ε0, S, Σ).

Theorem 20 Let f be a function in L2
k, β (ε, S, Σ). Then

∥∥∥∥∥ f −
n(ε0, S, Σ)

∑
n=1

〈 f , φn〉µ φn

∥∥∥∥∥
L2

k, β

≤
√

ε
ε0

‖ f‖L2
k, β

. (112)

Proof. By an easy adaptation of the proof of Proposition 3.3 in [50], we can conclude that

‖P f‖2
L2

k, β
≥ (1− ε/ε0)‖ f‖2

L2
k, β

. (113)

It then follows,

‖ f‖2
L2

k, β
= ‖P f +( f −P f )‖2

L2
k, β

= ‖P f‖2
L2

k, β
+‖ f −P f‖2

L2
k, β

.

Thus
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‖ f −P f‖2
L2

k, β
= ‖ f‖2

L2
k, β

−‖P f‖2
L2

k, β
≤ ‖ f‖2

L2
k, β

− (1− ε/ε0)‖ f‖2
L2

k, β
= ε/ε0‖ f‖2

L2
k, β

.

This completes the proof of the theorem.
Consequently and from Proposition 13, we immediately deduce the following approximation results.
Corollary 9 Let ε, ε1, ε2 ∈ (0, 1).
1. If f ∈ L2

k, β (ε1, ε2, S, Σ), then

∥∥∥∥∥ f −
n(ε0, S, Σ)

∑
n=1

〈 f , φn〉µ φn

∥∥∥∥∥
L2

k, β

≤
√

2ε1 + ε2

ε0
‖ f‖L2

k, β
. (114)

2. If f ∈ L2
k, β (R

d+1
+ ) is ε-localized with respect to LS, Σ, then

∥∥∥∥∥ f −
n(ε0, S, Σ)

∑
n=1

〈 f , φn〉L2
k, β

φn

∥∥∥∥∥
L2

k, β

≤
√

2ε
ε0

‖ f‖L2
k, β

. (115)

Adapting the method used in [7], we will show that the phase space restriction operator LS, Σ can be viewed as a
Dunkl-Bessel wavelet multiplier, and then we will deduce a trace formula.

Theorem 21 Let u = v be the function on Rd+1
+ defined by u = 1√

µk, β (S)
χS and let σ = χΣ. Then

LS, Σ = µk, β (S)Pu(Σ). (116)

Proof. Clearly, the function u belongs to L2
k, β (R

d+1
+ )∩L∞

k, β (R
d+1
+ ), with ‖u‖L2

k, β
= 1. Then, since ES is self-adjoint

and by Parseval’s equality (14), we have for all f , g ∈ L2
k, β (R

d+1
+ ),

〈LS, Σ f , g〉L2
k, β

= 〈MΣES f , χS g〉L2
k, β

=
√

µk, β (S)〈MΣES f , ϕg〉L2
k, β

=
√

µk, β (S)
〈
Fk, β MΣES f , Fk, β (ug)

〉
L2

k, β

=
√

µk, β (S)
〈
χΣFk, β χS f , Fk, β (ug)

〉
L2

k, β

= µk, β (S)
〈
σFk, β (u f ), Fk, β (ug)

〉
L2

k, β
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= µk, β (S)〈Pu(Σ), g〉L2
k, β

.

This completes the proof.
From relation (74) and Theorem 21, we deduce the following trace formula.
Corollary 10 The phase space operator LS, Σ is trace class with

(LS, Σ) = µk, β (S)(Pu(Σ)) =
∫

S

∫
Σ
|Λk, β (x, ξ )|2 dµk, β (x)dµk, β (ξ ). (117)
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