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Abstract: This paper delves into the Dunkl-Bessel operator on Ri“ and its corresponding harmonic analysis. A
generalized form of Heisenberg-type uncertainty inequality is established. Schatten-von Neumann properties for the two-
wavelet multiplier within the Dunkl-Bessel theory framework are elucidated. Additionally, the trace formula for a two-
wavelet Dunkl-Bessel multiplier is proven as a bounded linear operator in the trace class from L,i 5 (RE) into L,i B (RE).
Furthermore, subject to appropriate conditions, the L‘Z" B boundedness and compactness of these Dunkl-Bessel two-wavelet
multipliers are proven, applicable to L]’Z’ ﬁ(Rflﬁl), 1 < p < 0. Finally, using a class of concentration operators for the
Dunkl-Bessel two-wavelet, we show that the eigenfunctions of the Dunkl-Bessel two-wavelet are maximally concentrated
in the time-frequency domain. Leveraging this result, we derive approximation inequalities for functions that exhibit
significant concentration within specific regions of the time-frequency plane.
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1. Introduction

The term “localization operators” was first introduced by Daubechies in 1988 [1], utilized as a mathematical tool
to localize signals on the time-frequency plane. These operators are also referred to as Toeplitz operators or short-time
Fourier transform multipliers. Operators that localize in both time and frequency domains hold significance across various
applications in optics and signal analysis, serving as a mathematical framework for defining function restrictions to specific
regions in the time-frequency plane.

Extensive research on localization operators has been conducted, notably by Slepian and Pollak in a series of
excellent papers [2], with further contributions from Landau and Pollak [3, 4], as well as Slepian [5, 6]. Consequently,
wavelet multiplier operators can be considered as a variant of localization operators. Subsequently, the theory of wavelet
multipliers has been initiated by He and Wong in [7], developed in the paper [8] by Du and Wong, and detailed in the
book [9] by Wong. Next, this subject has been extended for the generalized Fourier transforms (see [10—15] and others).
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In classical scenarios, quantitative uncertainty principles, which are special inequalities, provide insights into the
relationship between a function and its Fourier transform. These principles draw parallels to the classical Heisenberg
inequality, which has played a significant role in advancing quantum physics. Numerous authors have investigated
quantitative uncertainty principles for various Fourier transforms, including examples from literature [16-23]).

The Dunkl-Bessel transform is an important tool which has the scope of and potential for applications in many areas
of the mathematical sciences. Very recently, many authors have been investigating the behavior of the Dunkl-Bessel
transform to several problems already studied for the Fourier transform; for instance, men value theorem [24], uncertainty
principles [25, 26], Dunkl-Bessel Gabor transform [27], Sobolev spaces of exponential type [28], Dunk-Bessel wavelet
transform [29], time-frequency analysis [30] and so on. We mention that the Dunkl-Bessel transform generalize the
usual Fourier transform, the Weinstein transform [17, 31-33] and the multi-variables Bessel transform [34], which give
an impact for any subject studied in the Dunkl-Bessel setting.

The first focus of this paper is to extend the study of uncertainty principles for the Dunkl-Bessel transform by
comparing different measures of localization. Specifically, we concentrate on uncertainty principles where concentration
is assessed in terms of dispersion or the smallest support. Furthermore, we aim to expose and study the two-wavelet
multipliers in the setting of the Dunkl-Bessel transform.

The second aim of this paper is to prove results on the L”-boundedness and the L”-compactness of the two-wavelet
multipliers associated with the Dunkl-Bessel transform.

The third aim is to construct and study an example of generalized two-wavelet multipliers. Indeed, we prove that
the generalized two-wavelet multiplier is unitary equivalent to a scalar multiple of the generalized Landau-Pollak-Slepian
Operator.

The fourth aim is to give some applications on the generalized two-wavelet multipliers. In fact, in the first application
we use the e-localization measure introduced in [35] to state a new uncertainty inequality involving the generalized two-
wavelet multiplier. More precisely, we present a proof of an uncertainty principle of Donoho-Stark type which involve in
anew way generalized two-wavelet multipliers, the concept of £-concentration and the standard deviation of L? functions.
We show how our results improve the classical Donoho-Stark estimate.

The second application, on the fundamental example constructed, is the study of some spectral problems. In particular,
we prove that a signal which is almost time and almost bandlimited can be approximated by its projection on the span
of the first eigenfunctions of the phase space restriction operator (special case of the generalized Landau-Pollak-Slepian
operator), corresponding to the largest eigenvalues which are close to one.

We recall that, the time-limited functions and bandlimited functions are basic tools of signal and image processing.
Unfortunately, the simplest form of the uncertainty principle tells us that a signal cannot be simultaneously time and
bandlimited. This leads to the investigation of the set of almost time and almost bandlimited functions, which was initially
carried by Landau, Pollak [4, 36] and then by Donoho, Stark [37].

The structure of this paper is as follow:

In Section 2, we recall the main results about the harmonic analysis associated with the Dunkl-Bessel theory.
In Section 3, we obtain new uncertainty inequalities by means of local uncertainty principles for functions either in
Ly ﬁ(RTI) or in Ly, ﬁ(Ri“) nLg ﬁ(Riﬂ). In Section 4, we introduce and we study the two-wavelet multipliers in
the setting of the Dunkl-Bessel transform. More precisely, the Schatten-von Neumann properties of these two-wavelet
multipliers are established, and for trace class generalized two-wavelet multipliers, the traces and the trace class norm
inequalities are presented. Next, we investigate the L”-boundedness and compactness of these two-wavelet multipliers,
when suitable conditions on the symbols and two admissible wavelets are satisfied. In the last section, firstly we introduce
the generalized Landau-Pollak-Slepian operator. We give the link between this operator and the generalized two-wavelet
multipliers. As applications we prove the Donoho-Stark uncertainty principle for the Dunkl-Bessel transform, next we
study some spectral problems associated for the generalized Landau-Pollak-Slepian operator. More precisely, we use the
compositions of time and bandlimiting operators and consider the eigenvalue problem associated with these operators.
The resulting operators yield an orthonormal set of eigenfunctions (well-known as prolate spheroidal functions in the
Euclidean Analysis) which satisfy some optimality in concentration in a region in the time-frequency domain. We prove
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a characterization of functions that are approximately time and bandlimited in the region of interest, and we obtain
approximation inequalities for such functions using a finite linear combination of eigenfunctions.

2. Preliminaries

In this section we recall some basic results in the Dunkl theory, harmonic analysis associated with the Dunkl-Bessel
Laplace operator and Schatten-von Neumann classes. Main references are [24, 38—40].

2.1 The Dunkl operators

Let RY, be the Euclidean space equipped with a scalar product (, ) and let ||x|| = 1/(x, x). For a in R4\ {0}, let o
be the reflection in the hyperplane Hy C R? orthogonal to a, i.e. for x € RY,

A finite set R C R?\{0} is called a root system if RNR o = {&, —a} and 64R = R for all @ € R. For a given
root system R reflections 0y, & € R, generate a finite group W C O(d — 1), called the reflection group associated with

R. We fix a B € RY\ U H,, and define a positive root system R, = {Oc ER: (a, B) > 0}. We normalize each @ € R,

acR
as (a, oy = 2. A function k: R — C on R is called a multiplicity function if it is invariant under the action of W. We

introduce the index y as

y=vk) =Y kla).

aER

Throughout this paper, we will assume that k(ct) > 0 for all & € R. We denote by @, the weight function on R? given
by

()= T e, 0,

OaER

which is invariant and homogeneous of degree 27.
The Dunkl operators T, j = 1, 2, ..., d, on R? associated with the positive root system R and the multiplicity
function k are given by

ij<x>=§£<x>+ Y ko)a

aER

f(x) — f(0u(x))

1 d
) ,  feC(RY).

We define the Dunkl-Laplace operator 2A; on R? for f of class C? on R? by

d X x)— f(ou(x
8afo) = 1200 = 000 +2 F k(L8 S 2O

oERT (Ot, x>
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where A and V are the usual Euclidean Laplacian and nabla operators on R¢ respectively. Then for each y € RY, the
system

Tju(xvy):yju(xv.y% j:17"'7da
u(0,y) =1

admits a unique analytic solution K (x, y), x € R?, called the Dunkl kernel.

2.2 Harmonic analysis associated with the Dunkl-Bessel Laplace operator

In this subsection we collect some notations and results on the DunkI-Bessel kernel, the Dunkl-Bessel transform, and
the Dunkl-Bessel convolution. (cf. [24]).
In the following we denote by

R =R x [0, o).

X = (X1, ooy Xgy Xar1) = (¥, xg41) € RETL

XU the characteristic function of the measurable subset U.
C.(R4*1)  the space of continuous functions on R?*!, even with respect to the last variable.
CP(RY*1)  the space of functions of class C” on R%*!, even with respect to the last variable.

& (R4F1)  the space of C*-functions on RY*!, even with respect to the last variable.

Z.(R¥1)  the Schwartz space of rapidly decreasing functions on R¢*!, even with respect to the last variable.
D.(R¥1)  the space of C*-functions on R?*! which are of compact support, even with respect to the last variable.
We consider the Dunkl-Bessel Laplace operator Ay g defined by Vx = (x', x411) € RY x [0, o),

D pf(x) = Dg v f (& Xar1) + Loy S (K Xag1), fECHRI), (1)

where £\ is the Dunkl-Laplace operator on R¢, and % the Bessel operator on [0, o) given by

d? 2B+1 d 1
fﬁ = 5 ﬁ + R ﬁ > ——.
dxd+1 Xd+1 dxd+l 2
The Dunkl-Bessel kernel A is given by
A p(x,2) =K(i, ) jp(xar1zar), (x,2) € REF €, @)

where K (ix', 7') is the Dunkl kernel and jg (x4 +124+1) is the normalized Bessel function. The Dunkl-Bessel kernel satisfies
the following properties:
i) Forall z, r € C?*!, we have
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Ang(Z,l‘):[\k’ﬁ(l‘,Z); Ak,ﬁ<za0>:1 and Ak,ﬁ(kzﬂ‘):[\k,ﬁ(zva’t)v forall A eC.

i) For all v € N*! x € RT! and z € C4*!, we have
DY A g (x, )| < [|x][M exp(]]x]| [[7mz]]),

where D) = and |v| = vi + ...+ V4. In particular

aV
az‘{l ...8z;ﬁtl
Ak g(x,y)| <1, forall x,y€ REH.

We denote by L kB (Ri“) the space of measurable functions on Ri“ such that

L

— P 3
Wil = ([, - )P p(x))” <om, i 1< p<en,

fllg 5 =ess sup |f(x)] <eo,

xERY d+1

where dpy g is the measure on Rfrl given by

1 2B+1
d / = — dx'd .
M, p (X5 Xav1) mk.ﬁwk( gy dx'dxay

Here

2 N 2B+
mk’ﬁ:/RcHle 2o (X)X dx'dxg.y.

For p =2, we provide this space with the scalar product

—/dﬂf (X p(x).

The Dunkl-Bessel transform is given for f in L; 4 L (REF) by

Fip(NO) = [, FOOAp(—x, y)diy p(x),  forall y= (Y, ygsr) R

Rd+1

i) For f in L;_g(R{™),

3)

“)

®)

(6)

)

Volume 6 Issue 1]2025| 1183 Contemporary Mathematics



| Ze (Nl < ||f||Li_ﬁ- ®)
i) Forall f in L 5(RY), if . p(f) belongs to L; g(R{™), then

10)= [ 1) P p (DDA p (5 )it p (). e ©)

iii) The Dunkl-Bessel transform .7, g provides a natural generalization of the usual Fourier transform, to which it

reduces in the case k =0 and B = —1, and if f(x) = F(||x[|) is a radial function on R?*!, then
+B+¢
R 5(N0) =F5 T THE)MD, (10)
d
where the transform .7, g ths is the Bessel transform given by
4 1 o0
VA >0, 7] P () = | 800y p, g )27 saiay (1)
g 2By 4 42) Jo O TR

iv) For f € .7, (R¥*1), if we define

then

v) Let A > 0. The dilation operator %, , is defined by

1 X
D f(x) = %f(I%
where Ai p=r+ B+1+ %. This operator satisfies
f%{_ﬁ@A:@%f%ﬂﬁ. (12)

Proposition 1 i) Plancherel’s formula. The Dunkl-Bessel transform % g is a topological isomorphism from
7. (R4*1) onto itself and for all fin .7, (RY+1),

Co iporary Math tics 1184 | Saifallah Ghobber, ef al.




Joae VPt 5= [, 1726 (6Pl ) (1)

i) In particular, The Dunkl-Bessel transform f — . g(f) can be uniquely extended to an isometric isomorphism

on L/%, B (REF.
iii) Parseval’s formula. For all f, g € L,% B (R‘fl), we have

[ o PO ) = A 1 PNy (&), (14)
By using the Dunkl-Bessel kernel, we introduce a generalized translation and a convolution structure. For a function

fe @R andy e ]Rff“l the Dunkl-Bessel translation T;‘ P f is defined by the following relation:

T p(w P 1) (%) = A g (x, )T p (f) (%) (15)

By using the Dunkl-Bessel translation, we define the Dunkl-Bessel convolution product f ;. g g of functions f, g €

7 (R4*1) as follows:

[ pglx) = /RL,+l 0P F(—y)2 ()i, g (3)- (16)
+
This convolution is commutative and associative and satisfies the following :
Proposition 2 i) For all f, g € .% (R‘fl), f *, p & belongs to .7 (R‘i“) and
17)

VyeREY, F p(Frep &) ) = T p () 0)Fi p(8) )
ii) Let 1 < p, g, r < o such that %—&— é — % =1.1Iffe Lfﬁﬁ(Ri“) and g € Lzﬁﬁ(R‘fl) is radial, then fx g g €

Ly 5(RE) and
(18)

Hf*k,ﬁg Ly < ”fHLZﬁ HgHLZﬁ .

iii) Moreover, for f, g in Li. ﬁ(Rflﬁl), the function f #; g g belongs to L,%_ B(Riﬂ) if and only if the function
T p(f)Fr, p(g) belongs to L7 B (R9) and (17) holds.
2.3 Schatten-von Neumann classes

Notations. We denote by
* [7(N) the set of all infinite sequences of real (or complex) numbers x: = (x;) jen, such that
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1
||x\|p—(2|xJ|P)' o, if 1<p<e,

[[x][oo: = sup|x;| < oo.
jeN

For p = 2, we provide this space /*(N) with the scalar product

(x, )21 =Y xj3;.

J=1

*B(L;

Definition 1 (i) The singular values (s,(A)),cn of a compact operator A in B(L? i B (RY1Y) are the eigenvalues of

(R4T1Y) the space of bounded operators from L i B(Rd“) into itself.

the positive self-adjoint operator |A| = VA*A.
(ii) For 1 < p < oo, the Schatten class S, is the space of all compact operators whose singular values lie in [7(N).
The space S, is equipped with the norm

(19)

v
==

lls,: = (X (sa(a

n=1
Remark 1 We note that the space S, is the space of Hilbert-Schmidt operators, and S; is the space of trace class

operators.
Definition 2 The trace of an operator A in S is defined by

tr(A) =

T

(Avy, v,,)L]%.’ , (20)

where (v,), is any orthonormal basis of L? i B (REF.
Remark 2 If A is positive, then

tr(A) = [|Alls, - @n

Moreover, a compact operator A on the Hilbert space L i B (Ri“) is Hilbert-Schmidt, if the positive operator A*A is
in the space of trace class ;. Then

1| = [[All5, = [|A*Alls, = tr(A*A) = ZHAvn”LZ <o (22)

for any orthonormal basis (v,), of L? i B (RE).
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Definition 3 We define S..: = B(L? i B (R4T)), equipped with the norm,

Alls.c= suplAviz . (23)

2 . —
vELk_ﬁ‘ HVHLI% ﬁil

3. Uncertainty principles by means of the frequency limiting operator

Let define firstly, for o € L g (R4T), the linear operator Mg: L k B (REF1) - 12

X, B(RiH) by

Mo (f) = F p(0Fi p(f))- (24)

This operator is called the Dunkl-Bessel multiplier. Involving Plancherel’s formula (13), we deduce that My is
bounded with

Mo ls. < llo]lzz .

Notice that, if ¢ is a characteristic function (6 = )4 ), then we write My instead of M. The operator My: i B (]R‘ZJrl ) —
L g 2 (RZM), is a self-adjoint projection, which is known as the frequency limiting operator on L i B (Rd+1) and has many
apphcatlons in time-frequency analysis.

We would like to find non-zero functions f € L} g 2 (RZ), which are time-limited on a subset § € R (i.e. f C )
and bandlimited on a subset X C Rflﬁl (i.e. Z, pf CX), for sets S and X with finite measure. Unfortunately, such functions
do not exist, because if f is time and bandlimited on subsets of finite measure, then f = 0 (see [19]). As aresult, it is natural
to replace the exact support by the essential support, and to focus on functions that are essentially time and bandlimited
to a bounded region like S x X in the time-frequency plane. To do this, we define the time limiting operator

Esf=yxsf, feligRYTHULE p(RET).

We recall the following notions.
Definition 4 Let0<e < 1 and let S, X C R4"!. Then
1. a nonzero function f € L ﬁ 2 (R4F1) is e-concentrated on S if ||Escf||L£ , < £||f||L% 5

2. anonzero function f € L (Rd+l) is e-timelimited on S if ||Escf||L]1€ , < 8||f||L}( 5
3. anonzero function f € L 5(R 41 is e-bandlimited on X if | Mse f|| 2 ; <e|fll2 5

k, k,
4. anonzero function f € L (RT’I) is €-localized with respect to an operator

L: Lk ﬁ(Ri_H) - Li,ﬁ (REH)
if

— < .
ILf = Fliz , <elfliz,
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Here A = R‘fl\A is the complement of A in Rﬁ“. It is clear that, if f is €-bandlimited on X then by Inequality
(13), F, pf is €-concentrated on X and we recall that, the time limiting operator, Eg: L, ﬁ(RdH) — L2 ﬁ(RiH) isa
self-adjoint projection.

Let g, & € (0, 1) and let S, X two measurable subsets of Rflﬁl such that

0 <ty p(S /dlikﬁ M, p(Z /d#kﬁ

We denote by Lk B (&1, &, S, Z) the subspace of L; 4 2 (RET) consisting of functions that are £;-concentrated on S

and &-bandlimited on X (clearly L; ﬁ(O 0, S, £) = 0). We denote also by L 3 ﬁLk ﬁ(sl, &, S, X) the subspace of

L ﬁ(R‘HI) ﬂL,% B(Ri“) consisting of functions that are &-timelimited on S and &-bandlimited on X. And if &, = &,
we denote by Lk‘ﬁ(s, S, ¥) insteed of L2 , (€, €, S, X).

; k. B
In the next subsection, we will use local uncertainty principles to obtain new uncertainty inequalities.

3.1 Uncertainty principles on the space L,Z{’ p(€1,62,8. 1)

The first known result for functions in L,%ﬂ B (&1, &, S, X) is the following Donoho-Stark type uncertainty principle,
see [19, Inequality (3.4)].
Theorem 1 Let &), & € (0, 1) such that €2 +¢&7 < 1. Thenif f € L B(Sl, &, S, X) we have

2
e 5 ()t p(E) (1\/834s§> . (25)

In the case of the usual Fourier transform,the last inequality has been proven by to Donoho and Stark [37]. Inequality
(25) implies that the essential support of f and .7 g f can’t be too small.

Now, recall the following Faris-local uncertainty inequalities, see [19].

Theorem 2

1.If 0 < s < A4 B then there exists C > 0 such that for every f € L?
of finite measure 0 < M, g(Z) < oo,

i B (R4*') and all measurable subset £ C R4

S

d
M1 | < C o ()50 a2, 6)

2. If s > A? 7B then there exists a positive constant C such that for all f € L i B (R‘i“) and all measurable subset
¥ C RE*! of finite measure 0 < M, g(X) < oo,

244 244

2 2— Z’ﬁ s Z’ﬁ
sl < Canp @I T Il @)

Next, take s = A‘; p- Then, if we apply the first inequality (26) with Al ﬁ( —¢€), €€ (0, 1), replacing s and then
apply the following classical inequality
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Al -l e ¢ H ad N1 E
1B B <C 7.8 28
50750 iy, < lrify 5o, e8)
we obtain for all € € (0, 1),
1- Ad —
M7 | < C (e 5 () S Il A1l Z (29)

Consequently we deduce the following first corollary comparing the support of .7 g(f) and the generalized time
dispersion |||x|*f]| 'y for function in the range of Msx:

Im(My) = {f € L; g(RL"") : 7 p(f) CZ}.

Corollary 1 Let s > 0. Then there exists C > 0 such that for every f € Im(My),

24¢ ZAL;ﬁ
e g (Fip(f)) Il = Clels* (30)

Proof. Let s > 0 and f € Im(My). Then f = My f, and we apply (26), (27), (29) to obtain the desired result. O

Notice that, if 1 g (Z., g(f )) is finite, then py g (f) is infinite, because f and . g(f) cannot be simultaneously
supported on subsets of finite measure, see [19, Corollary 3.7]. This result is known as the Benedicks-Amrein-Berthier
uncertainty principle.

Moreover, we can also obtain an inequality comparing the essential support of .7, g(f) and the generalized time
dispersion |||x|*f]| 2, for functions that are &-bandlimited on .

Corollary 2 Let s> 0.

LIf0<s< A?,‘ B> then there exists C > 0 such that for every function f that is &-bandlimited on X,

s

(e p () 5 NIsf f I3y | 2 € (1-€3) A1 &)

2. Ifs > Az‘ B’ then there exists C > 0 such that for every function f that is &-bandlimited on X,

i i
(b p(E) 70 xSl | =€ (1=€0) 52 Il - (32)

3. Forall € € (0, 1), there exists C > 0 such that for every function f that is &-bandlimited on X,

o s fl” > —e2yre ) fP 33
e p(Z) || rPr| = C—e)TE £l - (33)
2 i B
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Proof. Since f € L} B (R4 is ,-bandlimited on Z, then

Msf|? = 2 |[Msef|]? >(1—g2 2
” ZfHL%’ﬁ HfHL%ﬁ ” X f”l‘iﬁ = ( Z)HfHL]%B
O

For the first result, we use the local inequalities (26). Analogously, for the second inequality, we use (27), and finally,

for the third inequality, we use (29).
Now, since, HMZfHLz% ;= |Ex 4, g(f) ||L2 , then by interchanging the roles of f and % g(f) in Theorem 2,
: ’ . B
Corollary 1 and Corollary 2, we obtain the following results involving the time limiting operator instead of the frequency

limiting operator, and the frequency dispersion instead of the time dispersion.
Theorem 3 Letz > 0.

L If 0 <7 <A 5, then
(a) there exists a constant C > 0 such that for all f € Lﬁ B (R‘i“) and all measurable subset S C Rff”l of finite measure

0<,uk7ﬁ<S) < oo,
(34)

t

d 2
IEsfI3, , < Cluep(8) 2 1+l e p (P2

(b) there exists a constant C > 0 such that for every function f which is € -concentrated on S,

(35)

(1,5(9) "7 €1 Fip (NI | =€ (1= 11,

2. Ift >A‘; B then
(a) there exists a constant C > 0 such that forall f € Li B (Rflﬁl ) and all measurable subset S C Ri“ of finite measure

0 <ty p(S) <oo,
244 M;B
(36)

v.B
Hsz )

Esfl? <Cu a(S)IFI% b,
15/, < Crup®ITG; T IEPFip (!

(b) there exists a constant C > 0 such that for every function f which is € -concentrated on S,

37

d# d#
(1 5(8)) 2 NEF Zp (P = C(1=eD) ™0 115,

3. Foralle € (0, 1),
(a) there exists C > 0 such that for every f € Li‘ B (Rﬁ“) and all measurable subset S C Ri“ of finite measure

0<[lk7ﬁ(S) < oo,
Efk <C ) E || 128 A% o 2-2¢ 38
151, <€ (1 (5) IS IIE5 73 ()1 69)

1190 | Saifallah Ghobber, ef al.

Co iporary Math




(b) there exists a constant C > 0 such that for every function f which is € -concentrated on S,

Ad 2
e p(S) 1€ Zi p (1)

2
Lk. B

1
>c(1-e)) A, (39)

4. There exists a constant C > 0 such that for all f € Im(Eg) = {L? 8 (REY: F sy,

d
2A
v.B

e (DIEN Zep(Dly 2l (40)

Finally we can formulate our new Heisenberg-type uncertainty inequalities for functions in Li_ B (&1, &, S, L), with
constants that depend on €, &, S and X.
Theorem 4 Let s, > 0. Then for any f € L,%_B(sl, 8,5, X):

: d
L. if O<s,r<A%ﬁ,

s s 1_82s/21_82t/2 s
N IR B A @

(e p ()1t (2)) 28

: d
2. if s,t>A%ﬁ,

st

244
) @)

(1-&)(1-#)

nmw@géﬂ%ﬁmﬁuzc<%mﬁ%ﬂm

3. forall e € (0, 1),

R (IO

Lig i p(S) i, g (E)

Hxﬁﬁﬂ@ﬁWaﬂm%ﬁuv 1715 - “3)

Remark 3

1. Notice that Corollary 2 and Inequalities (35), (37) and (39) give separately a lower bounds for the measures of the
time dispersion |||x|*f]| Iy and the frequency dispersion |||&|’ Zx, ﬁ( HI 12, which give more information than a lower
bound of the product between them in Theorem 4.

2. On the other hand, from Corollary 2 and Inequalities (35), (37) and (39), we can obtain separately a lower bounds,
that depend of the signal f € L,%, ﬁ(sl, &, S, L), for the measures of t g(S) and gy g(X), from which we deduce, in the
spirit of [41], the following lower bounds for the product between them:
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1,44
C.Cp(s, A 5. 1) (1 —7)7 (1 —£3)5) "8, 0<s,1<Ad g,

M, g (), p(X) =  C.Cr(s, AY 5. 1) (1 —€7)(1 —&3), 51> A g, (44)

1
C.Cr(AS 5, A9 5, AY 5)((1—€7)(1—€3))TF, otherwise,

where C is a constant that depend only on s, Ai g1 & and

s+t 5t
19155

s £|! 1 s
||Xf||Lf7ﬁ\||§| k,ﬁ(f)HLiﬁ

Cf(SaAgix,ﬁvt): (45)

3.2 Uncertainty principles on the space L; ;N L} 4(¢,£,S,%)

The first known result for functions in L,l g L,% B(el, &, S, ¥) is the following Donoho-Stark type uncertainty
inequality, see [20, Proposition 2.6].
Theorem 5 Let &1, & € (0, 1). Thenif f € L; ;NL; 5(&1, &, S, T) we have

Iz, Iz,
:uk,ﬁ(S)Z 2A (1781) ; .uk,ﬁ(z’)z 72.(1762)7 (46)
171z , I71%;
and then
e 5 () p(Z) > (1—&1)*(1—€3). (47)

Theorem 5 is stronger then Theorem 1, in the sense that the previous theorem give a lower bound of 1 g(S) and
L, g (X) separately, which is not possible in Theorem 1.

We proceed as [20, Proposition 2.2, Proposition 2.3], we prove the following Carlson-type and Nash-type inequalities.

Theorem 6 Lets, r > 0. Then we have:

1. A Carlson-type inequality: there exists a constant C; = C(s, A;l/’ ﬁ) > 0 such that for all f € L}(’ ﬁ(R‘ﬁl) N

Ll%, B (Ri+l )5

I+ &
T T AR (48)
171 7 < CFIES 1Al -
2. A Nash-type inequality: there exists a constant C; = C(z, A‘;ﬁ p) > 0 such that forall f € L,L 5 (RE ﬁL,%’ 5 (REF),
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o 5
4.8 < Ay.B t g
713 " < CalFIL Y 1S Fep (g (49)

Consequently we obtain a lower bounds for the time and frequency dispersions:

R (i T AP TP I fuk: £ RO 50
X - an F - .
i B v, B
Corollary 3 Lets, t > 0. Then
L. there exists a constant C3 = C(k, B, 7, s, d) > 0 such that for all f € L; g (REFT) NL; 4 (REF),
Il NEF Ze (Al | = Gl 11z - (51)

2. there exists a constant C4 = C(k, B, 5, d) > 0 such that for all f € L; ﬁ(Rflﬁl) NL2 (R and all measurable

k, B
subset of X of finite measure,

2s 2A7”< B
2 Ag. B+s s A; b#r
It 13, < Came gL 1A (52)

3. there exists a constant Cs = C(k, B, ¢, d) > 0 such that for all f € L} 5 (RIFNYNL2 (RYF!) and all measurable

k, B
subset S of finite measure,

oad

2t 1. B
5 A‘;’ pH B A‘}i pH
IEsfIZ), < Comp@)IA Iy NP Zip (3" (59

4. there exists a constant Cs = C(k, B, 5, d) > O such that forall f € L} , (R NLE 5 (R with F g (f) C 2,

k, B
2A‘;"B 2A$ﬁ
ad '+5 Ad ’+s
te 5 (i p(f)) ||IX\SfHLz’§ zcﬁllfHLgf : (54)

5. there exists a constant C; = C(k, 3, ¢, d) > 0 such that for all f € Li.ﬁ(Rfﬁ] )NL2 o (REFY) with f C S,

k. B
245 5 249 5
Ad e Al i

w5 (f) |||€\’%,p(f>||Lg*§ 2C7Hf||LZ'§ : (55)
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and by the Carlson’s inequality (48) we obtain (52). Now by the Cauchy-Schwartz’s inequality we have,

Proof. The first inequality follows by combining the Carlson’s inequality (48) and the Nash’s inequality (49). Next
by (13) and (8),

HMZingﬁ = Hx):fm(f)lﬁg , < Hk,ﬁ(Z)Hg'Zk,B(f)Hi < Hk’ﬁ(Z)Hini.ﬁ’

2 2
EsfI%y | < e pS)IS1E

and by the Nash type inequality (49) we deduce (53). Finally (54) follows directly from (52) by taking £ = .% g(f) and
if we take S = f in (53) we obtain (55).
Remark 4 Clearly, the inequalities in (50) imply also that there exist a positive constant %, for all f € L v B (Ri“) N

L; 4(

Rd+])
+ +s +s +
[x |f|| Yo NEI T p(f )|| Yo >65||f|| Yo Hf|| et

Corollary 4 Lets, t > 0. Then
1. there exists a constant C > 0 such that for every function f, which is €-timelimited on S,

Ad t Ad t
r.B" r.p"

d d
(1, p(9)) *7# EF Fup(Nlliz , = CA—2) ¥8 |Iflyy .

2. there exists a constant C > 0 such that for every function f, which is &-bandlimited on X,

d . d
A +. A 3
" rp"

d d
(He.p (D) 78 (P Sfllyy > C(1=28) ™58 |fllz

3. there exists a constant C such that for all f € L,L 8 ﬂLi\ 8 (&1, &,8, %),

(A ,B+Y)( v.B +1)

Ad 4y Ad ot (1—&)%(1—¢3) +s AL 4t
H|)C|Sf||Lz_’;3 H|§|t9k.ﬁ(f)HL{§ >C<2 i ||f|\Yﬁ Hf||L,zj’;3 :

W, p(S) g, p(Z)

Proof. If f is & -timelimited, then

> - c >(1-—
185y, = 1F1sy , — WEse Sy , = (1=e)lflly .

and if f is &-bandelimited, then

C

O

(56)

(57)

(58)

(39)

iporary Math tics 1194 | Saifallah Ghobber, ef al.




2 2 2 2 2
IMefIy = IAIEy — sl = (1= eD)IfI .

Hence the desired result follows from (52) and (53). O
Remark 5 Lets,t>0andlet f € L 5(RY)NLE 5(RET).
1. If f is & -timelimited on S, then
2:7,13
(5)>C ||fHLA1 8 Ayt a P (60)
1 > - — &)
i HENIGIPY
2. If f is &-bandlimited on X, then
244 5
Ve
I, \ s
e p(E) = C | v — —-&). (61)
[EFIRY
3.Iffel] 5 NL? 5(€1, €, 5, %), then
1 g ()t g (Z) > C.Cr(AG g, s, 1)(1—&1)*(1 - €3), (62)
where
244
Ad s Ad 4t (ad +r)?A€1 +5)
A2l rhTmp
~ L L
Cr(Al .5, 1) = l. LB (63)

Ad 4t Al s
HIXI“fIILZ‘g III€\’9k,/3(f)IIL%’§

4. Dunkl-Bessel two-wavelet multipliers

Our motivation in this section comes mainly from results established in [11, 42, 43]

Definition 5 Let u, v, ¢ be measurable functions on R, we define the Dunkl-Bessel two-wavelet multiplier
operator noted by &, ,(c), on L} ﬁ(Riﬂ), 1 < p < oo, by

Pus(0)N0) = [ ., (&) Fep(u)(E)An g EVDIdI (&), y € R (64)
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In the case when ¢ = x4 is the characteristic function of the subset A C Ri“, then we write &, (o) as &, ,(A),

ifu#vandby Z,(A) ifu=v.

is #, 4(0): L

C

Often, it is more convenient to interpret the definition of 2, ,(o) in a weak sense, that is, for f in Lk ﬁ(Rﬂ“),

€[l, 0], and g in LY B(R‘fl),

<<@u,v(o-)(f)a g>L2

k. B

= [ SO Fp ) E) T ) Vbt 5 (E) (65)
¢
Proposition 3 Let p € [1, o). The adjoint of linear operator

Pun(0): L (RIT) 5 I 4 (REH)
(Rd+l)—>LPﬁ(Rd+l).

(R and g in Lk

kﬁ

Proof. For all f in LY (R it follows immediately from (64)

k. B B

(Pur(0)f): &)z = ./Rd+1 (&) Tk p(uf)(S) T, p(ve)(§)dtu, p(5)

= [, SEF N 7 pv2) b E)

= <<@v,u(6)(g)a f>1‘%.[3 = <f7 Wv,u(ﬁ)(g)hiﬁ.

Thus we get

@;, v(0)=2,.(0). (66)
O

Proposition 4 Leto € L B(Rd“) UL,‘:’B(R"'H) and let u, v € Lk ﬁ(RdH) ﬂLZ’ﬁ(RTI). Then
<<@u,v(d)(f)vg>1‘]%‘l3 :<‘7M0'(uf)ag>[‘%.ﬁ' (67)

Proof. Forall f, ginL i B (Rd“) it follows by the use of the relations (65) and (24) and Parseval’s formula (14) that
(P @) 8z, = [, Maluh) DD EdHe p(x) = (Mo (), )z
4 :

k, B

So, the prove is achieved. O
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4.1 Boundedness for &, ,(c) on S,

In this subsection, using interpolation theorem we will prove the boundedness of the operators &, ,(o) for o €
d+1
Lf’ﬁ(]l&:r ), 1 < p < ooon S
In sequel, in this subsection, u and v will be any functions in L7 B (REF) NLY g (R4 such that

Jullz | = vlzz , = 1.

Proposition 5 Let o be in L; ﬁ(R‘fl), then, &, ,(0) is in S and
H'@u,V(G)HSw<||GHLI£ﬁ~ (68)
Proof. From (64), it’s easy to see, for every functions f and g in L]% B (]Rfé+1 ), that

((Puv(0)(): 80z | <Nk p g ;17,6 (8l s Loy -

L%Tﬁ
On the other hand, from (5) and the Cauchy-Schwarz’s inequality, we get
a; oo a oo
1 p@hlez, <z 1z o 1 (9)llz, < Iz lslez

Therefore, since ||u||L% = ||vHL% = 1, we obtain

(Zus @) )iz | <Ifli2 Nl Nl

Using (23), we derive the result. O
Proposition 6 Let o bein L7 g (R, then the operator 2, ,(0) is in S.. and we have

120 (@5 < sz, Wzz , oz .

Proof. Using Cauchy-Schwarz’s inequality, we infer

(Zur @) )iz | <0z, |1 F )iz | Fip 02

Involving Plancherel’s formula (13), we derive that

(Puv(0) () 80z I < Mulle IVl gllolleg 1A 122 gz -
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From this and (23), we obtain the result. O
Theorem 7 Let & be in L] ﬁ(Ri“), 1 < p < . Then there exists a unique bounded linear operator &, ,(0):
L; 5 (RE) — L,i 5 (RET), such that

p=1
1200 s < (g, Ivliz ) 1oy -

Proof. Let f be in L7 ﬁ(Rf’l). We consider the following operator

T L p(REDNLT p(RETD) = L (R,
given by
T (0): = Zuv(0)(f)
Then by Proposition 5 and Proposition 6
||g(0-)”L]§B < HfHL,%BHG||L,16 (69)
and
170z ) < lulle Wl 11122 ol - (70)

Thus, by (69), (70) and the Riesz-Thorin interpolation’s theorem (see [[44], Theorem 2] we see also [[9], Theorem
2.11]). We obtain the following result

p=1
1Zuv(0) Nz =T (@2 < el g IVllez ) 7 111z Moy - (71
Since (71) is true for arbitrary functions f in L]% B (Rfﬁl ), then we obtain the desired result. O

4.2 Shatten class properties

In this subsection, u and v will be any functions in L,% B (Rf‘ﬁl )NLY B (Ri“) such that

a2, = ¥lz , = 1.

Let us begin with the following theorem

Theorem 8 Let o be in L]L B (Rfﬁl ), then &, (o) is an Hilbert Schmidt operator and
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1Zuv(@)ls, <liollyy -

Proof. Let {¢;, j =1, 2...} be an orthonormal basis for Lk B (R4F1). Then by (65), Fubini’s theorem and Parseval’s
identity (13), we obtain

agki

120(@) @)

~.
Il
—_

Il
agki

(Puv(0)(9)); Puv(0)(9))) 12

k. B

—

~.

(Zuv(0)(9)), P p (S, D) i p(5)

B

Y o 000 T p(E g

L 00 LA (0) A (. )), 00z, (03 W (& D)z b (&)

j=1
= Jean OGP0 (0) AL (S, ), il (5, )iz bt p(5)-

d+1
R+

Therefore from Proposition 5, the relation (5), we derive

Z 0)(¢)) ||Lz S/Ml EZ (0 )HSwdﬂk,ﬁ(é)SHGHi}(B<°°- (72)
So, by (72) and the Proposition 2.8 in the book [9], by Wong,

Puv(0): le,ﬁ(RiH) - Ll%,ﬁ(RiH)

is in the Hilbert-Schmidt class S> and hence compact. O
Proposition 7 Let 6 be a symbol in L} v B (Rfﬁl) 1 < p < oo. Then the operator &, (o) is compact.

Proof. Let (0,),en be a sequence of functions in L; ﬁ(Ri“) NLy ﬁ(Rflﬁl) such that 0, — ¢ in LY

k, 5(Ri+1) as
n — oo, Then by Theorem 7 we get:

p=1
1Zuv(0n) = Zuv(0)lls.. < (lulleg IVl ) 7" llow—ollp -

Therefore &, ,(0,) = . ,(0) in Se as n — . Now, since by Theorem 8, the operators are &, ,(0,) in S, and
hence compact, and since the set of compact operators is closed subspace of S, it follows that &, ,(o) is also compact.
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Theorem 9 Let o bein Ly g(R{™). Then,
1. Zu(0): L 5 (R — 12 i B (R4 is trace class and we have

2

WHGHQ 5 <P, v(0)ls, < HC’”Li 5’ (73)
g Lip ’ ‘

where 0 is given by

2. We have the following trace formula

1 Pul0) = [, GE) T p(E. ), ik p(E: D)z bt p ). (74)

Proof. 1. Since o is in L,Lﬁ(]Rffrl), by Theorem 8, &, (o) is in S,. Using [9, Theorem 2.2], there exists an
orthonormal basis {¢;, j=1, 2...} for the orthogonal complement of the kernel of the operator &, , (o), consisting of
eigenvectors of | #,,,(c)| and {y;, j =1, 2...} an orthonormal set in L; B(Rd“) such that

Puv(0)(f) =

Mz

silfs 92 5 Vi (75)

1

J

where s;, j =1, 2... are the positive singular values of &, (o) corresponding to ¢;. Then, we get

ngu v ”Sl ZS] Z u,v(o)((Pj)’ Wj>L£.ﬁ'

j=1

Thus, by Fubini’s theorem, Parseval’s identity, Bessel’s inequality, Cauchy-Schwarz’s inequality, (5), and ||u|| 12,=

HuHLi,ﬁ = 19 we get

=

||<@u,v(6)‘|s1 = Z(t@u,V(G)(d’j)a Wj>L§$ﬁ

J=1

Y [, 0(6) 70 ) ()T p i) €1 p(€)
Jj=17"+

Joio®

™

1(% i, g (&, )>L§.ﬁ<‘7/\k,ﬁ(§a s ‘Vj>1,iﬁd/~‘k,ﬁ(§)

J
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=)

(Z (A p(S: ) ip2 |>%dﬂk.ﬁ(€)

j=

D=

S/Riﬂ (g, ¢JvuAkﬁ )

< Jo @I (&, Dl 184 p 6 )iz o p(8)

<llolly -

Thus
|20l <ol -

We now prove that 7, (o) satisfies the first member of (73). It is easy to see that ¢ belongs to L k B (R4, and
using formula (75), we get

GO = [(Zurl0)(Aup(E ), A p(E s

'

- ’Zsj Ay, p(& ¢/>L2 (Wjs Awp(&, )y >L%,[3’

sj<‘</\k,ﬁ(‘5v Ju, ¢j>L]%1ﬁ ‘2+ ‘<Ak,ﬁ(§» v, %‘>L§ﬁ ‘2)

~.
Il
—_

/N
N —
™3

Then, using Plancherel’s formula given by relation (13) and Fubini’s theorem, we obtain
~ R , 2
Jo 3@ 5@ <3 Xsi( [y (g 8 0 P 8

L A pE v P (@),
Thus

llliz, + W1z, = Ml VI
L 18 dne p(6) < —HE—tE N5 = —— 2|2, (o),
¢

Jj=1

this allows to conclude.
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2. Let {¢;, j=1,2...} be an orthonormal basis for L7 B (R4*1). From the previous assertion, the Dunkl-Bessel two-
wavelet multiplier &, ,(o) belongs to S;, then by the definition of the trace given by the relation (20), Fubini’s theorem
and Parseval’s identity, we have

[ agk

tr(yu,»'(c)) = <'@M~,V(G)(¢j) ¢J>L2

. B

~.
I

Y. [ 0E0) Ac gl iz T e p & o)z e p(€)

j=1

= [ & X (0 Acp(E Nz (Ap(E. 0 00)p die pE)

j=1
= [ OO A pE T A plE )y i p (D)

Thus thee proof is complete. O

Involving Theorem 7, relation (73) and by interpolation argument (See [9, Theorem 2.10 and Theorem 2.11]), we
deduce the following result.

Corollary5 LetobeinZ; 4 P (R, 1< p < oo. Then, the Dunkl-Bessel two-wavelet multiplier 22, ,(c): L

— L 5(RE™) is in S, and we have

B(RdJrl)

[Zuv(0)]ls, < (IIMHLABIIVHL;) HG”Lfﬁ'

Remark 6 If u =v and if o is a real valued and nonnegative function in Lk B (R‘fl) then
P (0): I g(RET) = L7 g(RET)

is a positive operator. Moreover, using (21) and relation (74), we obtain
| Zuv(0)lls, = /Rg,+1 o (&)1 Ax B (&, -)””iiﬁdﬂk,ﬁ(&)- (76)
4 :

The trace of products of Dunkl-Bessel two-wavelet multipliers is given in the following result.
Corollary 6 Let o) and 0, be any real-valued and non-negative functions in Lk B (Rgfrﬂ)_ We assume that u = v and
uis a function in L? B (RYF1) such that ||u||,» ,= 1. Then, the Dunkl-Bessel two-wavelet multipliers &, ,(01), Py, ,(02)
3 k,

are positive trace class operators and

n

[(uston st

IN

[l

N

u, v(o-2>

b

S1 N
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for all natural numbers 7.
Proof. By Theorem 1 in the paper [45] by Liu we know that if A and B are in the trace class S; and are positive
operators, then

VneN, 1r(AB)" < (tr(A))n(tr(B))n.

So, if we take A = &, ,(01), B= 2, ,(02) and we invoke the previous remark, the proof is complete. O

4.3 L? Boundedness of P,, ,(c)

The aim of this subsection is to give a sufficient conditions on the symbols ¢ and the functions u and v, for which

Puy(0): L g(RE) = I (R, 1< p < oo be bounded.

Let us start with the following propositions.
Proposition 8 Let obeinL] ﬁ(RdH) ueLyg (RT™) and v € L} LB (RYF1), then the Dunkl-Bessel two-wavelet
multiplier &, ,(0): L k. B L A(RE — L % B (R4*') is a bounded linear operator and we have

120y oty < iz ol ol
Proof. For every function f in L 5 (RE), we have

120Dy, < [y 19T NI (6 20 it p €t )

Involving the relations (8) and (5), we derive

120 @)Dy, < Wy leleg vl ol

then we obtain the desire result. O
Therefore we have the following result.
Proposition 9 Let ¢ be in L; k. B (RE™!) and let u € L % B (RE),ve Ly g (R4*1), then the Dunkl-Bessel two-wavelet
multiplier

Pu(0): L7 g (RE) — L7 s (RE)

is a bounded linear operator such that

120 @z ) <y Wiz Il

)

Proof. Since the adjoint of &, ,(0): L k B (REY — L ' B (R s
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P (0): L7 g(RET) = L g (RET),

then by the Proposition 8 we obtain

120 (0)lez ) = 120 u(@)lpuy ) < Mullyy Wz gllolly -

This completes the proof O
Using an interpolation of Propositions 8 and 9, we obtain the following result.
Theorem 10 Let u and v be functions in L}Q ﬁ(Ri“) NLY g (REF). Then for all ¢ in L,L B (REF), there exists a

unique bounded linear operator 2, ,(0): L 5 (R — 17 5 (RE), 1 < p < oo, such that

1 1 1 L
v ? ? v
12 @l <l Wy Tl WE- Iy -

B

We can give another version of the LZ -boundedness. Firstly we generalize and we improve Proposition 9.

Proposition 10 Let o bein L, 5 (RE),veLl 5 (R andu € Lg_/ﬁ (RYF1), for 1 < p < oo, then the Dunkl-Bessel

two-wavelet multiplier 2, ,(c): LY 5 (REHY — L7 5 (RE) is a bounded linear operator, and we have

| Zu ()l ) < ||u||L£'ﬁIIVHL;’,BIIGHLL :

p f
Proof. For any f € L,’; 5 (R4, consider the linear functional
Sy L g REY) - C
Y L

From the relation (65)

(Puv(0)(f) 82 | < /RdﬂIG(é)II%,g(uf)(é)\\fk,ﬁ(vg)(é)lduk,ﬁ(é)

w5
< llolly N7 g @hlleg ;17 p (8l -

Using the relation (7), (5) and Holder’s inequality, we get

(Parl @)D, 8z | < luy g IVl 151yl
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/
Thus, the operator .#; is a continuous linear functional on LZ B (R‘fl ), and the operator norm

84 < ||lu % o .
1y < Wl Wl g Iy

As I¢(g) = (g, Puv(0)(f)) 3, by the Riesz representation theorem, we have

120 @)Dl = 1151y <l ¥lip Wiy ol

which establishes the proposition. O
Combining Proposition 8 and Proposition 10, we have the following theorem.

Theorem 11 Let o be in L]Lﬁ(Ri“), veE Lﬁﬁ (RYF!) and u € Lf:ﬁ(]R‘fl), for 1 < p < oo, then the Dunkl-Bessel

two-wavelet multiplier 2, ,(0): L}, B (R — Ly 8 (R is a bounded linear operator, and we have
1200V laag ) < e Wl ol

With a Schur technique, we can obtain an Li B—boundedness result as in the Theorem 10, but the estimate for the
norm ||Z,, ,(0)| |B(L/’: 5 is cruder.

Theorem 12 Let o be in L, 5 (RYF1), u and v in L ﬁ(R’f] )L ﬁ(Rfﬁ] ). Then there exists a unique bounded
linear operator &, ,(0): Lf‘ﬁ (REHY — L? ﬁ(R‘fl), 1 < p < oo such that

1200l ) < maxalyy ¥l o iy 191y Dol

Proof. Let ./ be the function defined on Rffrl X Ri“ by

A2 = [, S p(E VO p(—E. Dula)dp () (77)

We have

PurlO) ) = [, A 0 @b 2).

dt1
RY

By simple calculations, it is easy to see that

d+1
Lo |0 2t p ) < iz o1y oy . 2 € RE,

+

and
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d+1
Jog 11 05 bt p(2) < gy iy Iy v € BE

Thus by Schur Lemma (cf. [46]), we can conclude that

Puy(0): I gRE) — L7 g(RET)

is a bounded linear operator for 1 < p < oo, and we have
120 (@ llaag ;) < maxaly Iz o sz IVl oy

O
Remark 7 The previous Theorem tells us that the unique bounded linear operator on Lf; ﬁ(R‘fl), 1 <p<oo,

obtained by interpolation in Theorem 10 is in fact the integral operator on L,f B (Rff’l) with kernel .4 given by (77).
We can now state and prove the main result in this subsection.

Theorem 13 Let o be in L] ¢ (RE), re(1,2),andu, ve Ll 5 (REFT) NLY 5 (R, Then there exists a unique
bounded linear operator 2, ,(0): L} 5 (RETY — LP

k‘ﬁ(Rf’ﬁl) for all p € [r, r'], and we have

(78)

1—
1Z0s(@llag ) < EACHI0lig ey Mg,

where

2

z-1 7
(holeg o1y, )" (g Wz, )

C

2 L

7l 7
(||MHLI.{.13||V||L;E) (HullL;ﬁHvllL;jﬁ),

G

and

Proof. Consider the linear functional

7 (Li’ﬁ(Rﬁ“)ﬂLi_’ﬁ(Rﬁl)) X (L,Lﬁ(Ri“)ﬂLz (Ri“))

28 — L,i,B(Ri“)OL,%,B(Ri“)

(0, /) = Purv(0)(f)-

iporary Math tics
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Then by Proposition 8 and Theorem 7

< oo
170, Plly, < ey Ivlg A1y oy (19)

and

170, Pz , < /Tl Iz, 11112 oz - (80)

Therefore, by (79), (80) and the the multi-linear interpolation theory, see Section 10.1 in [47] for reference, we get a
unique bounded linear operator

I(0, f): L g (R x L g(RE) = L p(RET)

such that
17(0, Pl , < CullAleg ol - (81)
where
0 158
€= (lllg Wiy , ) (el Il )
and

By the definition of .#, we have
1208y ) < Crllolly ,-
As the adjoint of &, ,(0) is Z#,,4(0), so &, ,(0) is a bounded linear map on L,ﬁ/ B (REM) with its operator norm

1200y ) = 122u(@) g ) < Colloll . (82)

where
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1-6

o 2
C2 = (lully , Wlsz ) (e vl ) ™

Using an interpolation of (81) and (82), we have that, for any p € [r, '],
1—
120(@) g ) < Aoy Bl ¥l

with

4.4 Compactness of &, ,(c)

In this section we will give sufficient conditions on o, u, v so that the bounded operator Dunkl-Bessel two-wavelet
multiplier 2,,,(0): L} 5 RE) — Ly 5 (REMY is compact. Our first result is the following proposition.
Proposition 11 Under the same hypothesis of Theorem 10, the Dunkl-Bessel two-wavelet multiplier &, ,(0):
(RN — L) ﬁ(Rd“) is compact.

Proof. Let (fu)nen € Ly g | o (RYH!) such that f, — 0 weakly in L} i B (RET) as n — oo. Tt is enough to prove that

kﬁ

lim [|2,,(0) ()l , =0

We have
[T /R / o 1S s A p (B Dz 1 (& 310l p(E)dpt p3). (83)

Now as f, = 0 weakly in L k B (R4 as n — oo, then on the one hand

VE yE R, Tim [0(E)] (i A p(&, Ju)pa! 1A 5 (&, ¥V =0, (34)

Moreover, as f, — 0 weakly in L; g ! o(REM1) as n — oo, then there exists a positive constant C such that || £, ||, ; <C.
k

Hence by simple calculations we get
vE, yeRL, o () [(fus Axp (&, Jug V1A p (8, v < Clo (@) lulliz , VI (85)
Therefore, by Fubini’s theorem and relation (5), we have
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S L 190U A (8 D11 6 V0t (&)t )

<Cllulliz, [, 1o / L O)lda 0N (&)
+
<Clallez ,vlly oy, <o (86)

Thus from the Lebesgue dominated convergence’s theorem and the relations (83), (84), (85), (86) we deduce that

lim [|2,.,(0) ()l , =0

and the proof is complete. O
Consequently we have the following three results for compactness of the Dunkl-Bessel two-wavelet multiplier
operators.
Theorem 14 Under the hypothesis of Theorem 10, the bounded linear operator

Pun(0): L] y(RET) — L}

L pRET)

is compact for 1 < p < oo,
Proof. From the previous proposition, we only need to show that the conclusion holds for p = . In fact, the operator
Py v(0): L ' B (R — LY g (R9F1) is the adjoint of the operator

Py.u(0): L/l,ﬁ(RiH) — Lllc,ﬁ(RiH)a
which is compact by the previous Proposition. Thus by the duality property,
Pu(0): L7 g(RE) — L7 s (RET)

is compact. Finally, by an interpolation of the compactness on L v B (Rfl) and on LZ B (Rfﬁl) such as the one given on
pages 202 and 203 of the book [48] by Bennett and Sharpley, the proof is complete. O
The following result is an analogue of Theorem 13 for compact operators.
Theorem 15 Under the hypotheses of Theorem 13, the bounded linear operator

Pu(0): L gRET) — L7 g(RET)

is compact for all p € [r, 7'].
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Proof. The result is an immediate consequence of an interpolation of Corollary 5 and Proposition 11. See again
pages 202 and 203 of the book [48] by Bennett and Sharpley for the interpolation used. O
Using similar ideas as above we can prove the following.

Theorem 16 Under the hypothesis of Theorem 11, the bounded linear operator

@1,7\,((7) ﬁ(Rd-H) — Lp ﬁ(Ril:H)

is compact for 1 < p < oo,

5. The generalized Landau-Pollak-Slepian Operator

Let U C R?™!, be a measurable subset. As above, we define g(U) by

W, p (U /d.uk,B

5.1 Traces formula

Let R and R and R; be positive numbers. We define the linear operators
Or: Li,ﬁ(Riﬂ) — Li,ﬁ(Riﬂ),
Pry: Ly g(RET) — LE p(REH),
P, L} ﬁ(RdJrl) —>L2 ﬁ(Riﬂ)’

as

Orf: = Epo ) = X8(0,R)f» PriS: =Mp(o,r) = (Fi. )~ (Xs(0,r) T g (f)); i=1,2.

We adapt the proof of Proposition 20.1 in the book [9] by Wong, we prove the following
ﬁ(RdJrl) — L2 (Ri+1), PR] (Rd+1) N L2
Pry: L g 2 J(REH) — 12 i p (REM), are self-adjoint projections.

The bounded linear operator Pr,OrFr,: L ﬁ(Rd“) — L2 ﬁ(R‘fl), it is called the generalized Landau-Pollak-
Slepian operator. We can show that this operator is a Dunkl- Bessel two-wavelet multiplier.

Theorem 17 Let u and v be the functions on RZ"! defined by

Proposition 12 The linear operators Qg: L (Rf’ﬁl) and

k, B k. B k, B

1 1
u= —XB(O,R])a V= —XB(O-,Rz)'
., g (B(0, Ry)) e, 5 (B(0, R2))
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Then the generalized Landau-Pollak-Slepian operator Pr, OrFPr,: Lz‘ B (Rﬁ:rl) — L]% B (Riﬂ) is unitary equivalent
to a scalar multiple of the Dunkl-Bessel two-wavelet multiplier

Puao. m): 17 p (R — 12  (REH),
In fact

Pr,OrPr, = Ci g(R1, R2)(Fi p) " (Zuv(XB0.8))) Tk (87)

where

G p(R1, Ro): =/t (B(O, R )ay  (B(O, R2)).

Proof. It is easy to see that u and v belong to L? 5 (R NLY 5 (RET) and

lellzz | =il , = 1.

On the other hand we have

(P t0.0) s 8122, = [ My (00 )8 ENlte p (6):

k. B
By simple calculations we find

1

i) = o [ 20,0 &P (T b N)E) PR (7, b(8) ()t p(E)

<«@L¢,V(XB(O,R))(]C)’ g>L2 Ck7ﬁ(Rl , Rz) Rfﬁ]

k, B

1

s I TG LR Bt

1

= Cop(Rr,Ra) Jae OrPR, (F 5 (1)) (E)Pr, (T (8))(E)dpy p (&)
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_ 1 ar a—1
= m(fk,ﬁPRzQRPRI (fh [}(f))a g>Li,/3

for all f, g in .7, (R?*!) and hence the proof is complete. O
The next result gives a formula for the trace of the generalized Landau-Pollak-Slepian operator Pr, QrPr, : L]%. B (Rfﬁl ) —
L2 (RIH) '
k,B\+ /-
Corollary 7 We have

tr(Pr,OrFr,) = Ci p(R1, Rz)/B<0 ® /B< ) Ak g (&, y)Pdw g (0)diy g ().

0, min(Rl s R2

Proof. The result is an immediate consequence of Theorem 17 and relation (74). O

Remark 8 (i) The analogues of the previous results were studied for the classical wavelet multipliers by Catana (cf.
[49]).

(i) Let S, X1, £» C R4! be a measurable subsets with 0 < M, p(Zi); e, p(S) < oo, i=1,2. Using similar ideas used
in Theorem 17, we prove that

Ms,EsMs, = Ci g(Z1, £2)(Fr p) " (Puv(X5)) Pk . (88)
where
Esh = xsh, My,h = (F. g)~" (xz: %, p(h)), i=1,2,
1 1
U= —F——fy,, V=—"Fr———JX5,
M, g(Z1) e, p(Z2)
and

Ci.p(Z1, X2): = \/Nk,ﬁ(zl)ﬂk,ﬁ(zz)-

5.2 Donoho-Stark type uncertainty principle

In this subsection we will assume that « and v satisfy ||u||Lzﬁ HVHLZﬁ =1
Now let 0] = xs and 6, = xs and let L} = &, ,(01) and L, = &, ,(02).

The main of this subsection is to prove the following Donoho-Stark type uncertainty principle.

Theorem 18 Let g, & € (0, 1) such that e +& < 1. If f € Liﬁ(Ri“) is €)-localized with respect to L; and
&-localized with respect to L, then,

P, p (), p(Z) > (1 —&1—&2). (89)
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Proof. From Proposition 6,

_ < _ _
If LlefHLgﬁ < |f LZfHLI%‘B—F”LZf LZLIfHL,%ﬁ

< Hsz*fHLg_ﬁ +||L2H5w||L1f7f||Liﬁ
< (@+ea)lfly,
Therefore
HLZLlfHL%ﬁ > ”f”Lliﬁ_Hf_LZLlfHLiﬁ
2z (I-a-a)lfly -
Thus from Proposition 5 it follows that
l—eg—& < |LLi|s.
< L llsellZ2]ls.
< W (S, p(E).
This proves the desired result. O

We proceed as above theorem we obtain the following result.
Corollary 8 If f € L]% B (Rﬁf’l) is an eigenfunction of L; and L, corresponding to the same eigenvalue 1, then

M, p (), p(Z) > 1. (90)

Proof. Notice that, when €, = &, =0 we have inthiscase S = f, X = ﬁh B (f) and we proceed as above theorem we
obtain the result. O

Remark 9 (1) As a first result, we can remark that the essential supports S and X cannot be too small.

(2) The result involves the couple (L, f, L f) and the rectangle £ x S analogously to the Donoho-Stark UP which
involves the couple (f, .7 g(f)) and the same rectangle.

(3) The estimate

He, g (S, pZ) > 1 — €1 — &

is stronger then the classical Donoho-Stark estimate
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Y

e g ()t () = (1 — &1 — &)

5.3 Approximation inequalities
In this subsection, we prove that the Dunkl-Bessel wavelet multiplier is unitary equivalent to a scalar multiple of the

phase space restriction operator Ls y = EsMsEg on L,% ﬁRiH arising from the Landau theory in signal analysis ([4]). For
this we define the phase space restriction operator by

LS,Z = EsMyEg = (MzEs)*M};Es.

And in the case when ¢ = J,4 is the characteristic function of the subset A C Ri“ , then we write &2, ,(0) as &, ,(A)
ifu#vand Z,(A) ifu=v.
The operator My Es is Hilbert-Schmidt, and since the pair (S, X) is strongly annihilating, then we have

ILs,z|ls. = |EsMz|)5, = ||MsEs|5, < 1. 2y

Moreover, the operator Lg, s is self-adjoint, positive and from (22) it is compact and even trace class with
2
ILs.xlls, = [IMxEs[s,. (92)

The compact operator Lg. 5: L,%‘ B (Rff’l) — LZ B (Rf’l) is self-adjoint and then can be diagonalized as

LS, Zf = Z ln<f7 q)n>L£ B(Pna (93)
n=1 ’
where {1, = A,(S, )}, are the positive eigenvalues arranged in a non-increasing manner

In <o S A<, 94)

and {@, = ¢,(S, X)};>_, is the corresponding orthonormal set of eigenfunctions. In particular

|Ls,x|ls. = A1, 95)

where A, is the first eigenvalue corresponding to the first eigenfunction ¢; of the compact operator Ly y. This eigenfunction
realizes the maximum of concentration on the set § x X. On the other hand, since ¢, is an eigenfunction of Lg 5 with
eigenvalue A, then
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HLS,Zq)n - (Pn”L]%B = <(Pn _LS,Zq)na q)n>L% 8 =1 _)vny (96)

and

ILs, = (Ls,=@n) _LS,Z(pn”L% T 1{1<LS,Z(P11—LS,>:(L572<Pn),Ls,zfpnh]% ;
= A(l=4)=( _/,Ln)”LS,Z(Pn”Liﬁ' 7)

Thus, for all n, the functions ¢, and Lg 5 ¢, are (1 — A,)-localized with respect to Lg 5. More generally, we have the
following comparisons of the measures of localization.

Proposition 13 Let g, &1, & € (0, 1).

1.If f e L,%‘ ﬁ(eh &, S, %), then f is (&] + & )-localized with respect to My Eg and (2€; + €;)-localized with respect
to LS7 y.

2. If fe Li B (]Rffrl) is e-localized with respect to Lg 5, then

(f=Lssf N < @+ (%8)
3.Iffe Liﬁ(Riﬂ) satisfies
(f=Lsxf fliz  <ellfl; - (99)
then f is y/€-localized with respect to Lg x.
4. 1f f € Li’ﬁ(sl, &, S, X), then
(f=Lsxf. Ny < Cea+e)lfly . (100)

Proof. Recall that ||Es||s., = ||Mx||s.. = 1. First we have

IMsEsf—fllz < IMsf—fliz  +IMsEsf—Msfl,s

IN

||M):”f||L]%7ﬁ + Mg s.. HES”fHLiB

IN

(&1 +£2)||f||Liﬁ'

Moreover,
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HLS,Ef—fHLg 5 = HESMZESf_ESf“L]% ; +HESf_f||Lf_ﬁ
< ||Es||sm||MzEsf—f||L]§ ; + ”ESf_f“Lliﬁ
< (28 +£2)Hf||L1%Aﬁ'

Now since
2f—L = ||Lssf — fII? 2, L 2
(f s,zﬂfhiﬁ |Ls,5.f f||L/3,ﬁ+Hf”L§,ﬁ | S,Zf||L§1ﬁ

N

2
ZHLS,zf—fHLi ; +2||Ls.,zf—fHL§ﬁ||LsA,szL§ﬁ,

and since ||Ls,x||_ <1, then

—L <|Lgsf— fl? Lgsf— < (2 +¢&)|f|?
(f SvZf’f>LZ,,3—” s,sf f\ILiBHI s.xf fHLg‘ﬁIIfHL;B_( + )IIfIILiﬁ,

and the second result follows.
On the other hand, since

(@s2’r.r), <(Lsshfe )

k, B

and since Ly, y is self-adjoint, then

HLS,zf—iniﬁ = <(1—Ls,z)2f, f> <((I—Lsx)f, f>L£~I3 < 8||f\|iiﬁ~

2
Lip

Finally, since

(f—Ls,sf, )2 = (Esef, f>Lz’ﬁ +(Esf, Mzﬂfhib, + (MsEsf, ESL‘fhiﬁ,

2
Li g

then we obtain the last result.
The estimate (99) is equivalent to

2
2 2
< Msss— A+ (Mser=slg, +sarliy, ) = esssl

(101)

(102)

(103)
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Lsxf. g, = A=o)fI7z (104)

and we denote by L7 ﬁ(e S, X) the subspace of L B(Riﬂ) consisting of functions f € L? ﬁ(R‘fl) satisfying (104).
Hence from (96) and (97) we have,

Vn>1, @ Lsx@u €L 5(1— 2, S, 2). (105)

Moreover from Proposition 13, if f € L? ﬁ(sl, €,5,X),then f€L ﬁ(281 +&,8, ), and if f is e-localized with
respect to Lg y, then f € L i B (2¢, S, X). Therefore we are interested to study the following optimization problem

Maximize (Ls,x.f, f)L]% 5 ”fHLiﬁ =1, (106)

which aims to look for orthonormal functions in Li’ B (Ri“ ), which are approximately time and band-limited to a bounded
region like § x X. It follows that the number of eigenfunctions of Lg » whose eigenvalues are very close to one, are an
optimal solutions to the problem (106), since if @, is an eigenfunction of Lg y with eigenvalue A, > (1 — &), we have from
the spectral representation,

(Ls,xn, ‘Pn>Lz 5 =A > (1—¢). (107)
We denote by n(e, S, X) for the number of eigenvalues A, of Lg 5 which are close to one, in the sense that

M > = dae,s,3) 2 1 =8> Ain(e,5,5) = -

, (108)

ESZ)

and we denote by V (e, s,x) = span {(p,,} the span of the first eigenfunctions of Lg y corresponding to the largest

elgenvalues {)L,,} S’ 5, Therefore, by (107) and (105), each eigenfunction ¢, and its resulting function Lg » ¢, are in

Ly ﬁ(e, S, %), 1fand only if 1 <n<n(e,S,X). Now, if f € V(¢ s, x), then

2 £,5X

n(e, S, ) Z

(Pn (Pn

P

> (1-o)ll; .

Thus V,,(¢, 5, x) determines the subspace of L i B (Rfﬁl) with maximum dimension that is in L,% B (g, S, X). Based on
the paper [50], we obtain the following theorem that characterizes functions that are in L,%‘ B (8,5, 1%).

Theorem 19 Let fi.: denote the orthogonal projection of f onto the kernel Ker(LS,z) of Lg 5. Then a function f is
in L [3(87 S, X) if and only if,
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2 o

Z(I_S)kaernif.ﬁ‘i‘ Z (1—8—),,,)

n=1+n(g, S, %)

e 8x
Z 2. +8—1 ’<f, (Pn>L£,B <f7 (Pn>Liﬁ

Proof. The eigenfunctions { ¢F } form an orthonormal subset in L]% B (]Rfﬂ+1 ), possibly incomplete if Ker(Ly) #
{0}; hence, we can write

f Z fv (Pn (Pn +fker7 (109)

n=1
where fier € Ker(Lg, 5). Then

oo

(Ls,s.f, f>L/§,B =)

n=1

(110)

| (f (p">L£,5

So the function f is in L} 5(€, 8, L) if and only if

Y ¢

n=1

(Pn> ) (Pn> 12

2
>(l—¢ 2
5 > ( )(”fkerLiﬁ

2
; ) (111)

and the conclusion follows. O

While a function f that is in L2 ﬁ(e S, X) does not necessarily lies in some subspace Vy = span{(pn}n s
be approximated using a finite number of such eigenfunctions. Let & € (0, 1) be a fixed real number and let & the
orthogonal projection onto the subspace V,, (80 5,%)-

it can

Theorem 20 Let f be a function in Lk 8 (g, S,X). Then
n(£0,S, Z)
Hf Y (ool \/ 112z, (112)
n=1

Proof. By an easy adaptation of the proof of Proposition 3.3 in [50], we can conclude that

1211l , = (0 —e/e)lfllz; - (113)

It then follows,

171Gz =12+ (=205 =121l +If =217 .

Thus
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2 2 2 2 2 2
IF=20 =W ~120 <IfE —(-e/elfl =e/alsl; .

This completes the proof of the theorem.

Consequently and from Proposition 13, we immediately deduce the following approximation results.

Corollary 9 Lete¢, g, & € (0, 1).
1LIffel? ,(e, &,S, ), then

k7ﬁ
n(S(),S, Z) 28
1+ &
n=1 L 80 'ﬁ
k, B
2.If f e Li 8 (Ri“) is e-localized with respect to Lg 5, then

n(eo,S, Z) e

_ < — .

S r; (f, (Pn>LiB(Pn . V& ||fHL§ﬁ
k, B

(114)

(115)

Adapting the method used in [7], we will show that the phase space restriction operator Lg s can be viewed as a

Dunkl-Bessel wavelet multiplier, and then we will deduce a trace formula.
Theorem 21 Let u = v be the function on Rffrl defined by u = \/ﬁ xs and let 0 = xx. Then

Lsx = . p(S) Zu(X).

(116)

Proof. Clearly, the function u belongs to L? 5 (R NLE 5 (RET), with [|ul| 2 , = 1. Then, since Eg is self-adjoint
) ) k,

and by Parseval’s equality (14), we have for all f, g € Li‘ B (Ri“),

(Lsxf 8 = (McEsf, xs8)2
= U, g (S)(MsEsf, ¢8>L£_ﬁ
= L, (S)(Fx, pM=Es f, t%c,ﬁ(“g)hﬁ ;

= /e g xzFk pxsSf, Fr. p (ug)>L% ,

= “k7ﬁ(5)<032k,ﬁ(uf),ﬁk,ﬁ(ug)hiﬂ
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= M pOHPuE) 8 -

This completes the proof. O
From relation (74) and Theorem 21, we deduce the following trace formula.
Corollary 10 The phase space operator Ly, 5 is trace class with

(Ls.x) = 1 p(S)(Pu®) = [ [ 1Ak px, €)P dbe i3I £). (117
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