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1. Introduction

Let Y = P" x --- x P be a multiprojective space. For all (d,, ..., d,) € (N\ {0})" let Vi ndp - Y = PLor=-1+
H,ILI ("i;fi’ ), denote the Segre-Veronese embedding of Y, i.e. the embedding of Y by the complete linear system |0, (d,, ...,
d,)|. The case k=1 is just the Veronese embedding of the projective space P". The case d; = 1 for all i corresponds to the
Segre embedding of Y. Set X := v, (Y). We recall that the elements of H°(O, (1, ..., 1)) correspond to the partially
symmetric tensors of format (" :,Id' )Xo (nk;kdk) and hence the elements of P” correspond to partially symmetric tensors
of that format, up to a non-zero multiplicative constant. Fix ¢ € P". The X-rank r,(q) of ¢ (or the partially symmetric
rank of any non-zero tensor with ¢ as its equivalence class) is the minimal cardinality of a finite set S < Y such that
qe <Vd1,..., 4 (S)), where ( ) denote the linear span. The solution set S(X, ¢) is the set of all S < Y such that #S = r,(¢g) and
g €{v,, 4, (5)). Obviously S(X, ) = @. We recall that g € [P is said to be a concise tensor or a concise partially symmetric

,,,,, d

tensor if there is no multiprojective space Y’ C Y such thatg e (v, _, (Y")).

In this note we prove the following result.

Theorem 1.1 Fix an integer £ > 1 and positive integers n,, d, 1 <i <k, such that (d,, ..., d) # (1, ..., 1). There is a
concise tensor g with 7y(¢q) = 2 and #S(X, q) # 1 if and only if either k=1, n, = 1, d, = 2 and S(X, ¢) is P' minus two points
ork=2,n=n,=1,(d, d,) € {(2,1), (1,2)} and g, S(X, g) are as in Example 3.2.

We discuss several examples with r,(q) = 3 and #S(X, ¢) > 1 and we wonder if they are the only ones. In particular
we described all cases with #S(X, ¢) > 1 when r,(q) = 3 and ¢ € ©(X) (Proposition 4.1). We always assume d; > 2 for at
least one integer 7, because the case of the Segre variety is done in [4].

Question 1.2 Let X < P be an integral and non-degenerate variety. What is the maximal integer o, > 0 (resp. a'y) such
that for each set A € X with#4 <o, — 1 and 4 € S(X, q) for some ¢ € ", we have ry(q')= #4 + 1 for a general o € X and a
general ¢ € ({0, ¢}) (resp. all ¢" € ({0,q'}) \ {0.¢'})?

Obviously the integer a, in Question 1.2 is at most the generic X-rank ry ., of I, i.e. the minimal integer ¢ such that
0(X) =, where o(X) denote the ¢-secant variety of X'"*"*\. In very special cases ry ., = 0. For instance this is true if X is
a rational normal curve by Sylvester’s theorem"™'*"),

We work over an algebraically closed field of characteristic 0.

2. Notation and preliminary remarks

Let Y=DP" x---x P"% k> 1, n,> 1 for all i, be any multiprojective space. For any i € (1, ..., &} let w, :Y — " denote
the projection onto the i-th factor of Y. If k> 2 set ¥, :=1II,, P" and let , : ¥ — ¥; the morphisms which forget the i-th
coordinate of any p = (p,, ..., py) € Y. Let g (resp. &; denote the element (ay, ... , a,) € N*with a, =1 for all 2 # i and a, =
0 (resp a;=0and g, =1 forall 4 #i). Thus &, + & =(1, ..., 1).

n;+d,
----- n;

"), be the Segre-
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Veronese embedding of Y with multidegree (d,, ..., d;). Let Y' <Y be a multiprojective subspace. Obviously v, .,
is the Segre-Veronese embedding of Y’ with multidegree (d,, ..., d,). Fix g € (le’n_,dk (Y")). It is known that B ()
=, Lo@andthatS(v, , (),q) =SV, . & "),q). We will call Autarky or concision this property. For any finite
set A < Y the multiprojective space Hf.;l(;ri(A)) is the minimal multipro jective subspace of Y containing 4. Thus Autarky
means that for any ¢’ € P knowing one solution S’ € S(v,, . 4(Y), ¢') we reconstruct the minimal multiprojective space ¥’
S Ysuchthatq'e(v, , (¥'). Note that ¥"is uniquely determined by ¢

Let D < Y be an effective divisor. For any line bundle £ on Y and any finite set S C Y there is an exact sequence

0> Z55,p ®LD) > LG ®L - L p >0 (1)

3. Proof of theorem 1.1

In this section we prove Theorem 1.1. By Autarky we have n;, = 1 for all i.

Remark 3.1 Assume k = | and hence ¥ = P'. Fix ¢ € P, r = d,, with r,(q) = 2. The case d, > 3 is excluded by
Sylvester’s theorem™' (1.36,1.40). Now assume d, = 2 and hence » = 2 and X < P* and r,(¢) = 2 if and only if ¢ € P”
\ X. The constructible set S(X, ¢) is isomorphic to the pencil of lines L < P* containing ¢, minus the tangent lines to X
containing ¢. Since we are not in characteristic 2, there are exactly 2 lines passing through ¢ and tangent to X.

Example 3.2 Take n, = n, = 1 and (d,, d,) € {(1, 2), (2, 1)}. Just to fix the notation we assume ¢, =2 and d, = 1.
We have 6,(X) = P°. It is well-known that in this case X is an OADP, i.e. #S(X, ¢) = 1 for a general ¢ € "®'*'"; in the
terminology of [8, Proposition 2.3] X is the scroll S(2, 2)). We will prove that all ¢ € P°\ X have r,(g) = 2, that #S(X, ¢q) =
1if ¢ € P\ 7(X) and that there are two types of ¢ € 7(X) \ X, one with dim S(X, ¢) = I and one with dim S(Y, ¢) = 3.

Take L € |O,(1, 0)|. Note that D := v, | (L) is a smooth conic and (D) ¢ X. Hence each g € (D) \ X N (D) has r(q) =
2 and S(X, ¢q) is infinite. More precisely there is a 1-dimensional family of S(X, ¢) formed by the solutions spanning a line
contained in (D).

Claim 1: Assume g € (D)\ X n(D). Every 4 € S(X, q) is contained in D and S(X, ¢) is isomorphic to P' minus 2
points. Moreover 4 N A'=@ forall 4, 4" € S(X, q) such that 4 # 4".

Proof of Claim 1: The set of all £ < L such that #£ = 2 and g € (v(,;,(£)) is isomorphic to the set of all lines
T < (v, (D)) containing ¢ and not tangent to D and hence is isomorphic to P' minus 2 points. Note that any two such
different elements are disjoint. Fix 4 € S(X, ¢). There is B < D such that B € S(X, ¢) and B N 4 = @, because there is a
line 7 < (v, ;,(D)) containing g, not tangent to D and with 7' C v, ,(4) = @. Set S := 4 U B and assume 4 ZD,ie. S\SN
D=0. Since SZ D, [2, Lemma 5.1] gives &' (Zg. s »(1,1)) > 0. Since B = D, #(S\ S N D) < 2. Thus the very ampleness of
O, (1, 1) gives h'(Zg, s » (1, 1)) = 0, a contradiction.

Note that any ¢ as in Claim 1 is an element of 7(X) \ X. All other elements of 7(X) \ X are obtained in the following
way. Let v € Y be a connected degree 2 zero-dimensional scheme contained neither in some L € |0, (g))| nor in some R
€ |0y (&,)| (because v, ((R) < X and so (v,,(v) c X if vc R). There is a smooth C € |Z, (1, 1)|. Since dim(v,,(C)) =3
and v,,(C) is a rational normal curve of (v,,(C)), Sylvester’s theorem gives ry(¢q) = 3 and dim S(v,,(C)) = 2 for all ¢
€V, (") \ V5 (Vq)- Since there are ' C e |Z,(1,1)| and any two of them meet only along v (because O, (1, 1) - O, (1, 1)
=2), we get dim S(Y, q) = 3.

Claim 2: Fix a € 0,(X) \ ©(X). We have ry(a) =2 and #S(X, a) = 1.

Proof of Claim 2: Since X is smooth and a € ¢,(X) \ ©(X), ry(a) = 2. Assume that S(Y, a) is not a singleton and take
E, F € S(X, a) such that E # F. Set G := E U F. Since any two different lines either are disjoint or meets at one point and
a & (v, (E)) " (v,,(F)), we have E N F = 0. Hence h'(Z (1, 1)) > 0"'(Lemma 1). Thus any C € |Oy (1, 1)| containing 3
points of G contains the fourth one. Thus there is C € |Z, (1, 1)|. Since a ¢ ©(X), we saw that neither £ nor F are contained
in a ruling of Y. Thus C is smooth. By assumption a / 7(v,,(C)). Hence 7, ((a) =2 and E, F' € S(v,,(C), a), contradicting!”!
(Theorem 1.40).

Proof of Theorem 1.1: Remark 3.1 describes the case £ = 1. From now on we assume k> 2.

See Example 3.2 for the case k=2, n, =n,=1and (d,, d,) € {(1, 2), (2, 1)}.

(b) Assume k=2, d, = d, = 2. Take H € |0, (2, 0)| containing 4. Either S < H or h'(Z;, 5 (0, 2)) > 0" ( Lemma 5.1
or Lemma 2.4).

(bl) First assume S < H. Since q is concise, there is no M € |O, (1, 0)| containing S. Since S is a finite set, we get that
H#2M for any M € |0, (1, 0)|. Thus H=H v H" with H', H" € |0y (1, 0)|. With no loss of generality we may assume #(S
N H')>#(S ~ H"). By [2, Lemma 5.1] or [3, Lemma 2.4] we have 4'(Z; . ,-(1, 1)) > 0. Since #(S N H") < 2 and O, (1, 2)
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is very ample, we get a contradiction.

(b2) Now assume 4'(H, Zy 5~ 4(0, 2)) > 0. Since 4'(P', Z,(2)) = 0 for any scheme Z = P' with deg(Z) < 3, we get #(B \
BN H)=2(i.e. BN H=0 and #(z,(B)) = 1. Set M == z,'(,(M)) € |Z,(1, 0)|. Since O, (1, 2) is very ample, we have #'(Z,(1,
1))=0. Since S\SN M < 4, [2, Lemma 5.1] or [3, Lemma 2.4] give S < M, contradicting the assumption that ¢ is concise.

(c)Assume k=2,d, =3 and d, = 1. Fix H € |0, (2, 0)| containing 4. By [2-3] either S = H or 1'(Z;. 5 (0, 1)) > 0.

(cl) Assume S < H. Since g is concise, there is no M € |O, (1,0)| containing S. Since S is a finite set, we get that H
#2M with M € |0, (1, 0). Thus H = H' v H" with H', H" € |Oy (1,0)] and H' # H". With no loss of generality we may
assume #(S N H') > #(S " H"). By [2, Lemma 5.1] or [3, Lemma 2.4] we have 4'(Z; - (2, 1)) > 0. Since #(S N H") <2
and Oy (1, 2) is very ample, we get a contradiction.

(c2) Assume h'(Z, 5 (0, 1)) > 0. Since O, (0, 1) is spanned, we get B N M = @ and #(z,(B)) = 1, contradicting
concision.

(d) As in steps (b) and (c) we exclude all other cases with £ = 2. Among the cases with £ > 2 we immediately see that
it is sufficient to exclude the case k=3,d, =2 and d,=d;=1. Assume k=3,d, =2 and d,=d; = 1. Fix H € |0, (1, 0, 0)]
containing at least one point of S. By Autarky we have S € H and hence #'(Z s, (1, 1, 1)) > 0. Since #(S\ S n H) <3 and
v;.1.1(Y) is cut out by quadrics, we get #(S\ S ™ H) =3 (i.e. #(S N H) = 1) and the existence of i € (1, 2, 3} such that #(m,(S
\S N H)) = 1. Take M := z,'(z,(S\ S " H)) € |Oy (&)|. Since Oy (2, 1, 1)(- &) is spanned and #(S " H) = 1, [2, Lemma 5.1]
or [3, Lemma 2.4] gives a contradiction.

4. ry(q) =3, g € ((X)

In this section we prove the following result.

Proposition 4.1 Fix ¢ € 7(X) with 2 <r,(q) <3, k> 2. Then Y=P' x P', (d,, d,) € {(2, 1), (1, 2)} and ¢ is as in
Example 3.2.

By section 3 we may assume r(g) = 3. Fix 4 € S(X, ¢) and a degree 2 connected scheme v < Y such that g €
Wy, 4 (v)). Set {0} = v, Since deg(v) =2 and Y is minimal among the multiprojective spaces containing v, we have n,=
1 for all 7. With no loss of generality we may assume d, > d, > - > d;, > 0. By assumption k> 2 and d, > 2. Set E :=v U 4.
We have h'(Z,(d,, ..., d,)) > 0" (Lemma 1).

(a) First assume d, > 3. Take 7; € |Oy (¢)|, 1 <i<3,suchthat 7, U T, U TyDAandcall TS T, U T, U T; containing
A. We have v € T, because T is reduced and deg(z,(v)) = 2. Thus A'(Z, (0, d,, ..., dy)) > 0°* (Lemma 5.1 or Lemma 2.4),
contradicting the assumptions k> 2 and deg(7,(v)) > 2.

(b) By step (a) from now on we assume d, = 2. Take T € |0, (2¢,)| containing v. Note that 7 = 2K with {K} = |Z,
(¢)|. Either 2'(Z, (0, d,, ..., d,)) > 0 or A = T and hence 4 < K. The latter is impossible, because K is a proper
multiprojective subspace of Y. Thus 4'(Z,. ,~ (0, d,, ..., d;)) > 0. Since Y is the minimal multiprojective space containing
A by Autarky, we have #(r,(4)) > 1 for all i. Since h'(Z,, ;(0, d>, ..., d,)) > 0, there are a, b € A\ A N T such that z,(a) =
7(b) forall i > 1. Write 4 = {a, b, c}.

(b1) Assume k > 3. Take {M} :=|Z,(&,)| and M" = |Z,(&;))|. Note that 4 = M U M'. Since h'(Z,(2¢,)) = 0, we get v
MU M, i.e. my(a) = m,(0) and 7;(c) = m;(0). Using |Z, (&,))| and |Z, (&;)] we get m,(¢) = m,(0). Thus #(x, (4))= 1, contradicting
the minimality of Y.

(b2) By k=2.1f d, =1 q is as in Example 3.2. Assume d, = 2. Using 7" € |O, (2¢,)| instead of T as in the first part of
step (b) we get the existence of @, b’ € 4 such that a' # b’, ,(a") = 7 (b") and 7,(c") = m,(0), where {c¢'}:=A | (a’, b'}. Since
#(4)=3 and (a', b'} = {a, b} we may assume a’'=a and b’ = c. Thus ¢'= b. Thus 7,(b) = m,(0) = m,(c). Write {H} :=|Z, (&,)|.
We have 4 € H by the minimality of Y. Since Res, (E) € {a, o}, we have hl(IReSH @(2, 1)) = 0, contradicting [2-3]) and
concluding the proof of Proposition 4.1.

5. Other examples with ry(g) =3

Remark 5.1 Take k=2, n, =n,=d, =1 and d, = 2. Thus » = 5. The case r,(g) = 2 is done in Example 3.2. Since
X is not the Veronese surface, we have 6,(X) = P°. Thus all ¢ € P’ with r,(¢g) = 3 are contained in 7(X) \ X. These case is
described in Example 3.2.

Remark 5.2 Take k=2, n, =n, = 1 and d, = d, = 2. Since dim o,(X) = 7"*'%, a general ¢ € ,(X) has dim S(Y, ¢) = 1.
By [11, Ex. 11.3.22, part (b)] every g € P* with ry(g) = 3 has dim S(X, ¢) > 1.

Remark 5.3 Take k=3,n,=n,=n;=1and
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d,d,d;)) e {(2,1,1),(1,2,1),(1, 1, 2)}.

Since dim o,(X) = 1057") a general ¢ € o,(X) has dim S(X, ¢) = 1. [11, Ex. 11.3.22, part (b)] every ¢ € P with r,(¢) =
3 has dim S(X, ¢) > 1.

Remark 5.4 Take k=4, n,=n,=n,=n,= 1 and d, = d, = d, = d, = 1. Since dim o,(X) = 13"", a general g € P’ has
dim S(X, ¢) = 1. By [11, Ex. 11.3.22, part (b)] every ¢ € " with r,(¢) = 3 has dim S(X, ¢) > 1.

Remark 5.5 The case k = 1, i.e. the case of Veronese embedding, is easy for points ¢ with r,(¢) = 3. Note the
existence of points of rank > 1 implies d, > 2. Since r,(¢g) = 3, concision gives n, € {1, 2}. for each ¢ € P>\ X (S(Y, q) is
the set of all lines of P* through ¢ and not tangent to X. Sylvester’s theorem'”'” says that there are no cases with n, = 1 and
d, £4.

Claim 1: There is no ¢ with r,(q) = 3 and #S(Y, ¢) > 1 with n,=2, g & (v, (L)) for any line L = P*and d - 1 > 4.

Proof of Claim 1: Assume the existence of ¢ with 4, B € S(Y, ¢) and 4 # B. Set S := 4 U B. Take a line L P
containing at least 2 points of 4. We get h'(Zg. s, (d — 1)) > 0", Since #(S\ S N L) <4 and d, - 1 > 3, this is false.

Thus we get the following cases:

(1) n, =1, d, = 4, g sufficiently general in P* with dim S(Y, ¢) = 1; by [11, Ex. I1.3.22] every ¢ € P* with r,(¢) = 3 has
dim S(X, ¢) > 1

(2) n,=2,d, = 3, g sufficiently general in P’ with dim S(Y, ¢) = 3; by [11, Ex. I1.3.22] every ¢ € P’ with r,(¢g) = 3 has
dim S(X, ¢) > 3.

Example 5.6 Take n, =2, n, =1, d, = 1 and d, = 2 (the same proof works for the case (n,, n,, d,, d,) = (1, 2, 2, 1)). We
have r = 8. Since o;(X) = P*, we have dim S(Y, ¢) = 3 for a general ¢ € P*. By [11, Ex. 11.3.22] every ¢ € P® with r,(¢) =3
has dim S(X, ¢) > 1.

Proposition 5.7 Set d, := 2. Fix an integer k > 2 and take positive integers d., ..., d,. Fix n; € {1, 2} and set n, := 1 for
alli=2, ..., k. Fix aline L < P" and take o, € P"; if n, =2 assume o, ¢ L. Fix e, 0, € P', i=2, ..., k such that e, # o, for all i.
Set Yi=P" x (P, Y':=Lx {e,} x = x {e} €Y, 0:= (04, ..., 0), X = vy (V) and X" := v, (Y. Fix ¢’ e (X)\ X'
and take ¢ € (1¢",V(y, 0 (@D \ UG V4. 4, (0)})- Then

(1) Y (resp. Y") is the minimal multiprojective space containing ¢ (resp. ¢').

(2) ry(g") =ry(g") =2, SIX, ¢") = S(X", ¢") is isomorphic to P' minus 2 points.

(3)2<ry(g)<3.

(4) Assume either d, > 2 or k> 3. Then ry(g) = 3 and dim S(X, ¢) > 0.

Proof. Since (X') = P? and ¢’ ¢ X, ¢'is as in case (1) of Theorem 1.1 and hence S(X’, ¢’) is isomorphic to P' minus
2 points. By Autarky r,(¢") = rv(q). By our choice of 0, Y is the minimal multiprojective space containing Y’ and o. Since
q is in the linear span of ¢’ and a point of X, 1 < ry(¢) < 3. Thus to prove part (3) it is sufficient to prove that r,(q) > 1.
Assume ry(q) = 1, i.e. assume g = v, 4 (a) for some a € Y. Since q' € ({g,{0}) and ry(¢") = 2, we get {a, o} € S(X, ¢"),
contradicting Autarky and the assumption o, # e,.

(a) Assume d, > 2.

Assume ry(q) =2 and take B € S(X, q). Fix 4 € S(X', ¢") and set S :==A4 U B{o}. Since g € (v(dlwdk)(A» Ny dy) (B)),
q & Vg, a,(B")) for any B" CB andB ¢ 4, h(Zy(d,,...,d,)) > 0" (Lemma 1). Let M be the only element of |O; (s,)|
such that z,(M) = {e,}. Consider the residual exact sequence of M:

0> Zo son(dy,dy =1,..,d ) > Lg(dy,....d} ) = Loy i (dys..sd)) >0 )

Since SE M, h'(Zg s n(d,, dy— 1, ..., d)) > 0 (Lemma 5.1, Lemma 2.4). Since O, (d,, d, — 1, ..., d,) is very ample,
#HS\SAM)>3. Thus #(S\ SN M)=3,ie. (AU {o})) "M=@and S\S " M=4 U {o}. Since h' Ty, s~ (d), dy— 1, ...,
d)) >0, vy, . 4A U {o})is formed by 3 collinear points. Thus v, 4(0) € (X").

Since vy, . 4(0) & (X, we get ry (V. 40)(0)) > 7x(Vy,. . 4y)(0)), contradicting Autarky. Thus 7y (¢) = 3. Hence S(X,
q) 2 {{o} U A}, s, Thus dim S(X, ¢) > 1.

(b) Assume d, = 1 and k > 3. We take M as in step (a). We twice get h'(Zg, sy (d,, 0, ds, ..., d)) > 0. IfF#(S\ S N M)
=2 we get that #2(S\ S N M) =1 for all i # 1. Since S\ S N M is contained in a solution of ¢ and d, = 1, contradicting the
obvious extension (d; arbitrary for j # 2) of [4, Remark 1.10]. Thus r,(¢) = 3 and hence S(X, q) 2 {{o} U 4}, . 5, and in
particular dim S(X, g) > 1.

In the same way we get the following result.

Proposition 5.8 Fix (d,, d,) € {(2,1), (1, 2)}. Fix an integer k£ > 3 and take positive integers d;, ..., d,. Fix n,, n, € {1,
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2} andsetn, :=1foralli=3, ..., k. Fix lines L, C P", i = 1, 2, and take o, € IP""; if n,=2 assume 0, ¢ L. Fix e, 0, € P', i =3,
..., ksuch that e, # o, for all i. Set ¥ := P"' x P x (P %, Y=L, x L, x {es} x = x {e,} €Y, 0:= (01, ..., 0, X = Vi _ap(V)
and X":= v, (Y. Fix ¢" € (X)\ X"and take g € ({q",v(y 4, (0D \{q" V(4. 4, (0)})- Then

(1) Y (resp. Y) is the minimal multiprojective space containing ¢ (resp. q).

(@) re(g) = re(@) = 2, SIX, ¢) = SX', ) and 2 < r () < 3.

(3)2<ry(g)<3.

(4) Assume either d; > 2 or k> 4. Then r(q) = 3 and dim S(X, ¢q) > 0.
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