

On the Non-Uniqueness of the Sets Computing a Partially Symmetric Rank at Most Three

Edoardo Ballico

Department of Mathematics, University of Trento, 38123 Povo (TN), Italy Email: ballico@science.unitn.it

Abstract: We describe all partially symmetric tensors which have rank two in more than one way and gives many examples, perhaps all, for rank three partially symmetric tensors.

Keywords: X-rank, Segre-Veronese variety, partially symmetric rank

1. Introduction

Let $Y = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k}$ be a multiprojective space. For all $(d_1, \ldots, d_k) \in (\mathbb{N} \setminus \{0\})^k$ let $v_{(d_1, \ldots, d_k)} : Y \to \mathbb{P}^r$, $r = -1 + \prod_{i=1}^k \binom{n_i+d_i}{n_i}$, denote the Segre-Veronese embedding of Y, i.e. the embedding of Y by the complete linear system $|\mathcal{O}_Y(d_1, \ldots, d_k)|$. The case k = 1 is just the Veronese embedding of the projective space \mathbb{P}^{n_1} . The case $d_i = 1$ for all i corresponds to the Segre embedding of Y. Set $X := v_{d_1,\ldots,d_k}(Y)$. We recall that the elements of $H^0(\mathcal{O}_Y(1, \ldots, 1))^{\vee}$ correspond to the partially symmetric tensors of format $\binom{n_1+d_1}{n_1} \times \cdots \times \binom{n_k+d_k}{n_k}$ and hence the elements of \mathbb{P}^r correspond to partially symmetric tensors of that format, up to a non-zero multiplicative constant. Fix $q \in \mathbb{P}^r$. The X-rank $r_X(q)$ of q (or the partially symmetric rank of any non-zero tensor with q as its equivalence class) is the minimal cardinality of a finite set $S \subset Y$ such that $q \in \langle v_{d_1,\ldots,d_k}(S) \rangle$. Obviously $S(X, q) = \emptyset$. We recall that $q \in \mathbb{P}^r$ is said to be a concise tensor or a concise partially symmetric tensor if there is no multiprojective space $Y' \subsetneq Y$ such that $q \in \langle v_{d_1,\ldots,d_k}(Y') \rangle$.

In this note we prove the following result.

Theorem 1.1 Fix an integer $k \ge 1$ and positive integers n_i , d_i , $1 \le i \le k$, such that $(d_1, ..., d_k) \ne (1, ..., 1)$. There is a concise tensor q with $r_X(q) = 2$ and $\#S(X, q) \ne 1$ if and only if either k = 1, $n_1 = 1$, $d_1 = 2$ and S(X, q) is \mathbb{P}^1 minus two points or k = 2, $n_1 = n_2 = 1$, $(d_1, d_2) \in \{(2,1), (1, 2)\}$ and q, S(X, q) are as in Example 3.2.

We discuss several examples with $r_X(q) = 3$ and #S(X, q) > 1 and we wonder if they are the only ones. In particular we described all cases with #S(X, q) > 1 when $r_X(q) = 3$ and $q \in \tau(X)$ (Proposition 4.1). We always assume $d_i \ge 2$ for at least one integer *i*, because the case of the Segre variety is done in [4].

Question 1.2 Let $X \subset \mathbb{P}^r$ be an integral and non-degenerate variety. What is the maximal integer $a_X > 0$ (resp. a'_X) such that for each set $A \subset X$ with $\#A \le a_X - 1$ and $A \in S(X, q)$ for some $q \in \mathbb{P}^r$, we have $r_X(q') = \#A + 1$ for a general $o \in X$ and a general $q' \in \langle \{o, q\} \rangle$ (resp. all $q' \in \langle \{o, q'\} \rangle \setminus \{o, q'\} \rangle$)?

Obviously the integer α_X in Question 1.2 is at most the generic X-rank $r_{X, \text{gen}}$ of \mathbb{P}^r , i.e. the minimal integer t such that $\sigma_t(X) = \mathbb{P}^r$, where $\sigma_t(X)$ denote the t-secant variety of $X^{[12-13]}$. In very special cases $r_{X, \text{gen}} = \alpha_X$. For instance this is true if X is a rational normal curve by Sylvester's theorem^[9,12-13].

We work over an algebraically closed field of characteristic 0.

2. Notation and preliminary remarks

Let $Y = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k}$, $k \ge 1$, $n_i \ge 1$ for all *i*, be any multiprojective space. For any $i \in \{1, \dots, k\}$ let $\pi_i : Y \to \mathbb{P}^{n_i}$ denote the projection onto the *i*-th factor of *Y*. If $k \ge 2$ set $Y_i := \prod_{h \ne i} \mathbb{P}^{n_h}$ and let $\eta_i : Y \to Y_i$ the morphisms which forget the *i*-th coordinate of any $p = (p_1, \dots, p_k) \in Y$. Let ε_i (resp. $\hat{\varepsilon}_i$ denote the element $(a_1, \dots, a_k) \in \mathbb{N}^k$ with $a_h = 1$ for all $h \ne i$ and $a_i = 0$ (resp $a_i = 0$ and $a_h = 1$ for all $h \ne i$). Thus $\hat{\varepsilon}_i + \varepsilon = (1, \dots, 1)$.

Remark 2.1 Fix $Y = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_k}$ and $(d_1, \ldots, d_k) \in (\mathbb{N} \setminus \{0\})^k$. Let $v_{d_1,\ldots,d_k} \colon Y \to \mathbb{P}^r$, $r = -1 + \prod_{i=1}^k {n_i + d_i \choose n_i}$, be the Segre-

Copyright ©2020 Edoardo Ballico.

DOI: https://doi.org/10.37256/cm.142020454

This is an open-access article distributed under a CC BY license

⁽Creative Commons Attribution 4.0 International License) https://creativecommons.org/licenses/by/4.0/

Veronese embedding of *Y* with multidegree $(d_1, ..., d_k)$. Let $Y' \subseteq Y$ be a multiprojective subspace. Obviously $v_{d_1, ..., d_k \mid x'}$ is the Segre-Veronese embedding of *Y'* with multidegree $(d_1, ..., d_k)$. Fix $q \in \langle v_{d_1,...,d_k}(Y') \rangle$. It is known that $r_{v_{d_1,...,d_k}(Y)}(q) = r_{v_{d_1,...,d_k}}(Y)(q)$ and that $S(v_{d_1,...,d_k}(Y),q) = S(v_{d_1,...,d_k}(Y'),q)$. We will call Autarky or concision this property. For any finite set $A \subset Y$ the multiprojective space $\prod_{i=1}^k \langle \pi_i(A) \rangle$ is the minimal multiprojective subspace of *Y* containing *A*. Thus Autarky means that for any $q' \in \mathbb{P}^r$ knowing one solution $S' \in S(v_{d_1,...,d_k}(Y), q')$ we reconstruct the minimal multiprojective space *Y'* $\subseteq Y$ such that $q' \in \langle v_{d_1,...,d_k}(Y') \rangle$. Note that *Y'* is uniquely determined by *q'*.

Let $D \subset Y$ be an effective divisor. For any line bundle \mathcal{L} on Y and any finite set $S \subset Y$ there is an exact sequence

 $0 \to \mathcal{I}_{S \setminus S \cap D} \otimes \mathcal{L}(-D) \to \mathcal{I}_S \otimes \mathcal{L} \to \mathcal{L}_{S \cap D, D} \to 0 \tag{1}$

3. Proof of theorem 1.1

In this section we prove Theorem 1.1. By Autarky we have $n_i = 1$ for all *i*.

Remark 3.1 Assume k = 1 and hence $Y = \mathbb{P}^1$. Fix $q \in \mathbb{P}^r$, $r = d_1$, with $r_X(q) = 2$. The case $d_1 \ge 3$ is excluded by Sylvester's theorem^[9,12] (1.36,1.40). Now assume $d_1 = 2$ and hence r = 2 and $X \subset \mathbb{P}^2$ and $r_X(q) = 2$ if and only if $q \in \mathbb{P}^r \setminus X$. The constructible set S(X, q) is isomorphic to the pencil of lines $L \subset \mathbb{P}^2$ containing q, minus the tangent lines to X containing q. Since we are not in characteristic 2, there are exactly 2 lines passing through q and tangent to X.

Example 3.2 Take $n_1 = n_2 = 1$ and $(d_1, d_2) \in \{(1, 2), (2, 1)\}$. Just to fix the notation we assume $d_1 = 2$ and $d_2 = 1$. We have $\sigma_2(X) = \mathbb{P}^5$. It is well-known that in this case X is an OADP, i.e. #S(X, q) = 1 for a general $q \in \mathbb{P}^{r [8, 10, 17]}$; in the terminology of [8, Proposition 2.3] X is the scroll S(2, 2)). We will prove that all $q \in \mathbb{P}^5 \setminus X$ have $r_X(q) = 2$, that #S(X, q) = 1 if $q \in \mathbb{P}^5 \setminus \tau(X)$ and that there are two types of $q \in \tau(X) \setminus X$, one with dim S(X, q) = 1 and one with dim S(Y, q) = 3.

Take $L \in |\mathcal{O}_Y(1, 0)|$. Note that $D := v_{2,1}(L)$ is a smooth conic and $\langle D \rangle \not\subseteq X$. Hence each $q \in \langle D \rangle \setminus X \cap \langle D \rangle$ has $r_X(q) = 2$ and $\mathcal{S}(X, q)$ is infinite. More precisely there is a 1-dimensional family of $\mathcal{S}(X, q)$ formed by the solutions spanning a line contained in $\langle D \rangle$.

Claim 1: Assume $q \in \langle D \rangle \setminus X \cap \langle D \rangle$. Every $A \in S(X, q)$ is contained in D and S(X, q) is isomorphic to \mathbb{P}^1 minus 2 points. Moreover $A \cap A' = \emptyset$ for all $A, A' \in S(X, q)$ such that $A \neq A'$.

Proof of Claim 1: The set of all $E \subset L$ such that #E = 2 and $q \in \langle v_{(2,1)}(E) \rangle$ is isomorphic to the set of all lines $T \subset \langle v_{(2,1)}(D) \rangle$ containing q and not tangent to D and hence is isomorphic to \mathbb{P}^1 minus 2 points. Note that any two such different elements are disjoint. Fix $A \in S(X, q)$. There is $B \subset D$ such that $B \in S(X, q)$ and $B \cap A = \emptyset$, because there is a line $T \subset \langle v_{(2,1)}(D) \rangle$ containing q, not tangent to D and with $T \subset v_{(2,1)}(A) = \emptyset$. Set $S := A \cup B$ and assume $A \nsubseteq D$, i.e. $S \setminus S \cap D = \emptyset$. Since $S \nsubseteq D$, [2, Lemma 5.1] gives $h^1(\mathcal{I}_{S \setminus S \cap D}(1,1)) > 0$. Since $B \subset D$, $\#(S \setminus S \cap D) \leq 2$. Thus the very ampleness of $\mathcal{O}_Y(1, 1)$ gives $h^1(\mathcal{I}_{S \setminus S \cap D}(1, 1)) = 0$, a contradiction.

Note that any *q* as in Claim 1 is an element of $\tau(X) \setminus X$. All other elements of $\tau(X) \setminus X$ are obtained in the following way. Let $v \subset Y$ be a connected degree 2 zero-dimensional scheme contained neither in some $L \in |\mathcal{O}_Y(\varepsilon_1)|$ nor in some $R \in |\mathcal{O}_Y(\varepsilon_2)|$ (because $v_{2,1}(R) \subset X$ and so $\langle v_{2,1}(v) \subset X$ if $v \subset R$). There is a smooth $C \in |\mathcal{I}_v(1, 1)|$. Since dim $\langle v_{2,1}(C) \rangle = 3$ and $v_{2,1}(C)$ is a rational normal curve of $\langle v_{2,1}(C) \rangle$, Sylvester's theorem gives $r_X(q) = 3$ and dim $\mathcal{S}(v_{2,1}(C)) = 2$ for all $q \in \langle v_{2,1}(v) \setminus v_{2,1}(v_{red})$. Since there are $\infty^1 C \in |\mathcal{I}_v(1,1)|$ and any two of them meet only along v (because $\mathcal{O}_Y(1, 1) \cdot \mathcal{O}_Y(1, 1) = 2$), we get dim $\mathcal{S}(Y, q) = 3$.

Claim 2: Fix $a \in \sigma_2(X) \setminus \tau(X)$. We have $r_X(a) = 2$ and # S(X, a) = 1.

Proof of Claim 2: Since *X* is smooth and $a \in \sigma_2(X) \setminus \tau(X)$, $r_X(a) = 2$. Assume that S(Y, a) is not a singleton and take $E, F \in S(X, a)$ such that $E \neq F$. Set $G := E \cup F$. Since any two different lines either are disjoint or meets at one point and $a \in \langle v_{2,1}(E) \rangle \cap \langle v_{2,1}(F) \rangle$, we have $E \cap F = 0$. Hence $h^1(\mathcal{I}_G(1, 1)) > 0^{[1]}$ (Lemma 1). Thus any $C \in |\mathcal{O}_Y(1, 1)|$ containing 3 points of *G* contains the fourth one. Thus there is $C \in |\mathcal{I}_G(1, 1)|$. Since $a \notin \tau(X)$, we saw that neither *E* nor *F* are contained in a ruling of *Y*. Thus *C* is smooth. By assumption $a / \tau(v_{2,1}(C))$. Hence $r_{v_{2,1}(C)}(a) = 2$ and $E, F \in S(v_{2,1}(C), a)$, contradicting^[12] (Theorem 1.40).

Proof of Theorem 1.1: Remark 3.1 describes the case k = 1. From now on we assume $k \ge 2$.

See Example 3.2 for the case k = 2, $n_1 = n_2 = 1$ and $(d_1, d_2) \in \{(1, 2), (2, 1)\}$.

(b) Assume k = 2, $d_1 = d_2 = 2$. Take $H \in |\mathcal{O}_Y(2, 0)|$ containing A. Either $S \subset H$ or $h^1(\mathcal{I}_{B \setminus B \cap H}(0, 2)) > 0^{[2-3]}$ (Lemma 5.1 or Lemma 2.4).

(b1) First assume $S \subset H$. Since q is concise, there is no $M \in |\mathcal{O}_Y(1, 0)|$ containing S. Since S is a finite set, we get that $H \neq 2M$ for any $M \in |\mathcal{O}_Y(1, 0)|$. Thus $H = H \cup H''$ with $H', H'' \in |\mathcal{O}_Y(1, 0)|$. With no loss of generality we may assume $\#(S \cap H') \ge \#(S \cap H'')$. By [2, Lemma 5.1] or [3, Lemma 2.4] we have $h^1(\mathcal{I}_{S \cap H''}(1, 1)) > 0$. Since $\#(S \cap H'') \le 2$ and $\mathcal{O}_Y(1, 2)$

is very ample, we get a contradiction.

(b2) Now assume $h^1(H, \mathcal{I}_{B \setminus B \cap H}(0, 2)) > 0$. Since $h^1(\mathbb{P}^1, \mathcal{I}_Z(2)) = 0$ for any scheme $Z \subset \mathbb{P}^1$ with deg $(Z) \leq 3$, we get $\#(B \setminus B \cap H) = 2$ (i.e. $B \cap H = \emptyset$ and $\#(\pi_1(B)) = 1$. Set $M := \pi_1^{-1}(\pi_1(M)) \in |\mathcal{I}_B(1, 0)|$. Since $\mathcal{O}_Y(1, 2)$ is very ample, we have $h^1(\mathcal{I}_A(1, 1)) = 0$. Since $S \setminus S \cap M \subseteq A$, [2, Lemma 5.1] or [3, Lemma 2.4] give $S \subset M$, contradicting the assumption that q is concise.

(c) Assume k = 2, $d_1 = 3$ and $d_2 = 1$. Fix $H \in |\mathcal{O}_{Y}(2, 0)|$ containing A. By [2-3] either $S \subset H$ or $h^{1}(\mathcal{I}_{B \setminus B \cap H}(0, 1)) > 0$.

(c1) Assume $S \subset H$. Since q is concise, there is no $M \in |\mathcal{O}_Y(1,0)|$ containing S. Since S is a finite set, we get that $H \neq 2M$ with $M \in |\mathcal{O}_Y(1, 0)|$. Thus $H = H' \cup H''$ with $H', H'' \in |\mathcal{O}_Y(1,0)|$ and $H' \neq H''$. With no loss of generality we may assume $\#(S \cap H') > \#(S \cap H'')$. By [2, Lemma 5.1] or [3, Lemma 2.4] we have $h^1(\mathcal{I}_{S \cap H''}(2, 1)) > 0$. Since $\#(S \cap H'') \leq 2$ and $\mathcal{O}_Y(1, 2)$ is very ample, we get a contradiction.

(c2) Assume $h^1(\mathcal{I}_{B \setminus B \cap M}(0, 1)) > 0$. Since $\mathcal{O}_Y(0, 1)$ is spanned, we get $B \cap M = \emptyset$ and $\#(\pi_1(B)) = 1$, contradicting concision.

(d) As in steps (b) and (c) we exclude all other cases with k = 2. Among the cases with k > 2 we immediately see that it is sufficient to exclude the case k = 3, $d_1 = 2$ and $d_2 = d_3 = 1$. Assume k = 3, $d_1 = 2$ and $d_2 = d_3 = 1$. Fix $H \in |\mathcal{O}_Y(1, 0, 0)|$ containing at least one point of *S*. By Autarky we have $S \nsubseteq H$ and hence $h^1(\mathcal{I}_{S \setminus S \cap H}(1, 1, 1)) > 0$. Since $\#(S \setminus S \cap H) \le 3$ and $v_{1,1,1}(Y)$ is cut out by quadrics, we get $\#(S \setminus S \cap H) = 3$ (i.e. $\#(S \cap H) = 1$) and the existence of $i \in (1, 2, 3]$ such that $\#(\pi_1(S \cap H)) = 1$. Take $M := \pi_1^{-1}(\pi_1(S \setminus S \cap H)) \in |\mathcal{O}_Y(\varepsilon_i)|$. Since $\mathcal{O}_Y(2, 1, 1)(-\varepsilon_i)$ is spanned and $\#(S \cap H) = 1$, [2, Lemma 5.1] or [3, Lemma 2.4] gives a contradiction.

4. $r_X(q) = 3, q \in t(X)$

In this section we prove the following result.

Proposition 4.1 Fix $q \in \tau(X)$ with $2 \le r_X(q) \le 3$, $k \ge 2$. Then $Y = \mathbb{P}^1 \times \mathbb{P}^1$, $(d_1, d_2) \in \{(2, 1), (1, 2)\}$ and q is as in Example 3.2.

By section 3 we may assume $r_X(q) = 3$. Fix $A \in S(X, q)$ and a degree 2 connected scheme $v \subset Y$ such that $q \in \langle v_{d_1,...,d_k}(v) \rangle$. Set $\{o\} := v_{red}$. Since deg(v) = 2 and Y is minimal among the multiprojective spaces containing v, we have $n_i = 1$ for all *i*. With no loss of generality we may assume $d_1 \ge d_2 \ge \cdots \ge d_k > 0$. By assumption $k \ge 2$ and $d_1 \ge 2$. Set $E := v \cup A$. We have $h^1(\mathcal{I}_E(d_1,...,d_k)) > 0^{[1]}$ (Lemma 1).

(a) First assume $d_1 \ge 3$. Take $T_i \in |\mathcal{O}_Y(\varepsilon_i)|$, $1 \le i \le 3$, such that $T_1 \cup T_2 \cup T_3 \supset A$ and call $T \subseteq T_1 \cup T_2 \cup T_3$ containing *A*. We have $v \not\subseteq T$, because *T* is reduced and deg $(\pi_1(v)) = 2$. Thus $h^1(\mathcal{I}_v(0, d_2, ..., d_k)) > 0^{[2-3]}$ (Lemma 5.1 or Lemma 2.4), contradicting the assumptions $k \ge 2$ and deg $(\pi_2(v)) \ge 2$.

(b) By step (a) from now on we assume $d_1 = 2$. Take $T \in |\mathcal{O}_Y(2\varepsilon_i)|$ containing v. Note that T = 2K with $\{K\} = |\mathcal{I}_o(\varepsilon_i)|$. Either $h^1(\mathcal{I}_{A \setminus A \cap T}(0, d_2, ..., d_k)) > 0$ or $A \subset T$ and hence $A \subset K$. The latter is impossible, because K is a proper multiprojective subspace of Y. Thus $h^1(\mathcal{I}_{A \setminus A \cap T}(0, d_2, ..., d_k)) > 0$. Since Y is the minimal multiprojective space containing A by Autarky, we have $\#(\pi_1(A)) > 1$ for all i. Since $h^1(\mathcal{I}_{A \setminus A \cap T}(0, d_2, ..., d_k)) > 0$, there are $a, b \in A \setminus A \cap T$ such that $\pi_i(a) = \pi_i(b)$ for all i > 1. Write $A = \{a, b, c\}$.

(b1) Assume $k \ge 3$. Take $\{M\} := |\mathcal{I}_a(\varepsilon_2)|$ and $M' := |\mathcal{I}_c(\varepsilon_3)|$. Note that $A \subseteq M \cup M'$. Since $h^1(\mathcal{I}_v(2\varepsilon_1)) = 0$, we get $v \subseteq M \cup M'$, i.e. $\pi_2(a) = \pi_2(o)$ and $\pi_3(c) = \pi_3(o)$. Using $|\mathcal{I}_c(\varepsilon_2)\rangle|$ and $|\mathcal{I}_a(\varepsilon_3)|$ we get $\pi_2(c) = \pi_2(o)$. Thus $\#(\pi_2(A)) = 1$, contradicting the minimality of *Y*.

(b2) By k = 2. If $d_2 = 1$ *q* is as in Example 3.2. Assume $d_2 = 2$. Using $T' \in [\mathcal{O}_Y(2\varepsilon_2)]$ instead of *T* as in the first part of step (b) we get the existence of *a'*, *b'* $\in A$ such that $a' \neq b'$, $\pi_1(a') = \pi_1(b')$ and $\pi_2(c') = \pi_2(o)$, where $\{c'\} := A \setminus \{a', b'\}$. Since #(A) = 3 and $\{a', b'\} = \{a, b\}$ we may assume a' = a and b' = c. Thus c' = b. Thus $\pi_2(b) = \pi_2(o) = \pi_2(c)$. Write $\{H\} := |\mathcal{I}_o(\varepsilon_2)|$. We have $A \nsubseteq H$ by the minimality of *Y*. Since $\operatorname{Res}_H(E) \subseteq \{a, o\}$, we have $h^1(\mathcal{I}_{\operatorname{Res}_H(E)}(2, 1)) = 0$, contradicting [2-3]) and concluding the proof of Proposition 4.1.

5. Other examples with $r_X(q) = 3$

Remark 5.1 Take k = 2, $n_1 = n_2 = d_2 = 1$ and $d_1 = 2$. Thus r = 5. The case $r_X(q) = 2$ is done in Example 3.2. Since X is not the Veronese surface, we have $\sigma_2(X) = \mathbb{P}^5$. Thus all $q \in \mathbb{P}^5$ with $r_X(q) = 3$ are contained in $\tau(X) \setminus X$. These case is described in Example 3.2.

Remark 5.2 Take k = 2, $n_1 = n_2 = 1$ and $d_1 = d_2 = 2$. Since dim $\sigma_3(X) = 7^{[14-16]}$, a general $q \in \sigma_3(X)$ has dim S(Y, q) = 1. By [11, Ex. II.3.22, part (b)] every $q \in \mathbb{P}^8$ with $r_X(q) = 3$ has dim $S(X, q) \ge 1$.

Remark 5.3 Take k = 3, $n_1 = n_2 = n_3 = 1$ and

 $(d_1, d_2, d_3) \in \{(2, 1, 1), (1, 2, 1), (1, 1, 2)\}.$

Since dim $\sigma_3(X) = 10^{[5,7,15]}$, a general $q \in \sigma_3(X)$ has dim $\mathcal{S}(X, q) = 1$. [11, Ex. II.3.22, part (b)] every $q \in \mathbb{P}^r$ with $r_X(q) = 3$ has dim $\mathcal{S}(X, q) \ge 1$.

Remark 5.4 Take k = 4, $n_1 = n_2 = n_3 = n_4 = 1$ and $d_1 = d_2 = d_3 = d_4 = 1$. Since dim $\sigma_3(X) = 13^{[6,15]}$, a general $q \in \mathbb{P}^r$ has dim S(X, q) = 1. By [11, Ex. II.3.22, part (b)] every $q \in \mathbb{P}^r$ with $r_X(q) = 3$ has dim $S(X, q) \ge 1$.

Remark 5.5 The case k = 1, i.e. the case of Veronese embedding, is easy for points q with $r_X(q) = 3$. Note the existence of points of rank > 1 implies $d_1 \ge 2$. Since $r_X(q) = 3$, concision gives $n_1 \in \{1, 2\}$. for each $q \in \mathbb{P}^2 \setminus X(\mathcal{S}(Y, q) \text{ is the set of all lines of } \mathbb{P}^2$ through q and not tangent to X. Sylvester's theorem^[9,12] says that there are no cases with $n_1 = 1$ and $d_1 \ne 4$.

Claim 1: There is no q with $r_X(q) = 3$ and #S(Y, q) > 1 with $n_1 = 2, q \notin \langle v_d(L) \rangle$ for any line $L \subset \mathbb{P}^2$ and $d - 1 \ge 4$.

Proof of Claim 1: Assume the existence of q with $A, B \in S(Y, q)$ and $A \neq B$. Set $S := A \cup B$. Take a line $L \subset \mathbb{P}^2$ containing at least 2 points of A. We get $h^1(\mathcal{I}_{S \setminus S \cap L}(d-1)) > 0^{[2-3]}$. Since $\#(S \setminus S \cap L) \leq 4$ and $d_1 - 1 \geq 3$, this is false.

Thus we get the following cases:

(1) $n_1 = 1$, $d_1 = 4$, q sufficiently general in \mathbb{P}^4 with dim $\mathcal{S}(Y, q) = 1$; by [11, Ex. II.3.22] every $q \in \mathbb{P}^4$ with $r_X(q) = 3$ has dim $\mathcal{S}(X, q) \ge 1$

(2) $n_2 = 2, d_1 = 3, q$ sufficiently general in \mathbb{P}^5 with dim $\mathcal{S}(Y, q) = 3$; by [11, Ex. II.3.22] every $q \in \mathbb{P}^5$ with $r_X(q) = 3$ has dim $\mathcal{S}(X, q) \ge 3$.

Example 5.6 Take $n_1 = 2$, $n_2 = 1$, $d_1 = 1$ and $d_2 = 2$ (the same proof works for the case $(n_1, n_2, d_1, d_2) = (1, 2, 2, 1)$). We have r = 8. Since $\sigma_3(X) = \mathbb{P}^8$, we have dim S(Y, q) = 3 for a general $q \in \mathbb{P}^8$. By [11, Ex. II.3.22] every $q \in \mathbb{P}^8$ with $r_X(q) = 3$ has dim $S(X, q) \ge 1$.

Proposition 5.7 Set $d_1 := 2$. Fix an integer $k \ge 2$ and take positive integers d_2, \ldots, d_k . Fix $n_1 \in \{1, 2\}$ and set $n_i := 1$ for all $i = 2, \ldots, k$. Fix a line $L \subseteq \mathbb{P}^{n_1}$ and take $o_1 \in \mathbb{P}^{n_1}$; if $n_1 = 2$ assume $o_1 \notin L$. Fix $e_i, o_i \in \mathbb{P}^1$, $i = 2, \ldots, k$ such that $e_i \neq o_i$ for all i. Set $Y := \mathbb{P}^{n_1} \times (\mathbb{P}^1)^{k-1}$, $Y' := L \times \{e_2\} \times \cdots \times \{e_k\} \subset Y$, $o := (o_1, \ldots, o_k)$, $X := v_{(d_1, \ldots, d_k)}(Y)$ and $X' := v_{(d_1, \ldots, d_k)}(Y)$. Fix $q' \in \langle X' \rangle \setminus X'$ and take $q \in \langle \{q', v_{(d_1, \ldots, d_k)}(o)\} \setminus \langle \{q', v_{(d_1, \ldots, d_k)}(o)\} \rangle$. Then

(1) Y (resp. Y') is the minimal multiprojective space containing q (resp. q').

(2) $r_X(q') = r_X(q') = 2$, S(X, q') = S(X', q') is isomorphic to \mathbb{P}^1 minus 2 points.

(3) $2 \le r_X(q) \le 3$.

(4) Assume either $d_2 \ge 2$ or $k \ge 3$. Then $r_x(q) = 3$ and dim S(X, q) > 0.

Proof. Since $\langle X' \rangle \cong \mathbb{P}^2$ and $q' \notin X'$, q' is as in case (1) of Theorem 1.1 and hence $\mathcal{S}(X', q')$ is isomorphic to \mathbb{P}^1 minus 2 points. By Autarky $r_X(q') = r_{X'}(q)$. By our choice of o, Y is the minimal multiprojective space containing Y' and o. Since q is in the linear span of q' and a point of X, $1 \le r_X(q) \le 3$. Thus to prove part (3) it is sufficient to prove that $r_X(q) > 1$. Assume $r_X(q) = 1$, i.e. assume $q = v_{(d_1, \dots, d_k)}(a)$ for some $a \in Y$. Since $q' \in \langle \{q, \{o\} \rangle$ and $r_X(q') = 2$, we get $\{a, o\} \in \mathcal{S}(X, q')$, contradicting Autarky and the assumption $o_2 \ne e_2$.

(a) Assume $d_2 \ge 2$.

Assume $r_X(q) = 2$ and take $B \in \mathcal{S}(X, q)$. Fix $A \in \mathcal{S}(X', q')$ and set $S := A \cup B\{o\}$. Since $q \in \langle v_{(d_1, \dots, d_k)}(A) \rangle \cap_{(d_1, \dots, d_k)}(B) \rangle$, $q \notin \langle v_{(d_1, \dots, d_k)}(B') \rangle$ for any $B' \subsetneq B$ and $B \nsubseteq A$, $h^1(\mathcal{I}_S(d_1, \dots, d_k)) > 0^{[1]}$ (Lemma 1). Let M be the only element of $|\mathcal{O}_Y(\varepsilon_2)|$ such that $\pi_2(M) = \{e_2\}$. Consider the residual exact sequence of M:

$$0 \to \mathcal{I}_{S \setminus S \cap M}(d_1, d_2 - 1, \dots, d_k) \to \mathcal{I}_S(d_1, \dots, d_k) \to \mathcal{I}_{S \cap M, M}(d_1, \dots, d_k) \to 0$$
(2)

Since $S \nsubseteq M$, $h^1(\mathcal{I}_{S \setminus S \cap M}(d_1, d_2 - 1, ..., d_k)) > 0^{[2-3]}$ (Lemma 5.1, Lemma 2.4). Since $\mathcal{O}_Y(d_1, d_2 - 1, ..., d_k)$ is very ample, $\#(S \setminus S \cap M) \ge 3$. Thus $\#(S \setminus S \cap M) = 3$, i.e. $(A \cup \{o\}) \cap M = \emptyset$ and $S \setminus S \cap M = A \cup \{o\}$. Since $h^1(\mathcal{I}_{S \setminus S \cap M}(d_1, d_2 - 1, ..., d_k)) > 0$, $v_{(d_1, ..., d_k)}(A \cup \{o\})$ is formed by 3 collinear points. Thus $v_{(d_1, ..., d_k)}(o) \in \langle X' \rangle$.

Since $v_{(d_1, \dots, d_k)}(o) \notin \langle X' \rangle$, we get $r_{X'}(v_{(d_1, \dots, d_k)})(o) > r_X(v_{(d_1, \dots, d_k)})(o))$, contradicting Autarky. Thus $r_X(q) = 3$. Hence $S(X, q) \supseteq \{\{o\} \cup A\}_{A \in S(X, q)}$. Thus dim $S(X, q) \ge 1$.

(b) Assume $d_2 = 1$ and $k \ge 3$. We take M as in step (a). We twice get $h^1(\mathcal{I}_{S \setminus S \cap M}(d_1, 0, d_2, ..., d_k)) > 0$. If $\#(S \setminus S \cap M) = 2$ we get that $\#\pi(S \setminus S \cap M) = 1$ for all $i \ne 1$. Since $S \setminus S \cap M$ is contained in a solution of q and $d_2 = 1$, contradicting the obvious extension $(d_j \text{ arbitrary for } j \ne 2)$ of [4, Remark 1.10]. Thus $r_X(q) = 3$ and hence $S(X, q) \supseteq \{\{o\} \cup A\}_{A \in S(X', q')}$ and in particular dim $S(X, q) \ge 1$.

In the same way we get the following result.

Proposition 5.8 Fix $(d_1, d_2) \in \{(2, 1), (1, 2)\}$. Fix an integer $k \ge 3$ and take positive integers d_3, \ldots, d_k . Fix $n_1, n_2 \in \{1, \ldots, n_k\}$.

2} and set $n_i := 1$ for all i = 3, ..., k. Fix lines $L_i \subseteq \mathbb{P}^{n_1}$, i = 1, 2, and take $o_i \in \mathbb{P}^{n_1}$; if $n_i = 2$ assume $o_2 \notin L$. Fix $e_i, o_i \in \mathbb{P}^1$, i = 3, ..., k such that $e_i \neq o_i$ for all i. Set $Y := \mathbb{P}^{n_1} \times \mathbb{P}^{n_2} \times (\mathbb{P}^1)^{k-2}$, $Y' := L_1 \times L_2 \times \{e_3\} \times \cdots \times \{e_k\} \subset Y$, $o := (o_1, ..., o_k)$, $X := v_{(d_1, ..., d_k)}(Y)$ and $X' := v_{(d_1, ..., d_k)}(Y)$. Fix $q' \in \langle X' \rangle \setminus X'$ and take $q \in \langle \{q', v_{(d_1, ..., d_k)}(o)\} \rangle \setminus \langle \{q', v_{(d_1, ..., d_k)}(o)\} \rangle$. Then (1) Y (resp. Y) is the minimal multiprojective space containing q (resp. q').

(1) *Y* (resp. *Y*) is the minimal multiprojective space containing *q* (resp. (2) $r_X(q') = r_X(q') = 2$, S(X, q') = S(X', q') and $2 \le r_X(q) \le 3$. (3) $2 \le r_X(q) \le 3$. (4) Assume either $d \ge 2$ or $k \ge 4$. Then $r_X(q) = 3$ and dim $S(X, q) \ge 0$.

(4) Assume either $d_3 \ge 2$ or $k \ge 4$. Then $r_X(q) = 3$ and dim S(X, q) > 0.

References

- [1] E. Ballico, A. Bernardi. Decomposition of homogeneous polynomials with low rank. Math. Z. 2012; 271: 1141-1149.
- [2] E. Ballico, A. Bernardi. Stratification of the fourth secant variety of Veronese variety via the symmetric rank. *Adv. Pure Appl. Math.* 2013; 4(2): 215-250.
- [3] E. Ballico, A. Bernardi, M. Christandl, F. Gesmundo. On the partially symmetric rank of tensor products of W-states and other symmetric tensors. *Rend. Lincei Mat. Appl.* 2019; 30: 93-124.
- [4] E. Ballico, A. Bernardi, P. Santarsiero. *Identifiability of rank-3 tensors*. 2001. p.10497.
- [5] K. Baur, J. Draisma. Secant dimensions of low-dimensional homogeneous varieties. Adv. Geom. 2010; 10(1): 1-29.
- [6] M. V. Catalisano, A. V. Geramita, A. Gimigliano. *Higher secant varieties of Segre-Veronese varieties*. In: Projective Varieties with Unexpected Properties. Berlin: Walter de Gruyter; 2005. p.81-107.
- [7] M. V. Catalisano, A. V. Geramita A.V., A. Gimigliano. Segre-Veronese embeddings of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ and their secant varieties. *Collect. Math.* 2007; 58(1): 1-24.
- [8] C. Ciliberto, M. Mella, F. Russo. Varieties with one apparent double point. J. Algebraic. Geometry. 2004; 13: 475-512.
- [9] G. Comas, M. Seiguer. On the rank of a binary form. *Found. Comp. Math.* 2011; 11(1): 65-78.
- [10] W. L. Edge. The number of apparent double points of certain loci. Proc. Cambridge Philos. Soc. 1932; 28: 285-299.
- [11] R. Hartshorne. Algebraic Geometry. New York: Springer Verlag, Berlin: Heidelberg; 1977.
- [12] A. Iarrobino, V. Kanev. Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics. Berlin: Springer-Verlag; 1999. p.1721.
- [13] J. M. Landsberg. Tensors: Geometry and Applications, Graduate Studies in Mathematics. Amer. Math. Soc. 2012; 128.
- [14] A. Laface. On linear systems of curves on rational scrolls. Geom. Dedicata. 2002; 90: 127144.
- [15] A. Laface, E. Postinghel. Secant varieties of Segre-Veronese embeddings of $(\mathbb{P}^1)^r$. Math. Ann. 2013; 356: 1455-1470.
- [16] A. Laface, L. Ugaglia. Standard classes on the blow-up of \mathbb{P}^n at points in very general position. *Comm. Algebra*. 2012; 40(6): 2115-2129.
- [17] F. Russo. On a theorem of Severi. Math. Ann. 2000; 316: 1-17.