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1. Introduction
Let Y = Pn1 × ··· × Pnk be a multiprojective space. For all (d1, …, dk) ∈ (N \ {0})k let v(d1, …, dk) : Y → Pr, r = -1 + 

1     ( ),i i
i

n dk
i n

+
=∏  denote the Segre-Veronese embedding of Y, i.e. the embedding of Y by the complete linear system |OY (d1, …, 

dk)|. The case k = 1 is just the Veronese embedding of the projective space Pn1. The case di = 1 for all i corresponds to the 
Segre embedding of Y. Set X := vd1,…,dk (Y ). We recall that the elements of H 0(OY (1, …, 1))∨ correspond to the partially 
symmetric tensors of format 1 1

1        ( ) ( )k k
k

n dn d
n n

++ × ×  and hence the elements of Pr correspond to partially symmetric tensors 
of that format, up to a non-zero multiplicative constant. Fix q ∈ Pr. The X-rank rX (q) of q (or the partially symmetric 
rank of any non-zero tensor with q as its equivalence class) is the minimal cardinality of a finite set S ⊂ Y such that 

1, , ( ) , where 
kd dq Sν …∈ 〈 〉 〈 〉 denote the linear span. The solution set S(X, q) is the set of all S ⊂ Y such that #S = rX (q) and 

1, , ( ) .
kd dq Sν …∈ 〈 〉  Obviously S(X, q) = Ø. We recall that q ∈ Pr is said to be a concise tensor or a concise partially symmetric 

tensor if there is no multiprojective space 
1, , such that ( ) .

kd dY Y q Yν …′ ′∈ 〈 〉
In this note we prove the following result.
Theorem 1.1 Fix an integer k ≥ 1 and positive integers ni, di, 1 ≤ i ≤ k, such that (d1, …, dk) ≠ (1, …, 1). There is a 

concise tensor q with rX (q) = 2 and #S(X, q) ≠ 1 if and only if either k = 1, n1 = 1, d1 = 2 and S(X, q) is P1 minus two points 
or k = 2, n1 = n2 = 1, (d1, d2) ∈ {(2,1), (1, 2)} and q, S(X, q) are as in Example 3.2.

We discuss several examples with rX (q) = 3 and #S(X, q) > 1 and we wonder if they are the only ones. In particular 
we described all cases with #S(X, q) > 1 when rX (q) = 3 and q ∈ τ(X) (Proposition 4.1). We always assume di ≥ 2 for at 
least one integer i, because the case of the Segre variety is done in [4].

Question 1.2 Let X ⊂ Pr be an integral and non-degenerate variety. What is the maximal integer αX > 0 (resp. α'X) such 
that for each set A ⊂ X with #A ≤ αX - 1 and A ∈ S(X, q) for some q ∈ Pr, we have rX (q')= #A + 1 for a general o ∈ X and a 
general { , }  (resp. all { , } { , })?q o q q o q o q′ ′ ′ ′∈ 〈 〉 ∈ 〈 〉 

Obviously the integer αX in Question 1.2 is at most the generic X-rank rX, gen of Pr, i.e. the minimal integer t such that 
σt(X) = Pr, where σt(X) denote the t-secant variety of X [12-13]. In very special cases rX, gen = αX. For instance this is true if X is 
a rational normal curve by Sylvester’s theorem[9,12-13].

We work over an algebraically closed field of characteristic 0.

2. Notation and preliminary remarks
Let Y = Pn1 ×···× Pnk, k ≥ 1, ni ≥ 1 for all i, be any multiprojective space. For any i ∈ (1, …, k} let πi :Y → Pni denote 

the projection onto the i-th factor of Y. If k ≥ 2 set Yi := Πh ≠ i Pnh and let ηi : Y → Yi the morphisms which forget the i-th 
coordinate of any p = ( p1, …, pk) ∈ Y. Let εi (resp. îε  denote the element ( a1, … , ak) ∈ Nk with ah = 1 for all h ≠ i and ai = 
0 (resp ai = 0 and ah = 1 for all h ≠ i). Thus îε  + ε  =(1, …, 1).

Remark 2.1 Fix Y = Pn1 ×···× Pnk and ( d1, …, dk) ∈ (N \ {0})k. Let vd1,…, dk : Y → Pr, r = -1 + 1     ( ),i i
i

n dk
i n

+
=∏  be the Segre-
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Veronese embedding of Y with multidegree ( d1, …, dk). Let Y' ⊆ Y be a multiprojective subspace. Obviously vd1, …, dk | y' 
is the Segre-Veronese embedding of Y' with multidegree ( d1, …, dk). Fix 

1, , ( ) .
kd dq Yν … ′∈ 〈 〉  It is known that 

, ,1 ( ) ( )
d dk Yr qν …

, , 1 11 ( ) , , , ,( ) and that ( ( ), ) ( ( ), ).
d d k kk Y d d d dr q Y q Y qν ν ν

… ′ … … ′= =S S  We will call Autarky or concision this property. For any finite 
set A ⊂ Y the multiprojective space 1 ( )k

i i Aπ=∏ 〈 〉 is the minimal multipro jective subspace of Y containing A. Thus Autarky 
means that for any q' ∈ Pr knowing one solution S' ∈ S(vd1, …, dk(Y

 ), q') we reconstruct the minimal multiprojective space Y' 
⊆ Y such that 

1, , ( ) .
kd dq Yν …′ ′∈ 〈 〉  Note that Y' is uniquely determined by q'.

Let D ⊂ Y be an effective divisor. For any line bundle L on Y and any finite set S ⊂ Y there is an exact sequence

,0 ( ) 0 S S D S S D DD∩ ∩→ ⊗ − → ⊗ → → L  L L           (1)

3. Proof of theorem 1.1
In this section we prove Theorem 1.1. By Autarky we have ni = 1 for all i.
Remark 3.1 Assume k = 1 and hence Y = P1. Fix q ∈ Pr, r = d1, with rX (q) = 2. The case d1 ≥ 3 is excluded by 

Sylvester’s theorem[9,12] (1.36,1.40). Now assume d1 = 2 and hence r = 2 and X ⊂ P2 and rX (q) = 2 if and only if q ∈ Pr 
\ X. The constructible set S(X, q) is isomorphic to the pencil of lines L ⊂ P2 containing q, minus the tangent lines to X 
containing q. Since we are not in characteristic 2, there are exactly 2 lines passing through q and tangent to X.

Example 3.2 Take n1 = n2 = 1 and (d1, d2) ∈ {(1, 2), (2, 1)}. Just to fix the notation we assume d1 = 2 and d2 = 1. 
We have σ2(X) = P5. It is well-known that in this case X is an OADP, i.e. #S(X, q) = 1 for a general q ∈ Pr [8,10,17]; in the 
terminology of [8, Proposition 2.3] X is the scroll S(2, 2)). We will prove that all q ∈ P5 \ X have rX (q) = 2, that #S(X, q) = 
1 if q ∈ P5 \ τ(X) and that there are two types of q ∈ τ(X) \ X, one with dim S(X, q) = 1 and one with dim S(Y, q) = 3.

Take L ∈ |OY (1, 0)|. Note that D := v2, 1 (L) is a smooth conic and .D X〈 〉   Hence each q D X D∈ 〈 〉 ∩ 〈 〉  has rX (q) = 
2 and S(X, q) is infinite. More precisely there is a 1-dimensional family of S(X, q) formed by the solutions spanning a line 
contained in D〈 〉.

Claim 1: Assume .q D X D∈ 〈 〉 ∩ 〈 〉  Every A ∈ S(X, q) is contained in D and S(X, q) is isomorphic to P1 minus 2 
points. Moreover A ∩ A' = Ø for all A, A' ∈ S(X, q) such that A ≠ A' .

Proof of Claim 1: The set of all E ⊂ L such that #E = 2 and (2,1) ( )q Eν∈ 〈 〉 is isomorphic to the set of all lines 
(2,1) ( )T Dν⊂ 〈 〉 containing q and not tangent to D and hence is isomorphic to P1 minus 2 points. Note that any two such 

different elements are disjoint. Fix A ∈ S(X, q). There is B ⊂ D such that B ∈ S(X, q) and B ∩ A = Ø, because there is a 
line (2,1) ( )T Dν⊂ 〈 〉 containing q, not tangent to D and with T ⊂ v(2,1)(A) = Ø. Set S := A ∪ B and assume A  D, i.e. S \ S ∩ 
D = Ø. Since S  D, [2, Lemma 5.1] gives h1(S \ S ∩ D (1,1)) > 0. Since B ⊂ D, #(S \ S ∩ D) ≤ 2. Thus the very ampleness of 
OY (1, 1) gives h1(S \ S ∩ D (1, 1)) = 0, a contradiction.

Note that any q as in Claim 1 is an element of τ(X) \ X. All other elements of τ(X) \ X are obtained in the following 
way. Let v ⊂ Y be a connected degree 2 zero-dimensional scheme contained neither in some L ∈ |OY (ε1)| nor in some R 
∈ |OY (ε2)| (because v2, 1(R) ⊂ X and so 2,1( )  if ).v X v Rν〈 ⊂ ⊂  There is a smooth C ∈ |v (1, 1)|. Since 2,1dim ( ) 3Cν〈 〉 =  
and v2,1(C) is a rational normal curve of 2,1( ) ,Cν〈 〉  Sylvester’s theorem gives rX (q) = 3 and dim S(v2,1(C)) = 2 for all q 
∈ 2,1 2,1 red( ) ( ).v vν ν〈 〉   Since there are ∞1 C ∈ |v (1,1)| and any two of them meet only along v (because OY (1, 1) · OY (1, 1) 
= 2), we get dim S(Y, q) = 3.

Claim 2: Fix a ∈ σ2(X) \ τ(X). We have rX (a) = 2 and # S(X, a) = 1.
Proof of Claim 2: Since X is smooth and a ∈ σ2(X) \ τ(X), rX (a) = 2. Assume that S(Y, a) is not a singleton and take 

E, F ∈ S(X, a) such that E ≠ F. Set G := E ∪ F. Since any two different lines either are disjoint or meets at one point and 
2,1 2,1( ) ( ) ,a E Fν ν∈ 〈 〉 ∩ 〈 〉  we have E ∩ F = 0. Hence h1(G (1, 1)) > 0[1](Lemma 1). Thus any C ∈ |OY (1, 1)| containing 3 

points of G contains the fourth one. Thus there is C ∈ |G (1, 1)|. Since a ∉ τ(X), we saw that neither E nor F are contained 
in a ruling of Y. Thus C is smooth. By assumption a / τ(v2,1(C)). Hence rv2,1(C)(a) = 2 and E, F ∈ S(v2,1(C), a), contradicting[12]

(Theorem 1.40).
Proof of Theorem 1.1: Remark 3.1 describes the case k = 1. From now on we assume k ≥ 2.
See Example 3.2 for the case k = 2, n1 = n2 = 1 and (d1, d2) ∈ {(1, 2), (2, 1)}.
(b) Assume k = 2, d1 = d2 = 2. Take H ∈ |OY (2, 0)| containing A. Either S ⊂ H or h1(B \ B ∩ H (0, 2)) > 0[2-3] ( Lemma 5.1 

or Lemma 2.4).
(b1) First assume S ⊂ H. Since q is concise, there is no M ∈ |OY (1, 0)| containing S. Since S is a finite set, we get that 

H ≠ 2M for any M ∈ |OY (1, 0)|. Thus H = H ∪ H'' with H', H'' ∈ |OY (1, 0)|. With no loss of generality we may assume #(S 
∩ H') ≥ #(S ∩ H''). By [2, Lemma 5.1] or [3, Lemma 2.4] we have h1(S ∩ H'' (1, 1)) > 0. Since #(S ∩ H'') ≤ 2 and OY (1, 2) 
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is very ample, we get a contradiction.
(b2) Now assume h1(H, B \ B ∩ H (0, 2)) > 0. Since h1(P1, IZ (2)) = 0 for any scheme Z ⊂ P1 with deg(Z) ≤ 3, we get #(B \ 

B ∩ H) = 2 (i.e. B ∩ H = Ø and #(π1(B)) = 1. Set M := π1
-1(π1(M)) ∈ |B (1, 0)|. Since OY (1, 2) is very ample, we have h1(A (1, 

1)) = 0. Since S \ S ∩ M ⊆ A, [2, Lemma 5.1] or [3, Lemma 2.4] give S ⊂ M, contradicting the assumption that q is concise.
(c) Assume k = 2, d1 = 3 and d2 = 1. Fix H ∈ |OY (2, 0)| containing A. By [2-3] either S ⊂ H or h1(B \ B ∩ H (0, 1)) > 0.
(c1) Assume S ⊂ H. Since q is concise, there is no M ∈ |OY (1,0)| containing S. Since S is a finite set, we get that H 

≠ 2M with M ∈ |OY (1, 0)|. Thus H = H' ∪ H'' with H', H'' ∈ |OY (1,0)| and H' ≠ H''. With no loss of generality we may 
assume #(S ∩ H') > #(S ∩ H''). By [2, Lemma 5.1] or [3, Lemma 2.4] we have h1(S ∩ H'' (2, 1)) > 0. Since #(S ∩ H'') ≤ 2 
and OY (1, 2) is very ample, we get a contradiction.

(c2) Assume h1(B \ B ∩ M (0, 1)) > 0. Since OY (0, 1) is spanned, we get B ∩ M = Ø and #(π1(B)) = 1, contradicting 
concision.

(d) As in steps (b) and (c) we exclude all other cases with k = 2. Among the cases with k > 2 we immediately see that 
it is sufficient to exclude the case k = 3, d1 = 2 and d2 = d3 = 1. Assume k = 3, d1 = 2 and d2 = d3 = 1. Fix H ∈ |OY (1, 0, 0)| 
containing at least one point of S. By Autarky we have S  H and hence h1(S \ S ∩ H (1, 1, 1)) > 0. Since #(S \ S ∩ H) ≤ 3 and 
v1,1,1(Y) is cut out by quadrics, we get #(S \ S ∩ H) = 3 (i.e. #(S ∩ H) = 1) and the existence of i ∈ (1, 2, 3} such that #(π1(S 
\ S ∩ H)) = 1. Take M := π1

-1(π1(S \ S ∩ H)) ∈ |OY (εi)|. Since OY (2, 1, 1)(- εi) is spanned and #(S ∩ H) = 1, [2, Lemma 5.1] 
or [3, Lemma 2.4] gives a contradiction. 

4. rX (q) = 3, q ∈ t(X)
In this section we prove the following result.
Proposition 4.1 Fix q ∈ τ(X) with 2 ≤ rX (q) ≤ 3, k ≥ 2. Then Y = P1 × P1, (d1, d2) ∈ {(2, 1), (1, 2)} and q is as in 

Example 3.2.
By section 3 we may assume rX (q) = 3. Fix A ∈ S(X, q) and a degree 2 connected scheme v ⊂ Y such that q ∈ 

1 , , ( ) .
kd d vν …〈 〉  Set {o} := vred. Since deg(v) = 2 and Y is minimal among the multiprojective spaces containing v, we have ni = 

1 for all i. With no loss of generality we may assume d1 ≥ d2 ≥ ··· ≥ dk > 0. By assumption k ≥ 2 and d1 ≥ 2. Set E := v ∪ A. 
We have h1(E (d1, ..., dk)) > 0[1] (Lemma 1).

(a) First assume d1 ≥ 3. Take Ti ∈ |OY (εi)|, 1 ≤ i ≤ 3, such that T1 ∪ T2 ∪ T3 ⊃ A and call T ⊆ T1 ∪ T2 ∪ T3 containing 
A. We have v  T, because T is reduced and deg(π1(v)) = 2. Thus h1(v (0, d2, …, dk)) > 0[2-3] (Lemma 5.1 or Lemma 2.4), 
contradicting the assumptions k ≥ 2 and deg(π2(v)) ≥ 2.

(b) By step (a) from now on we assume d1 = 2. Take T ∈ |OY (2εi)| containing v. Note that T = 2K with {K} = |o 

(εi)|. Either h1(A \ A ∩ T (0, d2, …, dk)) > 0 or A ⊂ T and hence A ⊂ K. The latter is impossible, because K is a proper 
multiprojective subspace of Y. Thus h1(A \ A ∩ T (0, d2, …, dk)) > 0. Since Y is the minimal multiprojective space containing 
A by Autarky, we have #(π1(A)) > 1 for all i. Since h1(A \ A ∩ T (0, d2, …, dk)) > 0, there are a, b ∈ A \ A ∩ T such that πi(a) = 
πi(b) for all i > 1. Write A = {a, b, c}.

(b1) Assume k ≥ 3. Take {M} := |a (ε2)| and M' := |c (ε3))|. Note that A ⊂ M ∪ M'. Since h1(v (2ε1)) = 0, we get v ⊂ 
M ∪ M', i.e. π2(a) = π2(o) and π3(c) = π3(o). Using |c (ε2))| and |a (ε3)| we get π2(c) = π2(o). Thus #(π2 (A))= 1, contradicting 
the minimality of Y.

(b2) By k = 2. If d2 = 1 q is as in Example 3.2. Assume d2 = 2. Using T' ∈ |OY (2ε2)| instead of T as in the first part of 
step (b) we get the existence of a', b' ∈ A such that a' ≠ b', π1(a') = π1(b') and π2(c') = π2(o), where {c'}:= A \ (a', b'}. Since 
#(A) = 3 and (a', b'} = {a, b} we may assume a' = a and b' = c. Thus c' = b. Thus π2(b) = π2(o) = π2(c). Write {H} := |o (ε2)|. 
We have A  H by the minimality of Y. Since ResH (E) ⊆ {a, o}, we have h1(ResH (E)(2, 1)) = 0, contradicting [2-3]) and 
concluding the proof of Proposition 4.1.

5. Other examples with rX (q) = 3
Remark 5.1 Take k = 2, n1 = n2 = d2 = 1 and d1 = 2. Thus r = 5. The case rX (q) = 2 is done in Example 3.2. Since 

X is not the Veronese surface, we have σ2(X) = P5. Thus all q ∈ P5 with rX (q) = 3 are contained in τ(X) \ X. These case is 
described in Example 3.2.

Remark 5.2 Take k = 2, n1 = n2 = 1 and d1 = d2 = 2. Since dim σ3(X) = 7[14-16], a general q ∈ σ3(X) has dim S(Y, q) = 1. 
By [11, Ex. II.3.22, part (b)] every q ∈ P8 with rX (q) = 3 has dim S(X, q) ≥ 1.

Remark 5.3 Take k = 3, n1 = n2 = n3 = 1 and
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(d1, d2, d3) ∈ {(2, 1, 1), (1, 2, 1), (1, 1, 2)}.

Since dim σ3(X) = 10[5,7,15], a general q ∈ σ3(X) has dim S(X, q) = 1. [11, Ex. II.3.22, part (b)] every q ∈ Pr with rX (q) = 
3 has dim S(X, q) ≥ 1.

Remark 5.4 Take k = 4, n1 = n2 = n3 = n4 = 1 and d1 = d2 = d3 = d4 = 1. Since dim σ3(X) = 13[6,15], a general q ∈ Pr has 
dim S(X, q) = 1. By [11, Ex. II.3.22, part (b)] every q ∈ Pr with rX (q) = 3 has dim S(X, q) ≥ 1.

Remark 5.5 The case k = 1, i.e. the case of Veronese embedding, is easy for points q with rX (q) = 3. Note the 
existence of points of rank > 1 implies d1 ≥ 2. Since rX (q) = 3, concision gives n1 ∈ {1, 2}. for each q ∈ P2 \ X (S(Y, q) is 
the set of all lines of P2 through q and not tangent to X. Sylvester’s theorem[9,12] says that there are no cases with n1 = 1 and 
d1 ≠ 4.

Claim 1: There is no q with rX (q) = 3 and #S(Y, q) > 1 with n1= 2, ( )dq Lν∉ 〈 〉 for any line L ⊂ P2 and d - 1 ≥ 4.
Proof of Claim 1: Assume the existence of q with A, B ∈ S(Y, q) and A ≠ B. Set S := A ∪ B. Take a line L ⊂ P2 

containing at least 2 points of A. We get h1(S \ S ∩ L (d - 1)) > 0[2-3]. Since #(S \ S ∩ L) ≤ 4 and d1 - 1 ≥ 3, this is false.
Thus we get the following cases:
(1) n1 = 1, d1 = 4, q sufficiently general in P4 with dim S(Y, q) = 1; by [11, Ex. II.3.22] every q ∈ P4 with rX (q) = 3 has 

dim S(X, q) ≥ 1
(2) n2 = 2, d1 = 3, q sufficiently general in P5 with dim S(Y, q) = 3; by [11, Ex. II.3.22] every q ∈ P5 with rX (q) = 3 has 

dim S(X, q) ≥ 3.
Example 5.6 Take n1 = 2, n2 = 1, d1 = 1 and d2 = 2 (the same proof works for the case (n1, n2, d1, d2) = (1, 2, 2, 1)). We 

have r = 8. Since σ3(X) = P8, we have dim S(Y, q) = 3 for a general q ∈ P8. By [11, Ex. II.3.22] every q ∈ P8 with rX (q) = 3 
has dim S(X, q) ≥ 1.

Proposition 5.7 Set d1 := 2. Fix an integer k ≥ 2 and take positive integers d2, …, dk. Fix n1 ∈ {1, 2} and set ni := 1 for 
all i = 2, …, k. Fix a line L ⊆ Pn1 and take o1 ∈ Pn1; if n1 = 2 assume o1 ∈/ L. Fix ei, oi ∈ P1, i = 2, …, k such that ei ≠ oi for all i. 
Set Y := Pn1 × (P1)k-1, Y' := L × {e2} × ··· × {ek} ⊂ Y, o := (o1, …, ok), X := v(d1, …, dk)(Y) and X' := v(d1, …, dk)(Y'). Fix q' ∈  〈X'〉 \ X' 
and take 

1 1( , , ) ( , , ){ , ( )} { , ( )} .
k kd d d dq q o q oν ν… …′ ′∈ 〈 〉 〈 〉  Then

(1) Y (resp. Y') is the minimal multiprojective space containing q (resp. q').
(2) rX (q') = rX (q') = 2, S(X, q') = S(X', q') is isomorphic to P1 minus 2 points.
(3) 2 ≤ rX (q) ≤ 3.
(4) Assume either d2 ≥ 2 or k ≥ 3. Then rX (q) = 3 and dim S(X, q) > 0.
Proof. Since 2X ′〈 〉 ≅ P  and q' ∈/  X', q' is as in case (1) of Theorem 1.1 and hence S(X', q') is isomorphic to P1 minus 

2 points. By Autarky rX (q') = rX' (q). By our choice of o, Y is the minimal multiprojective space containing Y' and o. Since 
q is in the linear span of q' and a point of X, 1 ≤ rX (q) ≤ 3. Thus to prove part (3) it is sufficient to prove that rX (q) > 1. 
Assume rX (q) = 1, i.e. assume q = v(d1, …, dk)(a) for some a ∈ Y. Since q' ∈ { ,{ }q o〈 〉 and rX (q') = 2, we get {a, o} ∈ S(X, q'), 
contradicting Autarky and the assumption o2 ≠ e2.

(a) Assume d2 ≥ 2.
Assume rX (q) = 2 and take B ∈ S(X, q). Fix A ∈ S(X', q') and set S := A ∪ B{o}. Since 

1 1( , , ) ( , , )( ) ( ) ,
k kd d d dq A Bν … …∈ 〈 〉 ∩ 〉

1( , , ) ( )
kd dq Bν … ′∉ 〈 〉 for any 1

1 and , ( ( , , )) 0S kB B B A h d d′ … >   [1] (Lemma 1). Let M be the only element of |OY (ε2)| 
such that π2(M) = {e2}. Consider the residual exact sequence of M:

1 2 1 , 10 ( , 1, , ) ( , , ) ( , , ) 0S S M k S k S M M kd d d d d d d∩ ∩→ − … → … → … →           (2)

Since S  M, h1(S \ S ∩ M (d1, d2 - 1, …, dk)) > 0[2-3] (Lemma 5.1, Lemma 2.4). Since OY (d1, d2 - 1, …, dk) is very ample, 
#(S \ S ∩ M) ≥ 3. Thus #(S \ S ∩ M) = 3, i.e. (A ∪ {o}) ∩ M = Ø and S \ S ∩ M = A ∪ {o}. Since h1(S \ S ∩ M (d1, d2 - 1, …, 
dk)) > 0, v(d1, …, dk)(A ∪ {o}) is formed by 3 collinear points. Thus v(d1, …, dk)(o) ∈ 〈X'〉.

Since v(d1, …, dk)(o) ∈/ 〈X'〉, we get rX' (v(d1, …, dk))(o)) >  rX (v(d1, …, dk))(o)), contradicting Autarky. Thus rX (q) = 3. Hence S(X, 
q) ⊇ {{o} ∪ A}A ∈ S(X', q'). Thus dim S(X, q) ≥ 1.

(b) Assume d2 = 1 and k ≥ 3. We take M as in step (a). We twice get h1(S \ S ∩ M (d1, 0, d2, …, dk)) > 0. If #(S \ S ∩ M) 
= 2 we get that #π(S \ S ∩ M) = 1 for all i ≠ 1. Since S \ S ∩ M is contained in a solution of q and d2 = 1, contradicting the 
obvious extension (dj arbitrary for j ≠ 2) of [4, Remark 1.10]. Thus rX (q) = 3 and hence S(X, q) ⊇ {{o} ∪ A}A ∈ S(X', q') and in 
particular dim S(X, q) ≥ 1.

In the same way we get the following result.
Proposition 5.8 Fix (d1, d2) ∈ {(2,1), (1, 2)}. Fix an integer k ≥ 3 and take positive integers d3, …, dk. Fix n1, n2 ∈ {1, 
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2} and set ni := 1 for all i = 3, …, k. Fix lines Li ⊆ Pn1, i = 1, 2, and take oi ∈ Pn1; if ni = 2 assume o2 ∈/ L. Fix ei, oi ∈ P1, i = 3, 
..., k such that ei ≠ oi for all i. Set Y := Pn1 × Pn2 × (P1)k-2, Y' := L1 × L2 × {e3} × ··· × {ek} ⊂ Y, o := (o1, …, ok), X := v(d1, …, dk)(Y) 
and X' := v(d1, …, dk)(Y'). Fix q' ∈ 〈X'〉 \ X' and take 

1 1( , , ) ( , , ){ , ( )} { , ( )} .
k kd d d dq q o q oν ν… …′ ′∈ 〈 〉 〈 〉  Then

(1) Y (resp. Y') is the minimal multiprojective space containing q (resp. q').
(2) rX (q') = rX (q') = 2, S(X, q') = S(X', q') and 2 ≤ rX (q) ≤ 3.
(3) 2 ≤ rX (q) ≤ 3.
(4) Assume either d3 ≥ 2 or k ≥ 4. Then rX (q) = 3 and dim S(X, q) > 0.
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