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Abstract: A new five-parameter extended fatigue lifetime model named the Weibull generalized gamma distribution
is introduced, which generalizes different distributions widely used in survival and reliability analysis. Different
mathematical properties are presented, such as stochastic representation, quantiles, minimum, stochastic orders, closed-
form expressions for the expectation, and Kullback-Leibler divergence. We estimate the model parameters by maximum
likelihood. AMonte Carlo simulation is performed to study the asymptotic normality of the estimates. Further, we propose
an extended regression model based on the logarithm of this distribution with two systematic components suitable for
censored data, especially in the oncology area, as shown in the analysis of a prostate cancer dataset.
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1. Introduction
The three-parameter generalized gamma (GG) distribution, due to Stacy [1], includes important special cases such

as gamma, lognormal, and Weibull, and its density and hazard rate functions present a large variety of shapes. It can be
used to determine which parametric model is more appropriate for lifetime data.

The GG distribution has the probability density function (pdf)

g(x) = g(x; α, β , δ ) =
β

αΓ(δ )

( x
α

)βδ−1
exp
[
−
( x

α

)β
]
, (1)

where α > 0 is a scale, β > 0 and δ > 0 are shape parameters, and Γ(δ ) is the gamma function. Its cumulative distribution
function (cdf) is
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G(x) = G(x; α, β , δ ) =
γ(δ , (x/α)β )

Γ(δ )
= γ1(δ , (x/α)β ), (2)

where γ(δ , x) =
∫ x

0 wδ−1 e−wdw is the lower incomplete gamma function.
Previous extended classes of the GG distribution include the exponentiated-GG byCordeiro et al. [2], Kumaraswamy-

GG by Pascoa et al. [3], beta-GG by Cordeiro et al. [4], and Marshall-Olkin-GG by Barriga et al. [5].
In this article, the Weibull generalized gamma (WGG) distribution is studied. The parameters of the main functions

are omitted to simplify the notation. So, the parent cdf is G(x) = G(x; ξξξ ), where ξξξ is the parameter vector of G.
The paper is organized as follows. The WGG is defined in Section 2, and some structural properties are reported

in Section 3. A linear representation of the proposed density is derived in Section 4, and other structural properties are
given in Section 5. The estimation of the parameters is addressed in Section 6, and a new regression model is constructed
in Section 7. Some properties of the log transform of the WGG distribution and a new regression model are discussed
in Section 8. Some simulations are given in Section 9, and three real applications of the proposed models are given in
Section 10. We present a detailed analysis of the recurrence time of prostate cancer after radical prostatectomy using a
new regression model that can be adopted for other types of cancers. Section 11 concludes the paper with some remarks.

2. The WGG distribution
The cdf of the Weibull-G (W-G) family ([6]) is

F(x) = F(x; θ , λ , ξξξ ) = 1− exp
{
−θ

[
G(x)
G(x)

]λ }
, (3)

where G(x) = 1−G(x).
Let G(x) be the GG cdf. The cdf of the WGG distribution can be determined by inserting G(x) into Equation (3).

Hence, the cdf and pdf of the WGG distribution with five positive parameters (α , β , δ , θ , and λ ) are given by

F(x) = F(x; α, β , δ , θ , λ ) = 1− exp
{
−θ

[
γ1[δ , (x/α)β ]

1− γ1[δ , (x/α)β ]

]λ }
(4)

and

f (x) = f (x; α, β , δ , θ , λ )

=
βλθ

αΓ(δ )

( x
α

)βδ−1
exp
{
−θ

[
γ1[δ , (x/α)β ]

1− γ1[δ , (x/α)β ]

]λ

−
( x

α

)β
}
×

[
1

1− γ1[δ , (x/α)β ]

]2
[

γ1[δ , (x/α)β ]

1− γ1[δ , (x/α)β ]

]λ−1

, (5)
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respectively, where α is a scale and the other are shape parameters. Henceforth, let X ∼WGG(α, β , δ , θ , λ ) have density
(5).

Equation (5) encompasses some special distributions: for δ = 1, theWeibull exponential (WE) andWeibull Rayleigh
(WR) follow when β = 1 and β = 2, respectively; the Weibull gamma (WG) refers to β = 1; for δ = 1/2, the Weibull
chi-square (WCS), Weibull half-normal (WHN), Weibull generalized half-normal (WGHN), and Weibull folded normal
(WFN) are found when α = 2, β = 1, α = 21/2ρ, β = 2, α = 21/(2γ)ρ, β = 2γ , and δ → ∞, respectively; and the Weibull
Maxwell (WM) is obtained if δ = 3/2 and β = 2.

The hazard rate function (hrf) of X can be easily computed numerically from h(x) = f (x)/[1−F(x)]. Figures 1-3
report plots of the density, survival, and hrf of X for some parameters, thus indicating the distribution flexibility to adapt
and represent a wide range of data patterns and behaviors.

The quantile function (qf) of the GG distribution, say QGG(u), can be obtained from R. By inverting F(x) = u from
Equation (4), the qf of X can be expressed as x = QX (u) = F−1(u) = QGG(u∗), where u∗ = {1+θ−1 [− log(1−u)]1/λ}−1.

Figure 1. Plots of the density of X for some parameters α = 1: (a) β = 2, δ = 4, θ = 2, λ = 1.25; (b) β = 0.5, δ = 3, θ = 3, λ = 1.25; (c) β = 1.5,
δ = 2, θ = 1, λ = 0.5 variable
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Figure 2. Plots of the survival function of X for some parameters α = 1: (a) β = 2, δ = 4, θ = 0.5, λ = 1.5; (b) β = 3, δ = 2, θ = 2, λ = 0.3, λ = 1.25;
(c) β = 5, δ = 0.2, θ = 0.9, λ = 0.1, λ = 0.5 variable
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Figure 3. Plots of the hrf of X for some parameters α = 1: (a) β = 0.5, δ = 4, θ = 3, λ = 0.25; (b) β = 1, δ = 5, θ = 5, λ = 0.25, λ = 1.25; (c)
β = 0.5, δ = 5, θ = 2.5, λ = 0.5 variable

3. Properties of the WGG model
Some structural properties of X ∼ WGG(α, β , δ , θ , λ ) are discussed here, namely stochastic representation,

quantiles, minima, stochastic orders, closed-form expressions for the expectation, and Kullback-Leibler divergence.

3.1 Stochastic representation
From now onW ∼Weibull(θ , λ ). We write

T (x) = T (x; α, β , δ ) =
G(x)
G(x)

, (6)

where G(x) is given in (2). We have (∀x) from Equation (4)

F(x) = F(x; α, β , δ , θ , λ ) = FW (T (x)) = FT−1(W ) (x) = FG−1( W
1+W ) (x) , (7)

where G−1(x) is the inverse function of G(x) and T−1(w) = G−1(w/(1+w)), w > 0, is the inverse function of T . Then,
X admits the stochastic representation

X d
= G−1

(
W

1+W

)
, (8)

where d
= denotes equality in distribution.

Proposition 1 We can write
1. cX ∼WGG(cα, β , δ , θ , λ ), c > 0.
2. Xk ∼WGG(αk, β/k, δ , θ , λ ), k > 0.
Proof. Note that the cdf of cX , say FcX , is
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FcX (t) = P(cX ⩽ t) = P(X ⩽ t/c) = FW (T (t/c)),

where the result in (7) is used forW ∼Weibull(θ , λ ). Hence,

T (t/c) = T (t/c; α, β , δ ) = T (t; cα, β , δ ),

and

FcX (t) = FW (T (t; cα, β , δ )) = F(t; cα, β , δ , θ , λ ),

where in the last line the result (7) is used again. In other words, cX ∼ WGG(cα, β , δ , θ , λ ), c > 0. This shows the
statement of Item (1).

In order to prove the second item, the cdf of Xk, say FXk , becomes by (7)

FXk(t) = P(Xk ⩽ t) = P(X ⩽ t1/k) = F(t1/k) = FW (T (t1/k)), W ∼Weibull(θ , λ ).

Since

T (x1/k; α, β , δ ) = T (x; αk, β/k, δ ),

the function FXk is

FXk(t) = FW (T (t; αk, β/k, δ )) = F(t; αk, β/k, δ , θ , λ ),

where again we have used (7). So, Xk ∼WGG(αk, β/k, δ , θ , λ ), k > 0, which completes the proof of Item (2).

3.2 Quantiles
If QX (p), p ∈ [0, 1], is the p-quantile of X , by the identity F(x) = FW (T (x)) in (7), the result holds

p = F(QX (p)) = FW (T (QX (p))) , W ∼Weibull(θ , λ ),

where T (x) = T (x; α, β , δ ) = G(x)/G(x). The above identities lead to

QW (p) = T (QX (p)).
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Thus, the quantile function is equivariant under the increasing transformationT . By using T−1(w)=G−1(w/(1+w)),
w > 0, it follows

QX (p) = T−1(QW (p)) = G−1
(

QW (p)
1+QW (p)

)
= G−1

( [
− log(1−p)

θ
]1/λ

1+
[
− log(1−p)

θ
]1/λ

)
, (9)

since QW (p) = [− log(1− p)/θ ]1/λ .

3.3 Minima

LetX1, · · · , Xn be independent and identically distributedWGG randomvariableswith parameter vector (α, β , δ , θ , λ )>.
If the minimum of these random variables is Z = min(X1, · · · , Xn), then, by (7), the cdf of Z is

FZ(z) = 1− exp
[
−nθT λ (z)

]
,

where T (x) = T (x; α, β , δ ) is given in (6). In other words, Z will be also WGG distributed with parameter vector
(α, β , δ , nθ , λ )>.

3.4 The usual stochastic order
Let X and Y be two random variables such that

P(X > x)⩽ P(Y > x), ∀x. (10)

Then, X is said to be smaller than Y in the usual stochastic order (say X ⩽st Y ).
Proposition 2 If X ∼WGG(α, β , δ , θ , λ ), then X ⩽st Y with Y = G−1(W ).
Proof. By using the inequality x/(1− x)⩾ x, x ∈ [0, 1], then T (x)⩾ G(x), and consequently by (7),

P(X > x) = 1−F(x) = 1−FW (T (x))⩽ 1−FW (G(x)) = P(Y > x), ∀x, (11)

which completes the proof.

3.5 Closed-form expressions for the mean value

Let X1 and X2 be two random variables with distribution functions F1 and F2, respectively. The Fortret-Mourier-
Wasserstein distance [7] between the finite mean random variables X1 and X2 has the form

d(X1, X2) = inf
(X∗

1 , X∗
2 )
E|X∗

2 −X∗
1 |, X∗

1
d
= F1, X∗

2
d
= F2,

where the infimum is taken over all random vectors (X∗
1 , X∗

2 ) with marginal distributions F1 and F2, respectively.
The next result provides a formula for the mean value of X ∼ WGG(α, β , δ , θ , λ ) as a function of this distance

between X and Y = G−1(W ), whereW ∼Weibull(θ , λ ).
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Proposition 3 If X ∼WGG(α, β , δ , θ , λ ), then

E(X) = E(Y )−d(X , Y ),

where Y = G−1(W ) andW ∼Weibull(θ , λ ).
Proof. By using the well-known formula E(X) =

∫ ∞
0 P(X > x)dx, X > 0, we have from (11) E(X)⩽ E(Y ). Hence,

applying Theorem 1.A.11 of [7], the proof of the proposition holds.
By using the formula of Dorea and Ferreira [8]

d(X , Y ) =
∫ 1

0
|F−1

X (u)−F−1
Y (u)|du,

the expression for E(X) in Proposition 3 reduces to
Proposition 4 If X ∼WGG(α, β , δ , θ , λ ), then

E(X) =
∫ 1

0
F−1

Y (u)du−
∫ 1

0
|F−1

X (u)−F−1
Y (u)|du,

where Y = G−1(W ) andW ∼Weibull(θ , λ ).
Adding E(X) =

∫ 1
0 F−1

X (u)du to both sides of the identity in Proposition 4 and using the well-known formula
min{x, y}= (x+ y−|x− y|)/2, the next result follows.

Proposition 5 If X ∼WGG(α, β , δ , θ , λ ), then

E(X) =
∫ 1

0
min{F−1

X (u), F−1
Y (u)}du,

where Y = G−1(W ) andW ∼Weibull(θ , λ ).

3.6 The likelihood ratio order
Let X and Y be continuous random variables with densities f and g, respectively, such that

x 7−→ g(x)
f (x)

increases in x over the union of the supports of X and Y . Then, X is said to be smaller than Y in the likelihood ratio order
(say X ⩽lr Y ) (see reference [7]).

Proposition 6 If X ∼ WGG(α, β , δ , θ1, λ ) and Y ∼ WGG(α, β , δ , θ2, λ ), then Y ⩽lr X provided θ1 < θ2, and
X ⩽lr Y provided θ2 < θ1.

Proof. Let fX and fY be the densities of X and Y , respectively. As T (x) in (6) is positive and increasing, we can note
from (5) that

fX (x; α, β , δ , θ1, λ )
fY (x; α, β , δ , θ2, λ )

=
θ1

θ2
exp{−(θ1 −θ2)T (x)} (12)
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increases in x for θ1 < θ2. Hence, Y ⩽lr X . Similarly, it is proved that X ⩽lr Y provided θ2 < θ1.
By applying Theorem 1.C.1. of [7], we obtain from Proposition 6
Proposition 7 If X ∼ WGG(α, β , δ , θ1, λ ) and Y ∼ WGG(α, β , δ , θ2, λ ), then Y ⩽st X provided θ1 < θ2, and

X ⩽st Y provided θ2 < θ1, where ⩽st is the stochastic order defined in Section 3.4.

3.7 Kullback-Leibler divergence
The Kullback-Leibler divergence (see [9]) is very useful to measure the difference between two probability

distributions. If fX and fY are the pdfs of X ∼ WGG(α, β , δ , θ1, λ ) and Y ∼ WGG(α, β , δ , θ2, λ ), respectively,
and θ1 6= θ2, then their Kullback-Leibler divergence has the form

DKL( fX‖ fY ) =
∫ ∞

0
fX (x; α, β , δ , θ1, λ ) log

(
fX (x; α, β , δ , θ1, λ )
fY (x; α, β , δ , θ2, λ )

)
dx.

From (12) the above integral is

log(θ1)− log(θ2)− (θ1 −θ2)
∫ ∞

0
T (x) fX (x; α, β , δ , θ1, λ )dx

= log(θ1)− log(θ2)− (θ1 −θ2)
∫ ∞

0
T (x)dFX (x; α, β , δ , θ1, λ )

= log(θ1)− log(θ2)− (θ1 −θ2)
∫ ∞

0
T (x)dFW (T (x)) ,

where T (x) = T (x; α, β , δ ) is given in (6),W ∼Weibull(θ1, λ ), and the identity in (7) is adopted in the last line. Changing
the variable w = T (x) in the previous integral it is clear that DKL( fX‖ fY ) can be expressed as

DKL( fX‖ fY ) = log(θ1)− log(θ2)− (θ1 −θ2)
∫ ∞

0
wdFW (w)

= log(θ1)− log(θ2)− (θ1 −θ2)E(W )

= log(θ1)− log(θ2)− (θ1 −θ2)θ−1/λ
1 Γ

(
1+

1
λ

)
,

sinceW ∼Weibull(θ1, λ ).

4. Linear representation
We derive a new linear representation for the W-G family, since the previous one in Bourguignon et al. [6] involves

muchmore algebraic calculations. For simplicity, let z=G(x) be the parent cdf. We canwrite usingWolframMathematica
software
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(
z

1− z

)λ
=

∞

∑
i=0

pi zi+λ , (13)

where p0 = 1, p1 = λ , p2 = λ (λ +1)/2, p3 = λ (λ 2 +3λ +2)/6, p4 = λ (λ 3 +6λ 2 +11λ +6)/24, etc.
Based on the generalized binomial expansion twice and changing the sums, we obtain

zi+λ =
∞

∑
k=0

si, k zk, (14)

where

si, k = si, k(θ , λ ) = θ
∞

∑
j=k

(−1)k+ j pi

(
λ + i

j

)(
j
k

)
.

By inserting (14) in Equation (13) and the final expression in (3) gives

F(x) = 1− exp

(
∞

∑
k=0

wk zk

)
,

where wk = wk(θ , λ ) = θ ∑∞
i=0 pi si, k.

The exponential of a power series is a power series ([10], p.36). Setting z = G(x)

F(x) = 1−
∞

∑
k=0

vk G(x)k, (15)

where, for k ≥ 1,

vk = vk(θ , λ ) = k−1
k

∑
m=1

mwm vk−m,

and v0 = ew0 .
By differentiating (15), and changing indices, we can write

f (x) =
∞

∑
k=0

tk+1 πk+1(x), (16)

where (for k ≥ 0) tk+1 = −vk+1, and πk+1(x) = (k + 1)G(x)k g(x) is the exponentiated-G (exp-G) density with power
parameter k.
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Equation (16) gives a new linear representation for the W-G family density, which is a simpler expression than that
one derived by Bourguignon et al. [6].

We now obtain a linear representation of πk+1(x) when G(x) is the GG cdf. Based on Equation (21) in Cordeiro et
al. [11] and a power series raised to an integer power (Gradshteyn and Ryzhik [12], Section 0.314), we can write

γ1(δ , z)k =
1

Γ(δ )k

∞

∑
r=0

ck, r zr+kδ . (17)

Here, the coefficients ck, r (for k = 1, 2, . . .) obey the recurrence relation

ck, r = ck, r(δ ) = (r a0)
−1

r

∑
j=1

[ j (k+1)− r]a j ck, r− j, (18)

where a j = a j(δ ) = (−1) j/[(δ + j) j!] (for j ≥ 0), and ck, 0 = ak
0.

By inserting (1) and (17) in πk+1(x) = (k+1)γ1
(
δ , (x/α)β )k

g(x),

πk+1(x) =
(k+1)β

α Γ(δ )k+1

∞

∑
r=0

ck, r

( x
α

)[r+(k+1)δ ]β−1
exp
([ x

α

]β
)
.

Setting δ ∗
k, r = r+(k+1)δ , we can rewrite πk+1(x) after some algebra

πk+1(x) =
∞

∑
r=0

dk, r g(x; α, β , δ ∗
k, r), (19)

where dk, r = dk, r(δ ) = (k+1)Γ(δ ∗
k, r)ck, r/Γ(δ )k+1, and g(x; α, β , δ ∗

k, r) is given in (1) changing δ by δ ∗
k, r.

By inserting (19) in Equation (16), the pdf of X can be expressed as

f (x) =
∞

∑
k, r=0

ek, r g(x; α, β , δ ∗
k, r), (20)

where ek, r = ek, r(δ , θ , λ ) = dk, r tk+1 (for k, r ≥ 0).
Equation (20) reveals that the WGG density is a double-linear combination of GG densities that provides its

properties.

5. Other properties
The formulae in this section can be handled in most computation software. First, we obtain the ordinary moments of

X . The nth ordinary moment of the GG model in (1) is well-known

µ ′
n, GG =

αnΓ(δ +n/β )
Γ(δ )

.
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Then, the corresponding moment of X follows from (20) as

µ ′
n = E(Xn) = αn

∞

∑
k, r=0

ek, r
Γ(δ ∗

k, r +n/β )
Γ(δ ∗

k, r)
. (21)

Second, the central moments, cumulants, skewness and kurtosis of X can be found from Equation (21) from well-
known relations.

Third, simpler expressions for the skewness and kurtosis of X can be based on quantile measures

B =
QX (3/4)−2QX (1/2)+QX (1/4)

QX (3/4)−QX (1/4)

and

M =
QX (7/8)−QX (5/8)+QX (3/8)−QX (1/8)

QX (6/8)−QX (2/8)
,

respectively. Plots of B and M in Figures 4 and 5 show how these measures vary for some shape parameters.

Figure 4. Bowley skewness (B) for the WGG model (α = 1)
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Figure 5. Moors’ kurtosis (M) for the WGG model (α = 1)

Fourth, we derive the nth incomplete moment of X , say mn(w) =
∫ w

0 xn f (x)dx. We can write from Equation (1)

∫ w

0

( x
α

)βδ−1
exp
[
−
( x

α

)β
]
=

αΓ(δ )
β

γ1

(
δ ,
[ x

α

]β
)
.

Thus, the nth incomplete moment of the GG distribution can be determined from (1) and the previous expression as

κn(w; α, β , δ ) =
αΓ(n/β +δ )

Γ(δ )
γ1

(
n
β
+δ ,

[ x
α

]β
)
. (22)

Finally, we write from Equation (20)

mn(w) =
∞

∑
k, r=0

ek, r κn(w; α, β , δ ∗
k, r), (23)

where κn(w; α, β , δ ∗
k, r) comes from (22). Setting n = 1 in (23), we can construct the Bonferroni and Lorentz curves of

X .

6. Estimation
Suppose that x1, · · · , xn is a random sample from the WGG distribution. The log-likelihood function for ΘΘΘ =

(α, β , δ , θ , λ )> follows from Equation (5) as
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ℓ(ΘΘΘ) =
n

∑
i=1

log f (xi)

=n log
[

βλθ
αΓ(δ )

]
+(δ −1/β )

n

∑
i=1

logui − (λ +1)
n

∑
i=1

log
[

1− γ1(δ , ui)

]

+(λ −1)
n

∑
i=1

logγ1(δ , ui)−θ
n

∑
i=1

[
γ1(δ , ui)

1− γ1(δ , ui)

]λ
−

r

∑
i=1

ui,

where ui = (xi/α)β .
The maximum likelihood estimates (MLEs) can be found via the Adequacymodel library (Marinho et al., [13]) of

the R software by selecting any method available.
The score components for the parameters are

Uα = − n
α
+

1−βδ
α

− β (1+λ )
αΓ(δ )

n

∑
i=1

uδ
i e−ui

1− γ1(δ , ui)

+
β (1−λ )
αΓ(δ )

n

∑
i=1

uδ
i e−ui

γ1(δ , ui)
+

θβ
αΓ(δ )

n

∑
i=1

[γ1(δ , ui)]
λ−1 uδ

i e−ui

[1− γ1(δ , ui)]
λ+1 − β

α2

n

∑
i=1

u1−1/β
i ,

Uβ =
n
β
+

δ
β

n

∑
i=1

logui +
λ +1
βΓ(δ )

n

∑
i=1

uβδ
i e−ui logui

1− γ1(δ , ui)

+
λ −1
βΓ(δ )

n

∑
i=1

uβδ
i e−ui logui

γ1(δ , ui)
− θλ

βΓ(δ )

n

∑
i=1

[γ1(δ , ui)]
λ−1 uβδ

i e−ui logui

[1− γ1(δ , ui)]
λ+1 − 1

β

r

∑
i=1

ui logui,

Uδ = −nψ(δ )+
n

∑
i=1

logui +
λ +1
Γ(δ )

n

∑
i=1

γ̇(δ , ui)−ψ(δ )Γ(δ )γ1(δ , ui)

1− γ1(δ , ui)

+
λ −1
Γ(δ )

n

∑
i=1

γ̇(δ , ui)−ψ(δ )Γ(δ )γ1(δ , ui)

γ1(δ , ui)
− θλ

Γ(δ )

n

∑
i=1

[γ̇(δ , ui)−ψ(δ )Γ(δ )γ1(δ , ui)] [γ1(δ , ui)]
λ−1

[1− γ1(δ , ui)]
λ+1 ,

Uθ =
n
θ
−

n

∑
i=1

[
γ1(δ , ui)

1− γ1(δ , ui)

]λ
,

Uλ =
n
λ
−

n

∑
i=1

log [1− γ1(δ , ui)]+
r

∑
i=1

logγ1(δ , ui)−θ
n

∑
i=1

[
γ1(δ , ui)

1− γ1(δ , ui)

]λ
log
[

γ1(δ , ui)

1− γ1(δ , ui)

]
,

where ψ(·) is the digamma function and γ̇(δ , ui) =
∫ ui

0 xδ−1 e−x log(x)dx.
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7. The log Weibull generalized gamma regression model
Following the idea of Stacy and Mihram [14], we define an extended form of (5) (for x > 0), where β 6= 0 and the

other parameters are positive, namely

f (x) =
| β | λ θ
αΓ(δ )

( x
α

)βδ−1
exp
{
−θ

[
γ1[δ , (x/α)β ]

1− γ1[δ , (x/α)β ]

]λ

−
( x

α

)β
}

{γ1[δ , (x/α)β ]}λ−1

{1− γ1[δ , (x/α)β ]}λ+1 . (24)

For β > 0, we clearly obtain equation (5).
Next, let X ∼WGG(α, β , δ , θ , λ ) have density (24). The cdf of X has the form

F(x) =


1− exp

{
−θ
[

γ1[δ , (x/α)β ]
1−γ1[δ , (x/α)β ]

]λ}
if β > 0,

exp
{
−θ
[

1−γ1[δ , (x/α)β ]
γ1[δ , (x/α)β ]

]λ}
if β < 0.

(25)

Henceforth, let X be a random variable having the WGG density function (24) and Y = log(X). By setting δ = q−2,
β = (σ

√
δ )−1, and α = exp

[
µ −β−1 log(δ )

]
, the density function of Y follows as

f (y) =
θ λ | q | (q−2)q−2

σΓ(q−2)
exp
{

q−1
(

y−µ
σ

)
−q−2 exp

[
q
(

y−µ
σ

)]}
×

γλ−1
1 (q−2; q−2 exp[q

( y−µ
σ
)
])

{1− γ1(q−2; q−2 exp[q
( y−µ

σ
)
])}λ+1

exp

−θ

[
γ1(q−2; q−2 exp[q

( y−µ
σ
)
])

1− γ1(q−2; q−2 exp[q
( y−µ

σ
)
])

]λ
 ,

where y, µ ∈ R, σ > 0, λ > 0, θ > 0 and q 6= 0.
By including the case q = 0 (Lawless [15]), the density of Y reduces to

f (y) =



θ λ |q|(q−2)q−2

σΓ(q−2)
exp
{

q−1
( y−µ

σ
)
−q−2 exp

[
q
( y−µ

σ
)]} γλ−1

1 (q−2; q−2 exp[q( y−µ
σ )])

{1−γ1(q−2; q−2 exp[q( y−µ
σ )])}λ+1 ×

exp

{
−θ
[

γ1(q−2; q−2 exp[q( y−µ
σ )])

1−γ1(q−2; q−2 exp[q( y−µ
σ )])

]λ
}

if q 6= 0,

θ λ
σ
√

2π exp
{
− 1

2

( y−µ
σ
)2
}

Φλ−1( y−µ
σ )

[1−Φ( y−µ
σ )]λ+1 exp

{
−θ
[

Φ( y−µ
σ )

1−Φ( y−µ
σ )

]λ
}

if q = 0,

(26)

where Φ(·) is the standard normal cdf.
Equation (26) is a five-parameter family centered on the Weibull-normal distribution (for q = 0). It refers to the log-

Weibull generalized gamma (LWGG) distribution, say Y ∼ LWGG(µ, σ , q, θ , λ ), where µ ∈R is the location parameter,
σ > 0 is the scale and q, θ and λ are shape parameters. Thus,
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if X ∼WGG(α, β , δ , θ , λ ) then Y = log(X)∼ LWGG(µ, σ , q, θ , λ ).

The survival function of Y , say S(y) = P(Y ≥ y), has the form

S(y) =



exp

{
−θ
[

γ1(q−2; q−2 exp[q( y−µ
σ )])

1−γ1(q−2; q−2 exp[q( y−µ
σ )])

]λ
}

if q > 0,

1− exp

{
−θ
[

1−γ1(q−2; q−2 exp[q( y−µ
σ )])

γ1(q−2; q−2 exp[q( y−µ
σ )])

]λ
}

if q < 0,

exp

{
−θ
[

Φ( y−µ
σ )

1−Φ( y−µ
σ )

]λ
}

if q = 0.

(27)

The pdf of Z = (Y −µ)/σ ∼ LWGG(0, 1, q, θ , λ ) reduces to

f (z) =



θ λ |q|(q−2)q−2

Γ(q−2)
exp
[
q−1z−q−2 exp(qz)

] γλ−1
1 (q−2; q−2 exp(qz))

{1−γ1(q−2; q−2 exp)qz))}λ+1 ×

exp
{
−θ
[

γ1(q−2; q−2 exp(qz))
1−γ1(q−2; q−2 exp(qz))

]λ
}

if q 6= 0,

θ λ√
2π exp

{
− 1

2 z2
} Φλ−1(z)

[1−Φ(z)]λ+1 exp
{
−θ
[

Φ(z)
1−Φ(z)

]λ
}

if q = 0.

(28)

8. Some LWGG properties and a new regression model
Here, some structural properties of the LWGG distribution are reported. We consider µ = 0 and σ = 1, because in

the general case it is enough to define Y = µ +σY ∗, where Y ∗ ∼ LWGG(0, 1, q, θ , λ ).

8.1 Stochastic representation
It follows from (8) that Y ∼ LWGG(0, 1, q, θ , λ ) admits the stochastic representation

Y d
= logG−1

(
W

1+W

)
, W ∼Weibull(θ , λ ),

where G(x) is given in (2).

8.2 Quantiles
Let Y ∼ LWGG(0, 1, q, θ , λ ), X ∼ WGG(α, β , δ , θ , λ ), with α, β and δ defined some lines below (25), and

p ∈ [0, 1]. Let QY (p) denote the pth quantile of Y . The invariance of quantiles under positive monotone transformations
and (9) gives
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QY (p) = Qlog(X)(p) = log(QX (p)) = log

{
G
([

− log(1−p)
θ

]1/λ )
1+G

([
− log(1−p)

θ
]1/λ )

}
.

8.3 Minima

LetY1, · · · , Yn be independent and identically distributed LWGG randomvariableswith parameter vector (0, 1, q, θ , λ )>.
If the minimum of these random variables is Z = min(Y1, · · · , Yn), the cdf of Z follows from (7)

FZ(z) = 1− exp
[
−nθT λ (ez)

]
,

where T (x) = T (x; α, β , δ ) is given in (6). So, Z is also LWGG distributed with parameter vector (0, 1, q, nθ , λ )>.

8.4 Stochastic orders
The proofs of the following two stochastic orders (Propositions 8 and 9) can be determined analogously from those

Propositions 2 and 6. Hence, due to space limitations, we omit the corresponding proofs.
Proposition 8 If Y ∼ LWGG(0, 1, q, θ , λ ), then Y ⩽st R, where R = log(G−1(W )) andW ∼Weibull(θ , λ ).
Proposition 9 If Y1 ∼ LWGG(0, 1, q, θ1, λ ) and Y2 ∼ LWGG(0, 1, q, θ2, λ ), then Y2 ⩽lr Y1 provided θ1 < θ2, and

Y1 ⩽lr Y2 provided θ2 < θ1.

8.5 Closed-form expressions for the mean value

Based on the stochastic orders between Y and R (Proposition 8) we obtain the closed-form expressions for the mean
value of Y ∼ LWGG(0, 1, q, θ , λ ).

Proposition 10 If Y ∼ LWGG(0, 1, q, θ , λ ), then

E(Y ) =
∫ 1

0
F−1

R (u)du−
∫ 1

0
|F−1

Y (u)−F−1
R (u)|du,

=
∫ 1

0
min{F−1

Y (u), F−1
R (u)}du,

where R = log(G−1(W )).

8.6 Kullback-Leibler divergence
If fY1 and fY2 are the pdfs of Y1 ∼ LWGG(0, 1, q, θ1, λ ) and Y2 ∼ LWGG(0, 1, q, θ2, λ ), respectively, and θ1 6= θ2,

their Kullback-Leibler divergence reduces to

DKL( fY1‖ fY2) =
∫ ∞

−∞
fY1(x; 0, 1, q, θ1, λ ) log

(
fY1(x; 0, 1, q, θ1, λ )
fY2(x; 0, 1, q, θ2, λ )

)
dx.

Since this divergence measure is invariant under invertible transforms, we have
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DKL( fY1‖ fY2) = DKL( flog(X1)‖ flog(X2)) = DKL( fX1‖ fX2),

where X1 ∼ WGG(α, β , δ , θ1, λ ) and X2 ∼ WGG(α, β , δ , θ2, λ ). By using the formula of the Kullback-Leibler
divergence DKL( fX1‖ fX2) given in Section 3.7, we obtain

DKL( fY1‖ fY2) = log(θ1)− log(θ2)− (θ1 −θ2)θ−1/λ
1 Γ

(
1+

1
λ

)
.

Further, we propose a linear location-scale regression model linking the response variable yi and the explanatory
variable vector v>i = (vi1, · · · , vip) under two systematic components (for i = 1, . . . , n)

yi = µi +σi zi, (29)

where the random error zi has density function (28),

µi = v>i β 1 and log(σi) = v>i β 2,

β 1 = (β11, · · · , β1p)
> and β 2 = (β21, · · · , β2p)

> are functionally independent. The systematic component for σ can
model heteroscedastic data with non-proportional risks.

Consider independent observations (y1, v1), · · · , (yn, vn, ), where yi = min{log(xi), log(ci)}. Here, the xi’s are the
failure times and the ci’s are the censored times assumed independent. Let F and C be the sets for the log lifetimes and
log-censoring times, respectively. The log-likelihood function for τ = (β>

1 , β>
2 , q, θ , λ )> from model (29) has the form

l(τ) =



r log
[

θ λ q(q−2)q−2

Γ(q−2)

]
−∑i∈F log(σi)+q−1 ∑i∈F zi−

q−2 ∑i∈F exp(qzi)+∑i∈F log
{

γλ−1
1 (q−2, q−2 exp(qzi))

[1−γ1(q−2, q−2 exp(zi))]λ+1

}
−

θ ∑i∈F

[
γ1(q−2, q−2 exp(zi))

1−γ1(q−2, q−2 exp(zi))

]λ
−θ ∑i∈C

[
γ1(q−2, q−2 exp(zi))

1−γ1(q−2, q−2 exp(zi))

]λ
if q > 0,

r log
[

θ λ (−q)(q−2)q−2

Γ(q−2)

]
−∑i∈F log(σi)+q−1 ∑i∈F zi−

q−2 ∑i∈F exp(qzi)+∑i∈F log
{

γλ−1
1 (q−2, q−2 exp(qzi))

[1−γ1(q−2, q−2 exp(zi))]λ+1

}
−θ ∑i∈F

[
γ1(q−2, q−2 exp(zi))

1−γ1(q−2, q−2 exp(zi))

]λ
+

∑i∈C log
{

1− exp
[
−θ
{

γ1(q−2, q−2 exp(zi))
1−γ1(q−2, q−2 exp(zi))

}λ
]}

if q < 0,

r log
(

θ λ√
2π

)
−∑i∈F log(σi)− 1

2 ∑i∈F z2
i +

∑i∈F log
{

Φλ−1(zi)

[1−Φ(zi)]λ+1

}
−θ ∑i∈F

[
Φ(zi)

1−Φ(zi)

]λ
−θ ∑i∈C

[
Φ(zi)

1−Φ(zi)

]λ
if q = 0.

(30)
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where r is the number of failures, and zi = (yi −µi)/σi.
The MLE τ̂ can be calculated by maximizing Equation (30). Initial parameter values are found by fitting the log-GG

regression model.
To find the MLEs, several authors using equation (30) for example: Ortega et al. [16] presented the generalized log-

gamma regression models with cure fraction, Cancho et al. [17] considered the Conway-Maxwell-Poisson-generalized
gamma regressionmodel with long-term survivors, Ortega et al. [18] introduced the log-exponentiated generalized gamma
regression model for censored data, Pascoa et al. [19] introduced the log-Kumaraswamy generalized gamma regression
model with application to chemical dependency data, Hashimoto et al. [20] discussed on estimation and diagnostics
analysis in log-generalized gamma regression model for interval-censored data, and Prataviera et al. [21] presented the
heteroscedastic odd log-logistic generalized gamma regression model for censored data.

9. Simulations
A simulation study is conducted to evaluate the effectiveness of the MLEs of the WGG distribution when α = 1.

The mean square errors (MSEs) and absolute biases (ABs) of these estimates for different scenarios are reported in Table
1 using 1,000 samples. The results reveal a reduction in both ABs and MSEs when n increases. So, the MLEs converge
toward the true parameters.

Table 1. Simulation results for the WGG distribution

Parameters n
ABs MSEs

β̂ δ̂ θ̂ λ̂ β̂ δ̂ θ̂ λ̂

β = 0.5 20 0.084 0.091 0.087 0.116 0.183 0.244 0.331 0.381
δ = 0.5 50 0.043 0.083 0.062 0.076 0.103 0.132 0.167 0.181
θ = 0.5 100 0.025 0.078 0.064 0.041 0.013 0.063 0.100 0.096
λ = 0.5 150 0.005 0.012 0.049 0.003 0.002 0.008 0.093 0.054

β = 0.5 20 0.148 0.113 0.292 0.268 0.148 0.213 0.320 0.161
δ = 0.5 50 0.120 0.092 0.290 0.224 0.120 0.062 0.258 0.135
θ = 2 100 0.029 0.037 0.077 0.137 0.026 0.041 0.035 0.019
λ = 2 150 0.009 0.001 0.018 0.002 0.012 0.006 0.031 0.012

β = 2 20 0.145 0.119 0.150 0.262 1.423 1.036 0.951 0.824
δ = 2 50 0.082 0.111 0.060 0.109 1.241 0.961 0.932 0.508
θ = 2 100 0.026 0.040 0.025 0.051 0.021 0.062 0.106 0.092
λ = 2 150 0.023 0.004 0.005 0.012 0.012 0.010 0.032 0.069

β = 2 20 0.522 0.126 0.152 0.164 0.623 0.708 0.120 1.846
δ = 2 50 0.433 0.102 0.025 0.110 0.325 0.239 0.112 0.612
θ = 3 100 0.012 0.002 0.022 0.080 0.196 0.164 0.073 0.035
λ = 3 150 0.005 0.002 0.007 0.023 0.026 0.074 0.004 0.029

β = 2 20 0.327 0.185 0.177 0.341 0.626 0.862 0.654 0.618
δ = 3 50 0.173 0.156 0.124 0.166 0.318 0.236 0.456 0.212
θ = 5 100 0.108 0.014 0.079 0.144 0.147 0.063 0.156 0.035
λ = 2 150 0.007 0.011 0.030 0.103 0.054 0.012 0.139 0.016

β = 0.5 20 0.148 0.494 0.098 0.399 0.565 0.924 0.271 1.099
δ = 3 50 0.105 0.304 0.065 0.157 0.184 0.816 0.182 0.697

θ = 0.5 100 0.010 0.096 0.006 0.067 0.160 0.556 0.134 0.392
λ = 3 150 0.009 0.050 0.004 0.005 0.064 0.024 0.101 0.100
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10. Applications
10.1 Carrol data and turbocharger lifetimes

The WGG distribution with scale α = 1 is adopted to model two real data sets: the Carrol data and turbocharger
lifetimes. The first data set includes the total monthly rainfall (in millimeters) recorded at the Carrol rain gauge station
in the Australian State of New South Wales on the east coast between January 2000 and February 2007 [22]. The second
data set gives the lifetime (1,000 h) of a turbocharger of a type of engine [23]. Three classical statistics (AIC, BIC and
CAIC), Anderson-Darling (A∗) and Kolmogorov-Smirnov (KS) statistics compare the fitted WGG model with four other
extended models: Marshall-Olkin generalized-gamma (MOGG) with cdf G(x)/[θ +(1−θ)G(x)] [5], beta generalized-
gamma (BGG)with cdf IG(x)(θ , λ ) [24], exponentiated generalized-gamma (EGG)with cdfG(x)θ [2], and Kumaraswamy
generalized-gamma (KwGG) with cdf 1−

[
1−G(x)θ ]λ [3]. Here, Iz(·, ·) is the incomplete beta function ratio. The

findings from the fitted models are reported in Tables 2-5, where the standard errors (SEs) of the MLEs are given in
parentheses.

For both data sets, the WGG model provides a better fit than the other distributions. The efficiency of the fitted
distributions is illustrated graphically, through a comparison of the empirical and fitted cdfs in Figures 6 and 8. The
probability-probability (P-P) (Figures 7 and 9) and the quantile-quantile (Q-Q) plots (Figures 7 and 9) for the fitted WGG
distribution show that the proposed distribution is a better model than the others.

Table 2. Estimates and their SEs for Carol data

Model β̂ δ̂ θ̂ λ̂

WGG 0.5833 6.4540 0.4864 0.4733
(0.1258) (3.1330) (0.2164) (0.2656)

MOGG 0.4950 3.1126 7.8893 -
(0.0243) (0.9900) (6.9068) -

EGG 0.6382 14.6952 0.1836 -
(0.0120) (0.0281) (0.0215) -

KwGG 0.4615 14.7271 0.2576 6.7161
(0.2974) (0.0518) (0.1371) (26.907)

BGG 0.8210 3.0079 0.9996 0.0799
(0.0025) (0.0318) (0.2752) (0.0091)

Table 3. Statistics and the p-values of the KS statistic for Carrol data

Model AIC BIC CAIC A∗ KS p-value

WGG 742.73 752.40 743.24 0.1065 0.038 0.9998
MOGG 748.51 755.77 748.82 0.5218 0.0717 0.7872
EGG 748.67 755.92 748.97 0.6245 0.090 0.5102
KwGG 752.31 761.98 752.82 0.7188 0.084 0.6021
BGG 758.50 768.17 759.01 1.0806 0.122 0.1660
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Figure 6. Empirical and fitted cdfs for Carol data

Figure 7. PP and QQ plots for the fitted WGG model to Carol data

Figure 8. Empirical and fitted cdfs for turbocharger data
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Table 4. Estimates and their SEs for turbocharger data

Model β̂ δ̂ θ̂ λ̂

WGG 1.4150 8.6175 0.2090 0.3549
(0.2776) (4.9399) (0.1353) (0.2318)

MOGG 1.0872 3.8715 18.9706 -
(0.0747) (1.6642) (23.2691) -

EGG 1.3841 19.6289 0.1922 -
(0.0334) (0.0522) (0.0347) -

KwGG 0.9402 17.9986 0.2943 16.2560
(0.0982) (0.0541) (0.0456) (15.5161)

BGG 1.2019 19.3895 0.1859 9.2041
(0.0230) (0.0209) (0.0318) (4.6018)

Table 5. Statistics and p-values of the KS statistic for turbocharger data

Model AIC BIC CAIC A∗ KS p-value

WGG 165.14 171.90 166.29 0.1565 0.0654 0.9955
MOGG 171.49 176.55 172.15 0.5505 0.0898 0.9033
EGG 174.81 179.88 175.48 0.9015 0.1263 0.5457
KwGG 176.25 183.00 177.39 0.8268 0.1155 0.6601
BGG 170.71 177.47 171.85 0.4617 0.1106 0.7119

Figure 9. PP and QQ plots for the fitted WGG model to turbocharger data
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10.2 Prostate cancer recurrence data
This section provides an application of the LWGG regression model to prostate cancer data. The study cohort

comprises 1,324 patients with clinically localized prostate cancer, between 1987 and 2003, treated by a single surgeon by
open radical prostatectomy in the Cleveland Clinic. It was measured the number of months (yi) without detectable disease
after radical prostatectomy. Uncensored observations correspond to patients having cancer recurrent time computed. The
numbers of censored and uncensored observations are 1,096 and 228, respectively, from a total of 1,324 patients. The
explanatory variables below are associated with each patient (for i = 1, . . . , 1,324):
·δi is the event indicator, where 1 represents the event and 0 the censored observation;
·vi1 indicates if the patient was treated with hormone therapy before the radical prostatectomy (yes = 1 and no = 0);
·vi2 is the PSA value (in ng/mL) before the surgery;
·vi3 is the extra-capsular extension on path report (yes = 1, no = 0);
·vi4 is the seminal vesicle invasion on path report (yes = 1, no = 0);
·vi5 is the lymph node involvement on path report (neg = 1, pos = 0);
·vi6 is the Gleason score sum [4, 7) versu 7;
·vi7 is the Gleason score sum [4, 7) versus [8, 10];
·vi8 is the surgical margin status (yes = 1, no = 0).
The two systematic components are given by

µi = β10 +
8

∑
j=1

β1 jvi j and σi = exp

(
β20 +

8

∑
j=1

β2 jvi j

)
.

The MLEs of the parameters are found using the NLMixed procedure in SAS. Iterative maximization of Equation
(30) starts with initial parameter values taken from the fitted LWGG regression model.

Table 6 reports the AIC, CAIC, and BIC statistics from the fitted LWGG and LGG regressions. The lowest values
for the LWGG model reveal that it is an appropriate regression to explain the current data.

Table 6. Model selection measures

Regression model AIC CAIC BIC

LWGG 1459.3 1460.0 1568.2
LGG 1855.5 1856.1 1954.1

Table 7 gives the MLEs, SEs, and p-values for the best fitted model. All covariates are significant at a significance
level of 6% for the parameter µ . Concerning the parameterσ , only the covariates v2 and v8 are significant at a significance
level of 5%.

Further, we fit the LWGG regression model for each explanatory variable separately and plot the empirical survival
function and the estimated survival function (27) for each explanatory variable in Figures 10, 11, and 12. So, this model
provides a good fit for these data.
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Figure 10. Kaplan-Meier curves stratified by explanatory variable and estimated survival functions to the recurrence prostate cancer data: (a) v1
explanatory variable; (b) v3 explanatory variable; (c) v4 explanatory variable

Figure 11. Kaplan-Meier curves stratified by explanatory variable and estimated survival functions to the recurrence prostate cancer data: (a) v5
explanatory variable; (b) v6 explanatory variable
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Figure 12. Kaplan-Meier curves stratified by explanatory variable and estimated survival functions to the recurrence prostate cancer data: (a) v7
explanatory variable; (b) v8 explanatory variable

Table 7. Results from the fitted LWGG regression model

Parameter Estimate SE p-value

β10 6.4742 1.8885 0.0006
β11 -0.4643 0.2414 0.0547
β12 -0.0394 0.0189 0.0368
β13 -0.9346 0.3275 0.0044
β14 -0.9083 0.2602 0.0005
β15 0.7199 0.3671 0.0501
β16 -1.0670 0.4250 0.0122
β17 -2.3538 0.5814 <0.0001
β18 -0.7971 0.3829 0.0375

β20 1.3588 0.5524 0.0140
β21 -0.0143 0.1065 0.8935
β22 0.0071 0.0031 0.0226
β23 -0.0796 0.1193 0.5048
β24 0.0174 0.1501 0.9075
β25 0.0624 0.1536 0.6849
β26 -0.1060 0.1282 0.4085
β27 -0.1747 0.1828 0.3394
β28 0.2006 0.0984 0.0416

q -1.6156 0.6356
θ 2.1379 5.5324
λ 1.8609 0.4081

11. Conclusions
We proposed the Weibull generalized gamma (WGG) distribution, derived a new linear representation for its density

function, and determined some of its structural properties. We introduced a log-linear regression model based on the
new distribution with two systematic components for censored data. We examined the maximum likelihood estimation
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of the parameters. We proved that the extended regression model can be useful in the analysis of real data with more
realistic fits than other special regression models. The potentiality of the new distribution and regression models was
illustrated by employing three real data sets. Further, other works in a similar manner can be developed to extend several
regression models in the literature, such as the COM-Poisson cure rate survival models, destructive negative binomial cure
rate models, Conway-Maxwell-Poisson generalized gamma regression models, a power series beta Weibull regression
model, survival models induced by discrete frailty for modeling lifetime data with long term survivors, power series cure
rate models for spatially correlated interval-censored data, and long-term bivariate survival Farlie-Gumbel-Morgenstern
copula models (bivariate case).
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