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Abstract: This article introduces two numerical methods to address boundary value problems associated with secondorder
and fractional differential equations. These methods employ two parameters related to shifted Gegenbauer polynomials
as their basis functions. The process involves establishing a differentiation operational matrix for the shifted Gegenbauer
polynomials. Subsequently, the initial/boundary value problems for ordinary and fractional differential equations are
transformed into a system of equations through the Galerkin, collocation, and tau methods. The convergence analysis
is ensured by leveraging theorems pertaining to the shifted Gegenbauer polynomials. To validate the accuracy of the
approach, numerous numerical examples are presented.
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1. Introduction

The many beneficial characteristics of orthogonal polynomials, like Gegenbauer, highlight their usefulness in the
numerical solution of various differential equations. Gegenbauer polynomials are very appropriate for a wide range of
applications because they have orthogonality, exponential accuracy, and a single parameter that may greatly affect the
range of approximations. Their regular usage in several research attests to their efficacy. For example, the authors of
[1] used shifted Gegenbauer polynomials to solve the space fractional diffusion equation problems. Furthermore, as the
authors of [2] show, the Laguerre and Gegenbauer polynomials together provided the basis for a meshless Petrov-Galerkin
method that was especially used for spinning Rayleigh beams. Gegenbauer polynomials are also used in harmonic analysis
and potential theory, where they easily emerge as Legendre polynomial extensions. Also employed in the theory of the
positive-definite functions. When a function is enlarged by the Gegenbauer basis in spectral approaches to solving
fractional differential equations, the derivative operator transforms into a diagonal matrix, allowing for quick banded
matrix solutions to large problems.

As noted in [3] and [4], second-order boundary value problems (BVPs) have important uses in the field of
mathematical modeling in situations such as the displacement analysis of cantilever beams under concentrated tension,
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plate perversion theories, and the investigation of ray distortion. Several writers have explored the numerical solution
of second-order BVPs, demonstrating the variety of methods in this field [5, 6]. In [5], for example, Walsh wavelets
were used to improve the numerical approach to solving second-order BVPs under both Dirichlet and Neumann boundary
conditions. This comprehensive investigation of numerical solutions and mathematical models attests to the adaptability
and usefulness of different polynomial approaches in solving a range of differential problems.

With the introduction of the groundbreaking field known as fractional calculus, differential equations and fractional
calculus have solidified their positions as essential elements of mathematical analysis. Because of its wide range of
applications in the biological, engineering, and industrial sectors, this subject has seen a rise in prominence [7, 8].
Fractional calculus has developed into a significant area of mathematical study over time, with applications in many
different domains, including physics, fluid dynamics, and biology. The significance lies in the fact that fractional
differential equations can emulate a multitude of phenomena in these fields. Given the analytical challenges associated
with acquiring solutions for many of these equations, the pursuit of numerical estimates becomes imperative, for recent
advances in fractional calculus, the interested reader can see [9-11].

The field of fractional differential equations has seen significant advancements thanks to the work of several
academics, which has resulted in the creation of numerous numerical techniques for solving them. Taylor collocation
method [12], tau method [13], and improved collocation method [14], as well as the Petrov-Galerkin method [15] are
notable techniques. In the broader context of numerical solutions for differential equations, spectral methods, like those
employing smooth Gegenbauer polynomials, have gained widespread adoption [16—18]. This study focuses on employing
three distinct spectral methods-tau, collocation, and Galerkin-to numerically solve linear and non-linear boundary value
problems as well as fractional differential equations. These methods draw on a variety of polynomial expansions, including
shifted Gegenbauer polynomials.

The paper follows the following structure: Shifted Gegenbauer polynomials are introduced in detail in Section 2
which also covers their basic relations. The operational matrix for shifted Gegenbauer polynomials, Section 3 is devoted to
solving second-order boundary value problems, both linear and non-linear. Section 4 is for the derivation of the operational
matrix designed for fractional differential equations. This matrix is important in the proposed methodology and facilitates
a systematic and efficient approach to solving fractional differential equations. Section 5 offers a detailed examination
of the convergence and error analysis of the proposed method. This section assesses the reliability and accuracy of the
method. Section 6 presents numerical results and comparisons. Section 7 provides concluding remarks to report the key
findings of the proposed method.

2. Some helpful formulae for shifted gegenbauer polynomials

In this section, some basic relations of the shifted Gegenbauer polynomials’ properties and some helpful formulae

are also shown. The explicit formula given below can be used to compute the Gegenbauer polynomials Cﬁ,“) (x), which
are based on the interval [—1, 1]:

—

14 m
@y v (CD"T(g—m+a) —om
(D
C(a) | _F(q+2a)
a ()= g TQRa)

The recurrence equation of the Gegenauer polynomials:
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Qa+29)x " (1) = 4C% () + Qa+q)CD (1), q=1.2,..., @)

where

=1, =1

22

x_ 1, so C'((,a>(x) = C((,a)(f —1). Then we may construct

2

In Egs. (1) and (2), by adding the new variable y = T

the shifted Gegenbauer polynomials [19] and the recurrence relation of the shifted Gegenbauer polynomials and use them
on the interval [0, L]. An explicit formula presented can be used to find the qth-order shifted Gegenbauer polynomials

1

() 71—‘(064— ) el (—1)4""L"”F(q+m+2oc)
o) = F(2a§ mZ:’O m!T(a+m+ %) (g—m)!

m
)

(€)

the recurrence equation of the shifted Gegenbauer polynomials:

2 ~ ~ ~
2g+2a)(F -1 () =€ 0+ Ca+CH (0. a=1.2,...,
with
A@ ) 1 @y 2X
G =1 ¢ )=--1

According to L*-space on the range [0, L], the shifted Gegenbauer polynomials C’ga)( x) provided in Eq. (3) are

orthogonal [19].

(o)

L —
~ ~ » 4=Ds
| e enes (el Goax - { ‘
0 0, q#p

where h((lm and 920’) (x) signify the normalizing factor and the weight function, respectively, and are provided as

(@) B 7rL2°‘21—4°‘F(q+2a)
T IPQRa)gl(gta)

1
0. () = (Lx — 21
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(1
This polynomial represents the shifted Legendre polynomial Z,(x) = Céﬁ)( X ), the first kind of shifted Chebyshev
polynomial 7,,(x) = C\)(x), and the second kind of the shifted Chebyshev polynomial U, (x) = (¢ + 1)@51) (x)-

3. Shifted gegenbauer operational matrix of BVPs of second-order

This section’s main goal is to establish the operational matrix derivatives of the shifted Gegenbauer polynomials and
then use those values to solve linear and non-linear BVPs.

3.1 Linear boundary value problems of second-order

The following second-order BVP in one dimension is as follows:

"

' (1) +81(0) @ (1) +82(0) 0(x) = 83(%), “)
controlled by non-homogeneous boundary conditions:
00)=y, o()={. ©)

According to the subsequent transformation [20]:

o) =u(p) + TEZHEEL ©
It is simple to demonstrate that (4)-(5) may be adjusted to become the following:
u’ () +81 00w () + g2 u(x) = £(2), (M
where
et =)~ (7)) o) - (HEEEEL ) o, ®
according to the next homogeneous boundary conditions
u(0) =u(L)=0. 9)

The numerical expression for (7) is as follows:

M
u(y) ~um(x) = Zocq () =C" ®(y),
P
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in which

C= [C(),Cl, ...,CM]T7

and

D (x) = [Do(x), D1 (%), - Pu(x)]"

In this research, we define the basis function as a compact combination of shifted Gegenbauer polynomials, for

instance:
(pq(x):Pq(%)*Pquﬂx)v (10)
where
o) = G0 0) an
2= Qa),

Theorem 1 For all ¢ > 0, there exist an alternative form for the shifted Gegenbauer polynomials ®,(y):

aq!(1+q+a) (2‘1)%([4_%)(&)2@,(1“1)(%) 12

*%) =5 I

Proof. From relation (10) and Eq. (11), we get

(pq(%): ' - ! » (13)

(14)

=z(z+1)... (z+w—1).

If we employ the last relation (14) in (13), we get
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Qe (@+2)1a) )
(1) = (205:61) - (2a+q+qz+)

) (a+2) @+ 1) ()
:q!(ZOC) ((zqa+q) (2(1+6]+§;r

__4'29) Aa) () ()
= e (@204 D@ +20) 0 () - (a+2) 0+ DEH )
ag!(1+g9+a)(2a) 412 alat)
= L— — .
O
Theorem 2 The orthogonality on the range [0, L] of ®@,(y) in (10) provides by
L . jlo) =
(a) g s 4=D;
o) D dy =
| @0 @08 () dx {07 e
where
plo) _ 8L (14 p+ ) (1+9)%(; + )
/ 2+g+2a) ’
and the weight function
01" (1) = (L =172
Proof. The formula ®,(y) in (12) yields
< 256(Ly — x2)* 2 o (1+g+a)(1+p+a)q p!2(2a)Co* ™V () E* V) (x
q)p(x)(pq(x) L(a)(x): ( ) ( )( ) ( ) q ( ) 14 ( ) (15)

L*2+qg+2a)2+p+2a)

When we integrate both sides in (15) from 0 to L, we get
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25602 (1+g+a)(1+p+a)q!p*(2a)
L*Q2+g+2a)2+p+2a)

L ~ ~
| (@a=* e e ) dx

C2560%(1+q+a)(l+p+a)q!p!*2a)
L*Q2+g+2a)2+p+2a)

L2224 g+20)(a+ 1) (a+1)

R2(1+qta)gplar2a) = 177F
0’ Q#pv
8L 2% (1+p+a)(l+q)3(5+a)
= (2+g+2a) A=
0, q7# ps
:{7151“), q=rp,
0, q7#p-

O
When g;(x) and g>()) are constants in Eq. (4), they can be represented as k and v, respectively. Thus, we possess
the matrices of the shifted Gegenbauer polynomials and their derivatives.
The shifted Gegenbauer polynomials can be written by matrix as:

Du(x) =Y ar nPu(x), n>0,
k=0

with

L°T(1+n)T (3 + )

ifn—k=0
dkta)T(kt2a) n ’
a =13 L*T(1+n)2l+a
b UEMTG @) ey, o,
22+k+a)T2+k+2a)
0, otherwise.

For the shifted Gegenbauer polynomials, the first derivative can be described as:

n—1
D(DH(X): Zbk,n(pk(%)a n>1,
k=0
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whereas

2L 4 )T (5 + )

ifn—k=1
T2+kt2a) ’ n ’
a2 1 4k+a)2Qo— DT+ (L + o
bk,n ( +Kr+ )( ) ( + ) (2+ )’ lfk>l’l, (n—k)odd,
Fr2+k+2a)
0, otherwise.

The second derivative of the shifted Gegenbauer polynomials can be stated as:

n—2
Dz@ﬂ(%)zzdk,n(pk(X)v ’122,
k=0

where

P 422 (14+k+a) (—4=3k2+k) +n*+2(k—n) (n+k—1) ot +4 (k—n) oa®)T(k+ 1) (a + 1)
kon = T2+k+2a) '

Therefore, we can calculate the residual of Equation (7) by

M L
R(X) =Y cun (de n+kbe n+vag »)+ /0 e(x)Pi(x)6f (x)dx. (16)
n=0

By the tau method, we get

L
/0 Ru (%) ®a(2) 67 (x)dx =0, n=0,1,...,M—q, (17)
if we apply the boundary conditions, then we obtain that
CT®(0)=0and CT &(L) =0. (18)

Now, we construct a linear system of (M + 1) equations in the unknowns {c, }o<n<p by combining (17) and (18).
Then solve them by the Gauss elimination method.

3.2 Non-linear boundary value problems of second-order

The following second-order non-linear boundary value problems:

o' (1) =2 (1. 00, @ (). (19)
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where the homogeneous boundary conditions

The residual of Eq. (19)

Ru(x) = 0" ()~ ¢ (1, 0(1), @' () (20)
if we apply the collocation method, we have
Ry(xn) =0, n=0,1,...,M—2, 21)
and the boundary conditions
c’o(0)=Cc’o(L)=0. (22)

By combining (21) and (22), we get the non-linear system of (M + 1) equations in the unknowns C”.
Algorithm 1 Coding algorithm for our method to the linear and non-linear BVPs.

Input M.

Step 1. Use transformation (6) to convert Egs. (4)-(5) into Egs. (7), (8), and (9).

Step 2. Suppose an approximate solution is uy () = CT ®(x).

Step 3. Get the elements of the matrices ay ,, bi, 4, and dy_,.

Step 4. Get the residual of the Egs. (16) or (20).

Step 5. Use the Galerkin method for obtaining the system in (17) and (18) or in (21) and (22).

Step 6. To solve the system (17) and (18) or in (21) and (22), apply the NSol/ve command to obtain C.
Step 7. Establish uy () = CT @ ().

Output ().

4. Shifted gegenbauer operational matrix of FDE

In this section, some basic definitions of the theory of fractional calculus will be provided. Then we study the effect
of fractional calculus on the shifted Gegenbauer polynomials.
4.1 Some aspects of fractional calculus

Definition 1 In terms of order 1 > 0, t > 0, and n € N, the Caputo fractional derivative is defined as [21]:
dn
dx"

1 X (n) . n—1-1 d _ 1

— | M) x-%) ¢, n—l1<i<n
(n — l) 0

f(X)’ 1=mn,
(D) (x) =
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Definition 2 For all n € N and order 1 > 0, the Riemann-Liouville fractional derivative is defined as [21]:

L) = At

(DY) (%) = f(x)

/()"f@)(x— O 1tdg n—1<1<n,

The Riemann-Liouville and Caputo operators’ relationship:

n—=1 ,,s5—1 £(s)
i) =0t p)+ E A

Some features of the fractional derivatives:

(1+B) B+t
(I+1+8) ’

*DLD' f(x)=f(x),

. Dlxﬁ =

n—1 s £(s) O+
*D'DLf(x)=fx)— ), L,(O)
s=0 :

N

See [22] for further information on fractional calculus.

4.2 The tau method for handling linear fractional differential equations

This subsection discusses the numerical solution of linear fractional differential equations using the tau procedure.

Consider the next linear fractional differential equations:

D" o(x)+ LIZj S () D™ o(x) +£(x) o(x) = p(%);
=
managed by the initial conditions:
oM 0)=z4, p=0,1,....g—1, g>1,
or the boundary conditions:
oM 0)=2z,, oM (1)=v,, wu=01,...,49-1,

where m; < my <...<mgandmj e (j—1, j|; j € Nand &,(x), €(x), and p(x) are continuous functions.
To derive a numerical solution for Eq. (23), we assume that

M
o(x)~ou(x) =Y cn®u(x) =C" D(),
n=0

(23)

24

(25)

(26)
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then the residual of Eq. (23) can be obtained by

M — M
Ru(x)= Y, caD™ Dy(x Z Z cng,, YD B, ( +ch D,(x)—p(x).
n=[mq] p=1n=[m,
Now, we apply the tau method
L
/()RM(x)QSn(x)Gf‘(x)dx:O, n=01,... M—q. @7)

If we employ relation (26), then using the initial conditions Equation (24) produces
C"d(0)=z4, u=0,1,....,q—1, (28)
furthermore, if we apply relation (26), the boundary conditions Equation (25) suggests that
C"d(0)=z,, C'®(1)=vy, p=0,1,....,q—1. (29)

By combining (27) and (28) or (27) and (29), we have a system of linear equations of dimension (M + 1) in the
unknowns {c;, }o<n<y. Furthermore, the resulting problem can be solved using a numerical algebraic procedure.

4.3 The collocation method for handling non-linear fractional differential equations

In this subsection, we apply the collocation method to shifted Gegenbauer polynomials to solve fractional differential
equations of non-linear:

D" o(x)=S(x, o), D" o(x),D"o(x),...,D"'o(x)), x<(0,1), (30)

subject to the initial conditions (24) or the boundary conditions (25), such thatm; < my <... <mgandm;e (j—1, j|; j €
N, and S is a continuous non-linear function, then the residual from Equation (30) can be obtained by

Ru(x)=D" a(x)—S(x, o(x), D" o(x), D™ &(), ..., D" ©(x)).

The collocation points are selected to be the first (M — g+ 1) roots of @ys41(), and the collocation method is used
to obtain

RM(%’!):Oa n:071a"'aM_('I' (31)

Equations (31) and (28) or (31) and (29), comprise a system of non-linear (M + 1) algebraic equations with (M + 1)
unknowns {c;, }o<n<p. The approximate solution may be determined using Newton’s iterative procedure.
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Algorithm 2 Coding algorithm for our method to the linear and non-linear BVPs.
Input M.

Step 1. Suppose an approximate solution is uy () = CT ®(x).
Step 2. Get the residual of the Egs. (23) or (30).
Step 3. Use the Galerkin method for obtaining the system in (23)-(25) or in (30), (24) and (25).

Step 4. To solve the system in (23)-(25) or in (30), (24) and (25), apply the NSolve command to obtain C.
Step 5. Establish uy,(x) = CT @(x).

Output @ ().

5. Examining the convergence and error analysis

This section thoroughly examines the shifted Gegenbauer polynomial expansion’s convergence and error analysis.
As aresult, several necessary lemmas are employed in this research.

Lemma 1 For the combination of shifted Gegenbauer polynomials @,(y ), the next inequality holds:

|D,(x)| <32(¢L)"%, ¢>0, xelo, L.

Proof. From the alternative form of @,()) in (12), we have

_|eq!(1+q+a)(2a) ~(a+1)
2,0 = | 2L G IR 1 1) (126 )
16 |agq!(1+g+a)2a) ~(a+1)

- g |2 )
< 32(qL)7%

Lemma 2 The following inequality is a valid one for the shifted Gegenbauer polynomials:

s 32 gL 2
|C(506+1)(x)‘< (a+2)q

i AL T St 0 0, L].
< Garn g>0, xelo,L]

Proof. From relation (3), we have

m
bl

Gt () = T(a+3) i (=D)L "T(g+m+2a+2)
! F2a+2) = mT(a+1+m+13)(qg—m)!
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~(0+1) Cla+3) [ & (—1)9"L"T(g+m+20+2)
G ()l = Y -
FQRa+2) | = m!T(a+1+m+75)(g—m)!
32(a+3)q!L72
Qa+2)

O
M

Theorem 3 If () represents the analytic solution for (4), (19), (23), or (30), and wy(x) = Z cq P4(x) denotes
q=0

the approximate solution, then the expansion coefficients fulfill the following approximation
ey <AL™*2%gIN.

Proof. We start with the analytical solution

o(x) = io @, (2). (32)

Multiplying both sides of (32) by @,(x) £a> (x), then we have after integrating each side from 0 to L

1 L ~
= ) 000 208" () dx
q

(33)
2+g+2a)

_ 5(c)
L7220 (14+g+a)(l+g

L
2

If we replace () in (33) with the value obtained from relation (6), then we obtain

. 2+g+2a)
TUBL 2 (14 g+ a) (1+9)2(5 + )

L16(Ly —x2)* 2 a(1+q+a)q!2a) (§x+(L—x)7 + Lu(x)) ~@+)
/0 Cq (x)dx

L32+g+2a)

4L (4 q)
IRZICES))

/oL(Lx XA (Ca+L—x) 7+ Lu(x) C TV () dy.

We will use Lemma 2, then we get
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4071201 4 @) 32(a+3)g! L2
VE(o+1) (2o+2)

leg| <

/OL<Lx x4 (Cx+(L—x)y+ Lu(x)) dx‘

< W (/()L‘(Lx_xz)ai (gx+(L—x)y)(dx+/()L\<Lx—x2)“’%Lu(x)\ dx> -
1 _ .

Upon performing integration by parts on the right-hand side of the last relation, then we obtain

16L7272%(1+q) (a—3)

cql <
2 I

[ et e-2a | ax

()] <N.

Then

gl <AL™42%gIN.

Theorem 4 The following is the error bound, if @y () = CT @ () is the best approximation of ()

P 2/’1/2m+3
l|om (%) — ()2 < (m—+1)! \/;’

where p = OLn?§L|a)(’"“)(x)| and A = max(L — xo, Xo)-

Proof. Initially, we take up the Taylor’s formula

0(2) = 0(0) + 0 () (1~ 0) +--+ 0" o) £ 2
Furthermore, we are aware that
m+1
. < | gm0 gy X =20)™ .
000 - 00| < o[ FE s ne© 1)

Through the application of the best approximation definition, we have
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P 2t 2m+2
=\ Gue ) /O(X*XO) dx
_ p 2212m+3
“\(m+1)!) 2m+3’

finally, we have

6. Test examples and comparisons

In this section, the test examples considered in this paper and the CPU (central processing unit) running times were
all solved in all examples using the Mathematica program.
Example 1 Consider the linear boundary value problem as [23-25]:

"

o () +xo(x)—B—x—x*+x")siny —4xcosy=00< <1,

where the boundary conditions:

Actual solution of previous example is @ () = (x> — 1) siny. Considering the maximum absolute error shown in
Table 1 with different values of M, we observed that compared to previous approaches, our method performs better in
small modes of M. Table 2 depicts CPU running times for Example 1 by our method in seconds with M = 8§, M = 16, and
M =32. In Figure 1, we compare approximate solutions to Example 1 in various values of & and M = 3, we note that the
approximate solutions when @ = 1, o = 2, and @ = 3 are extremely near to each other. The graphic in Figure 2 shows
how absolute error behaves when M =3 and ot = 1.
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Approximate solution

Volume 5 Issue 2|2024| 1359

Table 1. Comparison of the MAE for Example 1

Methods M=38 M=16 M=32
QSM [23] 450 x 1072 3.08 x 1073 7.71 x 107
CSM [23] 1.15x 1072 288 x 1073 721 x 1074
NPSM [23] 267x1073 324x107* 399 x 107

Method in[24] 222 x 107* 505 x10°®  1.63 x 1077
MLTM [25] 135x 1077 111 x 107 1,08 x 10712
Ourmethod 222 x 1071®  1.07 x 1071 1.57 x 107°

Table 2. CPU running times for Example 1 in seconds

M

8

16 32

Our method

0.656

0.827 1.936

0.6 0.8 1.0

X-axis

Figure 1. Approximate solution for various values of & and M = 3 of Example 1

h
iporary Mat,

o

S




3x107"°

2x107"°

Absolute error

1x107 |

0.2 04 0.6 0.8

X-axis

Figure 2. Absolute error with M = 3 and o = 1 of Example 1

Example 2 Consider the singular initial value problem as [25-27]:

y 40

where the initial conditions:

"(x)+20' (x)— (4x°+6x) 0(x) =0,

0<x<1,

(34

(35)

The analytic solution to Example 2 is @(x) = ¢*’. In Table 3, we choose & = 1 and a variety of values of M in
Example 2 by the proposed method, the maximum absolute error reaches 10~!¢ with M = 8 then this value rises as M is
raised. Table 4 depicts the CPU running times in seconds with different values of M for Example 2. For & =1 and M = 3,
Figure 3 shows the absolute error behavior.

Table 3. Comparison of MAE with various values of M for Example 2

M MLTM [25] ADM [26] VIM [26] HWCM [26] HWAGM [27]  Our method
8 611 x107'° 631x10* 730x107% 3.72x10°* 1.18 x 1074 222 x 10710
16 1.83x1075 945%x107* 1.09x1073 1.19x107* 329x10°  3.89 x 10716
32 1.19x 107" 1.15%x 1073 133 x 1073 3.14 x 1073 8.00 x 10~° 417 x 1079
64 7.08x1077 127x1073 147x1073 791x10°  2.00x 107 1.18 x 1074

Contemporary Mathematics
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Absolute error

4x107"°

3x107°

2x107"

1x107"

(=]

Table 4. CPU running times for Example 2 in seconds

Figure 3. Absolute error with M = 3 and a = 1 of Example 2

Example 3 Consider the non-linear boundary value problem as [28-30]:

with the boundary conditions:

The exact solution of Example 3 is ()

N =

(0(x)+x+1)°,

0<yx<1,

M 3 8 16 32 64
Our method 0.562  0.656 0.891 4955 11.922
T T
j| I L 1 1 1 1 1 1 1 | 4
0.0 0.2 04 0.6 0.8 1.0
X-axis

2
—1—x+ ﬂ With M =4 and (o = 1 (shifted Chebyshev polynomials

of the second kind), & = 2, and o0 = 3), we used the collocation approach to our method for this problem, and the
approximate solutions with the CPU running times are displayed in Table 5. In Table 6, when comparing our method’s
maximum absolute error (MAE) with other methods for various values of M, we found that our method’s MAE reached

1
10717 when M = 4. The absolute error with o = 3 (shifted Legendre polynomials) and M = 2 is shown in Figure 4.
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Table 5. The approximate solutions and CPU running times in seconds by our method (M = 4) for Example 3 witha =1, & =2, and o =3

X Exact solution a=1 a=2 a=3
0.1 -0.04736842 -0.04736842  -0.04736842  -0.04736842
0.2 -0.08888888 -0.08888888  -0.08888888  -0.08888888
0.3 -0.12352941 -0.12352941  -0.12352941  -0.12352941
0.4 -0.15 -0.15 -0.15 -0.15
0.5 -0.16666666 -0.16666666  -0.16666666  -0.16666666
0.6 -0.17142857 -0.17142857  -0.17142857  -0.17142857
0.7 -0.16153846 -0.16153846  -0.16153846  -0.16153846
0.8 -0.13333333 -0.13333333  -0.13333333  -0.13333333
0.9 -0.08181818 -0.08181818  -0.08181818  -0.08181818
CPU 0.545 0.548 0.547
Table 6. Comparison of the MAE's of Example 3
Method Our method S3CPCM [28] S4CPCM [28] Method in [29]  Sinc-collocation [30]  Sinc-Galerkin [30]
M 4 20 20 22 130 130
MAE 347 x 1077 444 %1077 444 x 1077 531 x 107" 9.16 x 10716 9.99 x 10716
T T T T T
4x107° B
3 x 10*16 - e
g i 1
o
8 = 4
Z 20 p :
2 L ]
< |- 4
1x107 - 1
o F i
| 1 1 L L | 1 L | 4
0.0 0.2 0.4 0.6 0.8 1.0
X-axis

Figure 4. Absolute error with M = 2 and a = 0.5 of Example 3

Example 4 Consider the non-homogeneous Bagley-Trovik equation shown below [31, 32]:

where the initial conditions:

Contemporary Mathematics

D’o(x)+D"o(x)+o(x)—g(x)=0, x€(0, 1),
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where g() is selected so that Example 4 has an exact solution @() = sin(yx). In Table 7, our method uses a variety of
M values to determine the maximum absolute error in two cases ¥ = 1 and ¥ = 4 «. the results show that our method is
perfect in small values of M about the Chebyshev spectral method (CSM) and tau Lucas matrix method (TLMM). Table
8 shows CPU running times in seconds with different values of M by our method. Figure 5 shows that the comparison
between the exact and approximate solutions with M =4, M =8, M = 16, and M = 32.

Table 7. Comparison of the MAE for Example 4

=1 y=4m

M Ourmethod TLMM([32] CSM[31] Ourmethod TLMM[32] CSM[31]

4 31x107"7  1.0x10* 34x10* 35x107" 21x1072  39x10°

1.6x 10717 23x1077  43x1077 12x1073  52x107° 47x 107!
16 14x107"7 75x107""  18x10% 15x1071% 39x10719 35x107°
32 37x1078 37x1078  71x10710 49x 107" 61x10713  1.4x107°

Table 8. CPU running times for Example 4 in seconds

M 4 8 16 32

Our method 136 497 1471 3142

[~ T " " T T " T T T T LA R B — — 17
0.06 | .
0.05 | 3
0.04 | Exact solution 3
003 Approximate solution with M =4 ]
A === Approximate solution with M = 8 j
0.02 | .
= Approximate solution with M =16
0.01 - .
r === Approximate solution with M = 32 ]
0.00 | 3
| L L L | L L L Il L L L | L L L | L L L |
0.0 0.2 0.4 0.6 0.8 1.0
X-axis

Figure 5. Comparison between exact and approximate solutions of Example 4

Example 5 The non-linear Riccati fractional differential equation is shown below as [32, 33]:
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Do()+w*(x)=1, x<(0,1), re(0,1],

subject to the initial condition:

o(0) =0.

When r = 1, the exact solution to this example is @() = tanh }. We applied our method to solve Example 5 for
two cases r = 0.7 and r = 0.9, and then we compared the approximate results obtained with other methods (Bernoulli
wavelet and collocation Lucas matrix) and the exact solution for case r = 1, which are displayed in Table 9. These results
demonstrate that the approximation solution approach to the exact solution. Table 10 explains the CPU running times in
seconds by our method with M = 1, M = 2, and M = 3. Also, the comparison between the exact solution when r = 1
and the approximate results when r = 0.9 for various values of M is plotted in Figure 6. From this graph, we can see that
the approximate solution when M = 1 is very close to the exact solution about the approximate solution with M = 2 and

M =3.

Table 9. Comparison of the approximate solution for Example 5

r=0.7 r=09

X Our method CLMM [32] Bernoulli wavelet [33]  Our method CLMM [32] Bernoulli wavelet [33]

Exact solution

0.1 0.0996678 0.171333 0.209216 0.0996679 0.101874 0.129138
0.2 0.197375 0.296421 0.335973 0.197375 0.200768 0.238981
0.3 0.291312 0.393889 0.429549 0.291312 0.295195 0.336448
0.4 0.379948 0.472838 0.500339 0.379949 0.383814 0.422741
0.5 0.462116 0.537862 0.556331 0.462117 0.465588 0.498915
0.6 0.537048 0.591777 0.603099 0.537049 0.539863 0.565851
0.7 0.604366 0.636781 0.643854 0.604367 0.606359 0.624307
0.8 0.664035 0.674632 0.679183 0.664036 0.665128 0.674869
0.9 0.716296 0.706583 0.707567 0.716297 0.716482 0.717972

0.099668
0.197375
0.291313
0.379949
0.462117
0.53705
0.604368
0.664037
0.716298

Table 10. CPU running times for Example 5 in seconds

M 1 2 3

Our method 2.12 495 7.36
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X-axis
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Figure 6. Comparison between exact solution (» = 1) and approximate solution (r = 0.9) of Example 5

Example 6 The non-linear fractional initial value problem is shown below as [34]:

with

D'o(x)=9+x+

ZSinh*I(@)

@(0)

(x+9)m

In9.

760)(?()7 X € (

0, 1),

Table 11. Comparison of the approximate solution and the CPU running times for r = 0.5 for Example 6 with various values of M

x M=2 M=4 M=6

0.1 625693 x 10710 6.47594 x 10710 4.96348 x 10716
02 110112 x 107 99237 x 1071®  1.12757 x 1013
03 599564 x 1071 65269 x 1071®  7.71952 x 10716
0.4 438885 x 10710 7.02563 x 10°16  5.07623 x 10716
0.5 531476 x 1071 7.47015 x 10710 5.96311 x 10710
0.6  7.13188 x 10°1¢ 596745 x 10-16  8.87962 x 10716
0.7 1.18959 x 1071 7.66965 x 10710 1.15554 x 1015
0.8 120433 x 10°1  9.10188 x 10~16  7.72169 x 10716
0.9 814398 x 10716 1.0749 x 10715 9.39461 x 10716
CPU 4.57 12.64 19.37

When r = 0.5, the exact solution is In( +9). In Table 11, for the case with a value r = 0.5, we employ our method
to compare the approximate solution and the CPU running times in seconds with (M =2, M =4, and M = 6 ), then we
found a minor variation in the approximate results. Figure 7 indicates the absolute error to Example 6 with M = 2, where
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the maximum absolute error reached 10~'3. Figure 8 compares the approximate results with multiple r values and M =
2 for Example 6. Table 12 compares the maximum absolute error between our method and the method shifted fifth-kind
Chebyshev modified tau method (SSCMTQM) in [34].

Absolute error

Approximate solution

Table 12. Comparison of the MAEs of Example 6

Method Our method S5CMTQM [34] Our method S5CMTQM [34]
M 2 2 4 4
MAE  1.19 x 10715 3.55 x 1073 9.92 x 10716 6.67 x 1078
T —————— .
1.5x107" | 4
1x107" .
05x107" .
0 -
1 1 | 1 1 1 1 1 1 1 1 |

0.0 0.2 0.4 0.6 0.8 10

X-axis

Figure 7. The absolute error of Example 6 with M =2

0.0015

0.0010

0.0005

0.0000

Figure 8. The comparison of the approximate solution of Example 6 with various values of

Contemporary Mathematics
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Example 7 Consider the underlying linear initial value problem [30]:

4

o (x)—4w(y)=4cosh(1),

subject to homogeneous initial conditions:

2 €(0, 1),

The analytical solution is @() = cosh (2 — 1) —cosh (1). With M = 4 and M = 6, we compare the absolute error
and the CPU running times in seconds for Example 7 in Table 13. For various values of M, we compare the maximum
absolute error by our method with the methods Sinc-collocation [30] and Sinc-Galerkin [30] in Table 14, then our method
got the error on 10~ when M = 4 while the other methods got the error on 10~!3 with M = 100, which leads to taking
a long time in this operation while you can get the same results by our method for 0.669 second. Figure 9 depicts the
behavior of the basis of shifted Gegenbauer polynomials in calculating the absolute error for M = 4. Figure 10 shows the
comparison of the approximate solutions for different values of M.

Table 13. Comparison of the absolute error and the CPU for Example 7 with M =4 and M = 6

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
CPU

22x1071% 13 x 10716
1.7x 1071 55%x 10717

0 1.1 x 10716
0 1.7 x 10716
0 1.7 x 10~1¢

22x 1071 4.4 x 10716
39x 1071 55x 10716
7.8 x 10710 7.8 x 10716
6.1 x 10716 58 x 1071¢
0.669 0.731

Table 14. Comparison of the MAEs of Example 7

Method  Our method  Sinc-collocation [30]  Sinc-Galerkin [30]
M 4 50 50

MAE 14x 107V 1.1x107° 6.24 x 10710
M 6 75 75

MAE 2x 1071 1.4 x 10~ 8.69 x 1012
M 8 100 100

MAE 2% 1071 2.5 % 10713 1.55 x 10713
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Figure 9. The absolute error of Example 7 with M = 4
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Figure 10. The comparison of the approximate solution of Example 7 with various values of M

7. Conclusions

To sum up, the shifted Gegenbauer spectral algorithm is presented to provide an efficient technique for tackling
fractional differential equations with homogeneous and initial boundary conditions. The approach depends on the
expansion of the unknown function in terms of polynomial basis functions obtained from the shifted Gegenbauer
polynomials. The method is basically on building the matrix of the differential operators explicitly. The process of
getting answers is made simpler by this explicit description, which enhances the efficacy and efficiency of the numerical
solution approach. The comparison of the suggested method’s outcomes with those from other approaches highlights its
effectiveness.
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