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1. Introduction
A special train algebra is a train algebra in which the nilideal, consisting of elements of weight zero, is nilpotent

and all its powers are ideals. Abraham showed that every principal train algebra of rank 3 is a special train algebra and
the principal train algebras of rank 4 are not necessarily special train algebras [1]. Earlier, Etherington showed that every
commutative principal train algebra of rank 3 is a special train algebra [2, 3]. A baric algebra is one that admits a non-trivial
homomorphism ω into its coefficient field.

In this paper, we study the baric algebras satisfying the functional train identity of rank ≤ 3:

L3
x − (1+α +β )ω(x)L2

x +αω(x)2Lx +βω(x)3idA = 0, ∀x ∈ A (1)

with Lx : A −→ A, y 7−→ xy and α , β are constants in the coefficients field. It is a subclass of principal train algebras of
rank 4 characterized by the identity x4 − (1+α +β ) ω (x) x3 +αω(x)2x2 +βω(x)3x = 0, ∀x ∈ A. We show that such
algebras are special train algebras under some additional conditions.

This paper is structured as follows: Section 1 provides an introduction to the paper. Section 2 is devoted to reminders
of some basic notions. In Sections 3 and 4, we obtain the Peirce decomposition of the algebra with respect to an element
of weight 1. We then show that functional train algebras of rank ≤ 2 and functional train algebras of rank 3 admitting
an idempotent are special train algebras. In Section 5, we give the functional train equation for train algebras of rank
3. Finally, in Section 6 we give two conjectures, the first of which holds that in finite dimension, the assumption on
idempotent existence can be omitted; the second gives the relation between the minimal polynomial MA and the minimal
train polynomial mA of a train algebra A.
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2. Preliminary
Let K be an infinite field of characteristic 6= 2 and A be a commutative algebra over K. The principal powers of an

element x ∈ A are defined by

x1 = x, xk+1 = xxk, k ≥ 1.

An element x 6= 0 of A is said to be nilpotent of nil-index m ≥ 2 if xm = 0 and xm−1 6= 0. If x2 = x then x is said to be
an idempotent element. The principal powers of A are defined by

A1 = A, Ak+1 = AAk, k ≥ 1.

The algebra A is said to be nilpotent of nil-index m ≥ 2 if Am = 0 and Am−1 6= 0.
The methods of linearization developed by Osborn in [4] are often used in our investigation. For more information,

see also [5, 6].
Definition 1 ([7, 8]) A finite dimensional baric algebra (A, ω) is said to be a train algebra if there are scalars α1, α2,

· · · , αn in K such that the characteristic polynomial of Lx, for all x in A, can be written as

det(λ I −Lx) = λ n −α1ω(x)λ n−1 + · · · +(−1)nαnω(x)n.

Remark 1 If A is a train algebra then by the Cayley-Hamilton theorem, P(λ ) = det(λ I − Lx) is an annihilator
polynomial of Lx for all x ∈ A.

For a baric algebra (A, ω) we denote by H the hyperplane unit H = {x ∈ A | ω(x) = 1}.
Lemma 1 ([9], Lemma 3) A baric algebra (A, ω) is a train algebra if and only if there exists a polynomial p(λ ) such

that for all x ∈ H,

p(Lx)≡ 0.

Definition 2 The minimal polynomial of a train algebra A is the monic generator MA of the ideal of the annihilator
polynomials of Lx for all x ∈ H.

Let P = Xn +αn−1Xn−1 +αn−2Xn−2 + · · · +α1X +α0 be a polynomial of degree n. Let’s put P̂ = XP.
Definition 3 Let (A, ω) be a train algebra. A polynomial P is a train polynomial of A if for any x ∈ H = {x ∈

A | ω(x) = 1}, we have

P̂(x) = P(Lx)(x) = 0. (2)

Definition 4 Let (A, ω) be a train algebra. The monic generator mA of the ideal of the train polynomials of A is
called the minimal train polynomial of A.

Proposition 1 Let (A, ω) be a train algebra. Every annihilator polynomial is a train polynomial of A.
Proof. If P is an annihilator polynomial then, P(Lx)≡ 0 for all x ∈ H. So, P̂(x) = P(Lx)(x) = 0.
Corollary 1 The minimal train polynomial mA is a divisor of the minimal polynomial MA.
Proof. The annihilator polynomial MA is a train polynomial, then mA divides MA.
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The following example shows that the converse of the above proposition is not true.
Example 1 Let A be an algebra of dimension 3 over the real number field and {e, t, u} be a basis of A in which the

nonzero products are as follows: e2 = e+ t, et =
1
2

t, eu =
1
2

u, u2 = t. We show that (A, ω) is a baric algebra where ω
is linear application such that ω(e) = 1 and ω(t) = ω(u) = 0. For x = ω(x)e+αt +βu, x2 = ω(x)2(e+ t)+ω(x)(αt +

βu) + β 2t = ω(x)x + (ω(x)2 + β 2)t. So x(x2 − ω(x)x) =
1
2

ω(x)
(
x2 − ω(x)x

)
. We get x3 − 3

2
ω(x)x2 +

1
2

ω(x)2x =

0, and mA = X2 − 3
2

X +
1
2
. For x = e+ 2u, mA(Lx)(e) = 2t 6= 0. So, mA is not an annihilator of Lx. But, we have

x(x(xy))−2ω(x)x(xy)+
5
4

ω(x)2xy− 1
4

ω(x)3y = 0 and MA = X3 −2X2 +
5
4

X − 1
4
. Let’s note that MA =

(
X − 1

2

)
mA.

In the following example we have MA = mA.
Example 2 In dimension 2, the Osborn algebra defined in a basis {e, t} by e2 = e+ t, et =

1
2

t is an algebra without

idempotent element and it satisfies the following identity: x(xy)− 3
2

ω(x)xy+
1
2

ω(x)2y = 0. Furthermore, it is a train

algebra of rank 3 with train equation: x3 − 3
2

ω(x)x2 +
1
2

ω(x)2x = 0 and MA = mA = X2 − 3
2

X +
1
2
.

We know that the polynomial P, defined above, is an annihilator of Lx for all x ∈ H if an only if

P(Lx)(y) = 0 ∀x ∈ H and ∀y ∈ A. (3)

The identity (3), called functional train equation by Etherington [2], is equivalent to the following:

(
Ln

x +αn−1ω(x)Ln−1
x +αn−2ω(x)2Ln−2

x + · · · +α1ω(x)n−1Lx +α0ω(x)nidA
)
(y) = 0.

Any baric algebra that satisfies (3) is a train algebra of rank ≤ n+1 and satisfying

xn+1 +αn−1ω(x)xn +αn−2ω(x)2xn−1 + · · · +α1ω(x)n−1x2 +α0ω(x)nx = 0, (4)

for all x ∈ A. The converse is not generally true.
Definition 5 A baric algebra (A, ω) is said to be a special train algebra if N := kerω is nilpotent and Nk is an ideal

of A for every integer k ≥ 1.

3. Minimal polynomial of degree ≤ 2
The case MA = X − 1 leads to xy = ω(x)y ∀x, y ∈ A. By commutativity ω(x)y = ω(y)x for all x, y ∈ A. So, for an

idempotent element e, A = Ke.
Proposition 2 Let (A, ω) be a train algebra of rank 2. Then mA = X −1 and (A, ω) satisfies the identity:

x(xy)− 3
2

ω(x)xy+
1
2

ω(x)2y = 0.

Proof. In fact, we know that (A, ω) satisfies x2 −ω(x)x = 0. By linearization, the identity 2xy = ω(x)y+ω(y)x
holds in A. So (2Lx −ω(x)idA)(y) = ω(y)x. So, ((Lx −ω(x)idA) ◦ (2Lx −ω(x)idA))(y) = ω(y)(Lx −ω(x)idA)(x) =
ω(y)(x2 −ω(x)x) = 0 for all x, y ∈ A.
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The case MA = X2 − (1+λ )X +λ gives the identity

x(xy)− (1+λ )ω(x)xy+λω(x)2y = 0. (5)

Theorem 1 Let (A, ω) be an algebra satisfying (5) and N = kerω . Then N2 is an ideal of A and N3 = 0. In particular,
N is associative.

Proof. By linearizing the identity (5) we get z(xy)+ x(yz)− (1+λ )[ω(z)xy+ω(x)yz]+2λω(xz)y = 0, for all x, y,
z ∈ A. We know that there is an element c0 of weight 1 in A such that A = Kc0 ⊕N. For z = c0 and x, y ∈ N we get from
the previous identity c0(xy) =−x(c0y)+(1+λ )xy ∈ N2. Thus N2 is an ideal of A because N3 ⊂ N2. Moreover, x(xy) = 0
for all x, y ∈ N. So x3 = 0 and this leads to 2x(xy)+ x2y = 0. We conclude that x2y = 0 for all x, y ∈ N and N3 = 0. In
particular, since A is commutative, we get x(yz) = 0 and (xy)z = 0 for all x, y, z ∈ N. Therefore, N is associative.

Theorem 2 Let (A, ω) be a baric algebra. Then the following assertions are equivalent:
(i) For all x and y in A, x(xy)− (1+λ )ω(x)xy+λω(x)2y = 0;
(ii) There are e ∈ A and t ∈ kerω such that e2 = e+ t, ω(e) = 1 and A = Ke⊕ kerω with (ker(ω))2 = 0, ex = λx

∀x ∈ kerω;
(iii) For all x and y in A, ω(y)x2 −ω(x)xy+λω(x)2y−λω(xy)x = 0.
Proof. (i) =⇒ (ii). If A satisfies (i) then for all x = c0 ∈ H and y ∈ kerω , ((Rc0 −λ I)◦ (Rc0 − I))(y) = 0 where Rc0

is the restriction of the multiplication Lc0 to kerω .
The following cases can be distinguished:
Case 1: λ 6= 1.
Then A = Kc0 ⊕A1(c0)⊕Aλ (c0) with Aλ (c0) = {x ∈ kerω | c0x = λx}.
The following identity is obtained by linearization of (5):

z(xy)+ x(yz)− (1+λ )[ω(z)xy+ω(x)yz]+2λω(xz)y = 0. (6)

Let’s permute y and z in (6). Then we get

y(xz)+ x(yz)− (1+λ )[ω(y)xz+ω(x)yz]+2λω(xy)z = 0. (7)

By difference the identities (6) and (7) give:

z(xy)− y(xz)− (1+λ )[ω(z)xy−ω(y)xz]+2λ [ω(xz)y−ω(xy)z] = 0. (8)

For y = c0 and x ∈ A1(c0) in (5), x2 = 0 is valid. Thus A1(c0)
2 = 0. For x = c0 and y, z ∈ Aλ (c0) in (6), we have

c0(yz) = yz. So, Aλ (c0)
2 ⊂A1(c0). For y= c0 and x∈Aλ (c0) in (5), we have λx2 = 0. Thus Aλ (c0)

2 = 0 if λ 6= 0. If λ = 0
then A satisfies x3 −ω(x)x2 = 0. So, 2x(xy)+ x2y−ω(y)x2 −2ω(x)xy = 0 is valid. For x = c0 and y ∈ A1(c0), c2

0y = 0.
Since, in this case, the algebra A contains an idempotent element [10], we can choose c0 as an idempotent element. Then
y = 0 and A1(c0) = 0. So, A0(c0)

2 = 0. It follows that Aλ (c0)
2 = 0 for all λ 6= 1. For x = c0, y ∈ A1(c0) and z ∈ Aλ (c0)

in (8), we have (1−λ )yz = 0. Since λ 6= 1, then yz = 0 and thus A1(c0)Aλ (c0) = 0. We can conclude that for λ 6= 1, we
get N2 = 0 with N = kerω .

Now let’s put c2
0 = c0 + x1 + xλ where x1 ∈ A1(c0) and xλ ∈ Aλ (c0). Then c3

0 = c2
0 + x1 + λxλ = c0 + x1 + xλ +

x1 +λxλ = c0 +2x1 +(1+λ )xλ . Furthermore, we get from (5): c3
0 = (1+λ )c2

0 −λc0 = (1+λ )(c0 + x1 + xλ )−λc0 =

c0 +(1+λ )x1 +(1+λ )xλ . So x1 = 0 and it follows that c2
0 = c0 + xλ .
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Let t ∈ Aλ (c0) be a fixed element such that c2
0 = c0 + t. If x = c0 + x1 + xλ is an idempotent element of A of weight

1 then (1−2λ )xλ = t and x1 = 0.
(a) λ = 1/2:
If t = 0 then c2

0 = c0 and c0 is an idempotent element. Otherwise, A contains no idempotent elements.
(b) λ 6= 1/2:

Then xλ =
1

1−2λ
t and in this case e = c0 +

1
1−2λ

t is an idempotent element of A.
Now, let x = e+ x1 + xλ and y = e+ y1 + yλ be two elements in A. We get the equalities one by one: xy = e+ t +

y1 + λyλ + x1 + λxλ , x(xy) = e+ t + λ t + y1 + λ 2yλ + x1 + λ 2xλ + x1 + λxλ and x(xy)− (1+ λ )xy+ λy = (1− λ )x1.
Since x(xy)− (1+λ )xy+λy = 0 we get x1 = 0. So, A1(c0) = 0. It follows that, if λ 6= 1 then there exists an element e
of weight 1 such that e2 = e+ t with et = λ t and A = Ke⊕kerω , (ker(ω))2 = 0, ex = λx ∀x ∈ kerω .

Case 2: λ = 1.
Then (5) is written x(xy)− 2ω(x)xy + ω(x)2y = 0. This algebra is a power-associative algebra containing and

idempotent element e and satisfying the identity x3 − 2ω(x)x2 + ω(x)2x = 0 [11]. It follows that for all y ∈ A,
2e(e(ey))− 3e(ey)+ ey = 0. We know that e(ey)− 2ey+ y = 0. So ey = y for all y ∈ A. From (5), for all x ∈ kerω
and y = e, x2 = 0. So, A = Ke⊕kerω with ex = x and x2 = 0 ∀x ∈ kerω .

(ii) =⇒ (iii). Now, let’s assume that (ii) is satisfied. Let x = ω(x)e + xλ and y = ω(y)e + yλ . Then we have:
xy = ω(xy)(e+ t)+λ (ω(x)yλ +ω(y)xλ ), x2 = ω(x)2(e+ t)+2λω(x)xλ and y2 = ω(y)2(e+ t)+2λω(y)yλ . So we get
ω(y)x2 −ω(x)xy+λω(x)2y−λω(xy)x = 0. So, we just established (iii).

(iii) =⇒ (i). If (iii) is valid then substituting xy for y yields the identity ω(y)x2 − x(xy)+λω(x)xy−λω(xy)x = 0.
From (iii) ω(y)x2 −λω(xy)x = ω(x)xy−λω(x)2y. So (i) is valid.

Remark 2 If (A, ω) is a train algebra with equation x3 −2ω(x)x2 +ω(x)2x = 0, it is known that the idempotents are
of the form ea = 2a−a2 with ω(a) = 1 [10].

We get the following proposition.
Proposition 3 If the degree of the minimal polynomial is ≤ 2 then (A, ω) is special train algebra.
Proof. We know that N2 = (kerω)2 = 0. So, the powers of N are ideals of A.

Corollary 2 ([12]) If MA = X2 − 3
2

X +
1
2
then (A, ω) is a Lie triple algebra whose equation is 2x(x(xy))−3x(x2y)+

x3y = 0.

4. Minimal polynomial of degree 3
If MA = X3 − (1+α +β )X2 +αX +β , then the following identity is valid in A:

x(x(xy))− (1+α +β )ω(x)x(xy)+αω(x)2xy+βω(x)3y = 0. (9)

We haveP= (X −1)(X2−(α+β )X −β ). In a suitable extension of the fieldK we haveP= (X −1)(X −r)(X −s) =
X3 − (1+ r+ s)X2 +(r+ s+ rs)X − rs and (9) becomes

x(x(xy))− (1+ r+ s)ω(x)x(xy)+(r+ s+ rs)ω(x)2xy− rsω(x)3y = 0. (10)

In the following, we assume that the roots 1, r and s are all different. Then for an element c0 of weight 1 (Rc0 −
I)(Rc0 − rI)(Rc0 − sI) = 0 where Rc0 is the multiplication operator by c0. Thus A = Kc0 ⊕A1(c0)⊕Ar(c0)⊕As(c0) with
Aλ (c0) = {x ∈ kerω | c0x = λx}, for λ = 1, r, s.

Theorem 3 For µ, ν ∈ {1, r, s}, we have:
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Aµ(c0)Aν(c0)⊂
⊕

λ∈{1, r, s}\{µ, ν}
Aλ (c0). (11)

Proof. Partial linearization of (10) yields

z(x(xy))+ x(z(xy))+ x(x(zy) = (1+ r+ s)[ω(z)x(xy)+ω(x)z(xy)+ω(x)x(zy)]

− (r+ s+ rs)[2ω(xz)xy+ω(x)2zy]+3rsω(x2z)y.

(12)

For x = c0, y ∈ Aµ(c0) and z ∈ Aν(c0) in (12), we get

c0(c0(yz))+(µ −1− r− s)c0(yz)+ [µ2 − (1+ r+ s)µ +(r+ s+ rs)]yz = 0. (13)

Let’s put yz = (yz)1 +(yz)r +(yz)s in (13) where (yz)λ ∈ Aλ (c0). Then

c1(µ)(yz)1 + cr(µ)(yz)r + cs(µ)(yz)s = 0, (14)

where

c1(µ) = (µ − s)(µ − r) , cr(µ) = (µ −1)(µ − s) , cs(µ) = (µ −1)(µ − r) . (15)

The inclusions in (11) are due to the fact that the scalars 1, r, s are different.
Corollary 3 If A1(c0) = 0 then
(i) Ar(c0)

2 ⊂ As(c0), As(c0)
2 ⊂ Ar(c0), Ar(c0)As(c0) = 0,

(ii)
(
Ar(c0)⊕As(c0)

)2 is an ideal of A,
(iii)

(
Ar(c0)⊕As(c0)

)3
= 0.

In this case A is a special train algebra.
Proof. Assertion (i) follows from (11) under the assumption A1(c0) = 0. Assertion (ii) is a consequence of (i). We

will now prove assertion (iii). Linearizing (12) yields the following identity:

z(t(xy))+ z(x(ty))+ t(z(xy))+ x(z(ty))+ t(x(zy))+ x(t(zy))

= (1+ r+ s)[ω(z)t(xy)+ω(z)x(ty)+ω(t)z(xy)+ω(x)z(ty)+ω(t)x(zy)

+ω(x)t(zy)]− (r+ s+ rs)[2ω(tz)xy+2ω(xz)ty+2ω(xt)zy]+6rsω(xzt)y.

(16)
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For x = c0, y, z ∈ Ar(c0) and t ∈ As(c0), we have: (2r+ s)t(zy) = (1+ r+ s)t(zy). Thus (r−1)t(zy) = 0. Since r 6= 1
it follows that t(zy) = 0, so As(c0)Ar(c0)

2 = 0. By symmetry we get Ar(c0)As(c0)
2 = 0. Since Ar(c0)

3 = As(c0)
3 = 0, we

deduce (iii).
Proposition 4 If c0 is an idempotent of A then A1(c0) = 0.
Proof. If A satisfies (9) then for all x ∈ A,

x4 − (1+α +β )ω(x)x3 +αω(x)2x2 +βω(x)3x = 0. (17)

Let e be an idempotent element of A and y ∈ kerω . The linearization of (17) gives us 2e(e(ey))+ e(ey)+ ey− (1+
α +β )(2e(ey)+ ey)+ 2αey+βy = 0. So 2e(e(ey))− (1+ 2α + 2β )e(ey)+ (α −β )ey+βy = 0. Also e(e(ey))− (1+
α +β )e(ey)+αey+βy = 0. The previous two identities can be combined to form e(ey)− (α +β )ey−βy = 0. Since
α = r+ s+ rs and β = −rs, we have e(ey)− (r+ s)ey+ rsy = 0. Let y ∈ A1(c0). Then (1− r)(1− s)y = 0 and y = 0
because r 6= 1 and s 6= 1. So A1(c0) = 0.

Proposition 5 Let c0 be an idempotent element. Then the set of idempotents of A is given by:
(i) Ip(A) = {c0} if r 6= 1/2 and s 6= 1/2,

(ii) Ip(A) =
{

c0 + xs +
1

1−2s
x2

s | xs ∈ As(c0)

}
if r = 1/2,

(iii) Ip(A) =
{

c0 + xr +
1

1−2r
x2

r | xr ∈ Ar(c0)

}
if s = 1/2.

Proof. Let f = c0 + xr + xs be an idempotent of A. We have f 2 = f . Then c0 +2rxr +2sxs + x2
r + x2

s = c0 + xr + xs

because xrxs = 0 by using the Corollary 3. Thus x2
r = (1− 2r)xs and x2

s = (1− 2s)xr. The three announced cases are
again obtained thanks to the Corollary 3. Indeed, 0 = xsx2

r = (1−2r)x2
s = (1−2r)(1−2s)xr and 0 = xrx2

s = (1−2s)x2
r =

(1−2r)(1−2s)xs. So, if r 6= 1/2 and s 6= 1/2, then xr = xs = 0 and we get (i). If r = 1/2 then s 6= 1/2. So, x2
r = 0 and

xr =
1

1−2s
x2

s . Therefore (ii) is obtained. Using the same method, we get (iii).

Corollary 4 (i) If r = 1/2 and c′0 = c0 + xs +
1

1−2s
x2

s is another idempotent element then A1/2(c0) = A1/2(c′0) and
As(c′0) = {us +usxs | us ∈ As(c0)}.

(ii) If s = 1/2 and c′0 = c0 + xr +
1

1−2r
x2

r is another idempotent element then A1/2(c0) = A1/2(c′0) and Ar(c′0) =

{ur +urxr | ur ∈ Ar(c0)}.
Theorem 4 If A contains an idempotent element then A is special train algebra.
Proof. This result follows from Corollary 3 and Proposition 4.
A train algebra with minimal polynomial of degree ≥ 4 is not necessarily a special train algebra. In fact, below we

give an example of a train algebra with minimal polynomial of degree 4 and which is not a special train algebra.
Example 3 Let N be a commutative algebra of dimension 5 over a commutative field K, whose nonzero products

according to the basis {c1 . . . c5} are c1c3 = c4, c1c5 = −c3, c2c3 = c5, c2c4 = c3. Let A = Ke⊕N be the K-algebra
obtained by adjoining a unit element e. Then, the linear application ω : A −→ K, λe+n 7−→ λ is a weight function of A.
Let x = e+∑5

i=1 αici ∈ A be an element with weight 1. The matrix of the multiplication Lx : A −→ A, y 7→ xy according
to the basis {e, c1, . . . , c5} of A is written:
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Lx =



1 0 0 0 0 0

α1 1 0 0 0 0

α2 0 1 0 0 0

α3 −α5 α4 1 α2 −α1

α4 α3 0 α1 1 0

α5 0 α3 α2 0 1



.

We have (Lx − I)4 = 0, where I is the unit matrix of order 6. So (A, ω) is a functional train algebra of rank 4 which
satisfies the identity:

x(x(x(xy)))−4ω(x)x(x(xy))+6ω(x)2x(xy)−4ω(x)3xy+ω(x)4y = 0.

On the other hand, N3 = N2 = 〈c3, c4, c5〉. Thus N = kerω is not nilpotent. It follows that (A, ω) is not a special
train algebra.

5. Functional train equation of train algebra of rank 3
In this section, we are going to consider train algebra of rank 3. We obtain its functional train equation.
Theorem 5 An arbitrary train algebra of rank 3 with the equation

x3 = (1+λ )ω(x)x2 −λω(x)2x, (18)

satisfies the functional train identity of rank 4 below:

L4
x − (2+λ )L3

x +
1
4
(5+8λ )L2

x −
1
4
(5λ +1)Lx +

1
4

λ idA = 0, ∀x ∈ H. (19)

Proof. The partial linearization of (18) allows:

2x(xy)+ x2y = (1+λ )[ω(y)x2 +2ω(x)xy]−λ [2ω(xy)x+ω(x)2y]. (20)

Let’s apply Lx to (20). We get:

x(x2y) =−2x(x(xy))+(1+λ )[ω(y)x3 +2ω(x)x(xy)]−λ [2ω(xy)x2 +ω(x)2xy]. (21)
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The linearization of (18) gives :

x(yz)+ y(zx)+ z(xy) = (1+λ )[ω(x)yz+ω(y)zx+ω(z)xy]

−λ [ω(xy)z+ω(yz)x+ω(zx)y].

(22)

Let’s put z = x2 in (22):

x(yx2)+ yx3 + x2(xy) = (1+λ )[ω(x)yx2 +ω(y)x3 +ω(x)2xy]

−λ [ω(xy)x2 +ω(yx2)x+ω(x)3y].

(23)

From [13], we know that (18) leads the identity below:

x2x2 − (1+2λ )ω(x)2x2 +2λω(x)3x = 0. (24)

The linearization of the previous identity leads to:

2x2(xy) = (1+2λ )[ω(xy)x2 +ω(x)2xy]−λ [3ω(x2y)x+ω(x)3y]. (25)

Using identities (18), (21) and (23), we have the identity

2x2(xy) = 4x(x(xy))−2λω(x2y)x−4(1+λ )ω(x)x(xy)

+2λω(xy)x2 +2(1+3λ )ω(x)2xy−2λω(x)3y.

(26)

So, from (25) and (26) we have

ω(xy)(x2 −λω(x)x) = 4x(x(xy))−4(1+λ )ω(x)x(xy)+(1+4λ )ω(x)2xy−λω(x)3y. (27)

Let’s apply Lx −ω(x)idA to identity (27). We obtain

L4
x − (2+λ )L3

x +
1
4
(5+8λ )L2

x −
1
4
(5λ +1)Lx +

1
4

λ idA = 0, ∀x ∈ H.

Example 4 ([3]) Let λ ∈ K. Let Aλ be a commutative algebra of dimension 4 over K, the nonzero products according
a basis {e, u, v, w} are e2 = e, eu =

1
2

u, ev = λv, ew =
1
2

w, uv = w. Then, the linear application ω : A −→ K, such that
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ω(e) = 1 and ω(u) = ω(v) = ω(w) = 0 is a weight function of A. Let x = e+α1u+α2v+α3w be an element of weight
1 in A. The matrix of the multiplication Lx : A −→ A, y 7→ xy according to the basis {e, u, v, w} is:

Lx =



1 0 0 0

α1

2
1
2

0 0

λα2 0 λ 0

α3

2
α2 α1

1
2


.

The baric algebra (A, ω) is a train algebra of rank 3 with train equation

x3 − (1+λ )ω(x)x2 +λω(x)2x = 0.

Let SpK(Lx) be the set of eigenvalues of Lx.

If λ =
1
2
then SpK(Lx) = {1, 1/2} and the minimal polynomial of Lx is:

X3 −2X2 +
5
4

X − 1
4
.

If λ 6= 1
2
then SpK(Lx) = {1, 1/2}∪{λ} and the minimal polynomial of Lx is:

X4 − (2+λ )X3 +

(
5
4
+2λ

)
X2 −

(
1
4
+

5λ
4

)
X +

λ
4
.

In this example, we have

mA = (X −1)(X −λ ) and MA =


(X −1)(2X −1)2

4 if λ = 1/2;

(X −1)(2X −1)2 (X −λ )
4 if λ 6= 1/2.

Example 5 ([10]) Let A = 〈e, u1, u2, u3, u4, v, w〉 be the commutative algebra with multiplication table given by

e2 = e, eui =
1
2

ui (i = 1, . . . , 4), ew = w, u1v = u1w = u3, u2v = u2w = u4, u2u3 = −u1u4 = v+w, other products
being zero. Then A is equipped with the weight function ω such that ω(e) = 1, ω (ui) = ω(v) = ω(w) = 0. By
straightforward calculation, one may check that A is a power-associative train algebra of rank 4 with train equation
x4 −2ω(x)x3 +ω(x)2x2 = 0.

For x= e+∑4
i=1 αiui+α5v+α6w, thematrix of themultiplication operatorLx according to the basis {e, u1, u2, u3, u4,

v, w} is:
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Lx =



1 0 0 0 0 0 0

α1

2
1
2

0 0 0 0 0

α2

2
0

1
2

0 0 0 0

α3

2
α5 +α6 0

1
2

0 α1 α1

α4

2
0 α5 +α6 0

1
2

α2 α2

0 −α4 α3 α2 −α1 0 0

α6 −α4 α3 α2 −α1 0 1



.

In this case, we have:

mA = X(X −1)2 and MA = X (X −1)2
(

X − 1
2

)2

.

We close this paper with two conjectures.

6. Two conjectures
Conjecture 1Any commutative baric algebra of finite dimensional satisfying the identity (9) is a special train algebra.
Conjecture 2 Let (A, ω) be a train algebra with minimal train polynomial mA and minimal polynomial MA. Then

there exists an integer k ≥ 0 such that

MA =

(
X − 1

2

)k

mA.

Acknowledgments
The authors would like to thank the Contemporary Mathematics Journal editorial office for their support and

invitation to publish this manuscript. In addition, the authors thank the referees for their constructive suggestions, which
helped us to improve the paper in its present form.

Conflict of interest
The authors declare no competing financial interest.

Contemporary Mathematics 2678 | Joseph Bayara, et al.



References
[1] Abraham VM. A note on train algebras. Proceedings of the Edinburgh Mathematical Society. 1976; 20(2): 53-58.
[2] Etherington IMH. Commutative train algebras of rank 2 and 3. Journal of the London Mathematical Society. 1940;

15(3): 136-149.
[3] Etherington IMH. Corrigendum: Commutative train algebras of rank 2 and 3. Journal of the London Mathematical

Society. 1945; s1-20(4): 238.
[4] Osborn JM. Varieties of algebras. Advances in Mathematics. 1972; 8: 163-369.
[5] Gerstenhaber M. On nilalgebras and linear varieties of nilpotent matrices. II. Duke Mathematical Journal. 1960; 27:

21-31.
[6] Zhevlakov KA, Slinko AM, Shestakov IP, Shirshov AI. Rings That Are Nearly Associative. New York: Academic

Press Inc.; 1982.
[7] Wörz-Busekros A. Algebras in Genetics. Springer-Verlag; 1980.
[8] Lyubich YI. Mathematical Structures in Population Genetics. Berlin, Heidelberg: Springer; 1992.
[9] Gutiérrez Fernández JC. Principal and plenary train algebras. Communications in Algebra. 2000; 28(2): 653-667.
[10] Bayara J, Conseibo A, Ouattara M, Zitan F. Power-associative algebras that are train algebras. Journal of Algebra.

2010; 324: 1159-1176.
[11] Ouattara M. Sur les T-algèbres de Jordan. Linear Algebra and its Applications. 1991; 144(2): 11-21.
[12] Bayara J, Konkobo A, Ouattara M. Algèbres de lie triple sans idempotent. Afrika Mathematika. 2014; 25(4): 1063-

1075.
[13] Walcher S. Algebras which satisfy a train equation for the first three plenary powers. Archiv der Mathematik. 1991;

56: 547-551.

Volume 5 Issue 3|2024| 2679 Contemporary Mathematics


	Introduction
	Preliminary
	Minimal polynomial of degree ≤ 2
	Minimal polynomial of degree 3
	Functional train equation of train algebra of rank 3
	Two conjectures

