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Abstract: Goodness-of-fit tests aim at discerning model misspecification and identifying a model which is poorly fitting
a given data set. They are methods used to determine the suitability of the fitted model. The subject of assessment
of goodness-of-fit in logistic regression model has attracted the attention of many scientists and researchers. Several
methods for assessing how well observed data can fit into logistic regression models have been proposed and discussed
where test statistics are functions of the observed data values and their corresponding estimated values after parameter
estimation. Considering a correctly specified panel datamodel with balanced data set, the conditional maximum likelihood
estimates of the parameters are less biased and the estimated response variable values are actually in the neighborhood
of the observed values. Relative to the induced biases of the parameter estimates resulting from imputation of missing
covariates, the performances of the goodness-of-fit tests may be misjudged. This study looks at the susceptibility of
the goodness-of-fit tests for logistic panel data models with imputed covariates. Simulation results show that Bayesian
imputation impacts less on the goodness-of-fit test statistics and therefore stands out as the better technique against other
classical imputation methods. An increased proportion of missingness however appeared to reduce the confidence interval
of the test statistics which in turn reduces the chances of adopting the model under study.

Keywords: goodness-of-fit, imputation, conditional maximum likelihood estimator, logistic panel data, Bayesian, Monte
Carlo, covariate pattern
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1. Introduction
For the study of binary data, the logistic regression model generally links the probability of response y to a collection

of covariates, X and due to the its popularity, there is a temptation to regularly apply it to binary data without evaluating
the model’s fit, especially when the initial data set was incomplete.

One general problem for logistic regression models even for complete data sets is the low power of overall goodness-
of-fit tests [1]. Such known problem may be aggravated with the fact that missing data points are always encountered
which compromise on the models parameter estimates. Most developed goodness-of-fit tests are based on an association
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between actual and estimated response values in groups of observations defined by the estimated response probability.
Any deviation on the values of the response may yield different results. For specific data sets with missing covariates,
such deviations are escalated by the injected bias resulting from various attempts to clean up and complete the data [1].

Recent application studies on statistical methods and models related to goodness-of-fit testing have been conducted.
Zamanzade and Mahdizadeh offered a new approach to assess the fit of statistical models using entropy measures derived
from ranked set samples and presented a method for entropy estimation from ranked set samples, with an application to
goodness-of-fit testing [2]. In their other study, Mahdizadeh and Zamanzade offer goodness-of-fit tests for assessing the fit
of data to a Rayleigh distribution using Phi-divergence and they introduce novel statistical tests based on Phi-divergence
measures to evaluate the fit of observed data to the Rayleigh distribution [3]. Zamanzade additionally proposes new
statistical tests based on empirical distribution functions for evaluating the exponentiality assumption in pair ranked set
sampling [4]. Further interest in model diagnosis is seen in studies by Geng et al. and Pho who proposed different
goodness-of-fit tests for a parametric mixture cure model with partly interval-censored data and zero-inflated Bernoulli
regression models respectively [5, 6]. These studies however assumed applications to complete data sets.

Other studies to compare several goodness of fit tests have assessed the behavior of asymptotic distribution of the
test statistics. By simulation, Badi [7] found that correct model specification yielded reasonable power for all test methods
while Hosmer-Lemeshow test produced slightly larger variance. Models with missing covariate were also observed to
yield smaller variances [7].

Conditional maximum likelihood estimators have been proposed as most efficient for logistic panel data models and
they still perform better for unbalanced panels with missing covariates [8]. Imputation, however, induces a bias in the
estimates. Relative to these induced biases of the parameter estimates resulting from imputation of missing covariates
[8], the performances of the goodness-of-fit tests may be misjudged. This can endorse wrong models and eventual wrong
policy actions. We therefore need to look at the susceptibility of the different goodness-of-fit tests for logistic panel data
regression models with imputed covariates.

The objective of this present study is to compare the performances of available model diagnostic techniques in cases
of imputed covariates for the conditional MLE of binary response panel data regression model. In this section, we begin
by highlighting the rationale of using conditional MLE for logistic panel data models and also introduce the literature of
model diagnostics. Section 2 outlines the renowned methods for developing the goodness-of-test statistics for logistic
regression models and blend them with the considered estimates of the response variables from imputed covariates. To
explore the impact of these imputations on the test statistics of the goodness-of-fit, we perform Monte Carlo simulations
in section 3 with a hypothetical panel data set for which we compare the different tests across varying sample sizes,
imputation techniques and missingness proportions. Finally, in section 4 we give concluding remarks on the findings of
the study.

1.1 The conditional maximum likelihood estimator for logistic panel data model
1.1.1Logit panel data model

In order to represent dichotomous responses, we use the logistic function of the regression model to develop the logit
panel model. This model has found extensive use in virtually all research domains that perform impact analyses to policy
changes or product usage. Suppose that all observations are captured for each unit i, i = 1, . . . , N from a study such that
each unit is observed T times. Further, suppose that the response variable is defined as binary. Then, we have a T × 1
vector of the binary response variable Y as Yi = (Yi1, Yi2, . . . , YiT )

′, where Yit ∈ {0, 1}, adopting the values 1 or 0 if an
event is successful or not. It then follows that Yit ∼ bernoulli(pit) and E(Yit) = pit . Similarly, for each time t, let Yit be
predicted as a function of corresponding 1× k vector of covariates xit = (x(1)it , x(2)it , . . . , x(K)

it ) and fixed effects parameter
ci. It is feasible to employ the logistic function to represent the relationship between the response variable (Yit) and the
covariates matrix (xit) basing on the fact that the response variable is dichotomous:

pit = Pr(Yit = 1) = E(Yit | xit, ci) = F(xit
′β + ci), (1)
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where β = (β1, β2, . . . , βK)
′ denotes the k×1 vector of k regression slope parameters for the vector xit. This is because

the link function F(·) connects the binary regressand to the functional forms of the regressors, making it a probability
model. Collating all outcome probabilities for the ith unit gives the vector pi = (pi1, pi2, . . . , piT )

′. The equation (1) can
be linearized by finding the logarithm of the odds-ratio so as to get the logit panel data model as

log
(

pit

1− pit

)
= xit

′β + ci. (2)

Estimating equation (2) for the parameters β and ci for a panel data set with n subjects imply that we get a total
of k+N estimates since ci’s are incidental parameters. As such, we may easily eliminate the ci’s from the estimator by
adopting the conditional maximum likelihood estimator. Notice that we have a logit model for a single response only and
for a likelihood-based analysis, we must specify the entire joint distribution of the responses. The maximum likelihood
estimators of the parameters have been developed for marginal regression models. However, if we consider the various
interaction between the responses, wemay categorize these estimators asmarginal (unconditional) or conditional measures
of association. As a matter of fact, Chamberlain [9] shows that the conditional maximum likelihood estimation eliminates
the fixed effects from the likelihood function for response variables that are categorical. It does this by conditioning the
joint probability of the regressand to the minimal sufficient statistic of the fixed effect model parameters.

1.1.2The unconditional likelihood function

We obtain the likelihood function from all outcomes in the sample as a product of the marginal probabilities of an
individual i at a time t. The total sample response values are NT if pooled together and therefore we have the likelihood,

L(β , c | x; y) =
N

∏
i=1

T

∏
t=1

[
exit

′β+ci

1+ exit ′β+ci

]yit
[

1
1+ exit ′β+ci

]1−yit

, (3)

The maximum likelihood estimators (β̂ , ĉi) maximizes the log-likelihood function of (3).

1.1.3Conditional likelihood function for logistic panel data model

A major drawback of estimating equation (3) is the presence of the incidental parameters, ci. With the logistic
functional form we can do away with ci from the likelihood function by conditioning the joint probabilities on the minimal
sufficient statistic for ci to obtain the conditional likelihood function. Opeyo et al. [8] show that the conditional joint
probability when T = 2 is

Pr(Yi1, Yi2 | xi1, xi2, ci, Yi1 +Yi2 = 1) =



1, if (Yi1, Yi2) = (0, 0) or (1, 1) ,

1
1+e(xi2 ′−xi1 ′)β

, if (Yi1, Yi2) = (1, 0) ,

e(xi2
′−xi1

′)β

1+e(xi2 ′−xi1 ′)β
, if (Yi1, Yi2) = (0, 1) .

(4)

We observe that the conditioning is onYi1+Yi2 = 1, whereYit only changes in value across the two observation times.
This fact that the ci’s are eliminated from the likelihood function makes ∑t Yit a sufficient statistic for the fixed effects.
The conditional log-likelihood function from (4) is then given as
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lnL(y | x; β ) =
N

∑
i=1

{
h01iln

[
e(xi2

′−xi1
′)β

1+ e(xi2 ′−xi1 ′)β

]
+h10iln

[
1

1+ e(xi2 ′−xi1 ′)β

]}
, (5)

where h01i picks out units for which the response variable changes from 0 to 1while h10i picks out changes of the dependent
variable from the success value 1 to failure value 0. The generalized conditional joint probability function for T time
periods is obtainable using the similar approach by conditioning on ∑t Yit as.

Pr(Yi1, Yi2, . . . , YiT | Xi, ci, ∑
t

yit) =
e∑t yit xit

′β

∑h∈Bi e∑t hit xit ′β
, (6)

where Bi = {(hi1, hi2, hi3, . . . , hiT ) | hit = {0, 1} and ∑t hit = ∑t Yit .

1.1.4Case of imputed covariate matrix

Suppose the covariate vector xit has holes due to missingness, it may be partitioned into two sub vectors xits and xitI

for the sample non-imputed covariate values and the imputed covariate values respectively. When T = 2, we have from
equation (4) the conditional probabilities expressed as

Pr(Yi1 = 0, Yi2 = 1 | xi1, xi2, ci, Yi1 +Yi2 = 1) =
e∆xiI

′β

e−∆xis
′β + e∆xiI

′β (7)

and

Pr(Yi1 = 1, Yi2 = 0 | xi1, xi2, ci, Yi1 +Yi2 = 1) =
e−∆xis

′β

e−∆xis
′β + e∆xiI

′β , (8)

where ∆xiI
′ = (xi2I

′−xi1I
′) and ∆xis

′ = (xi2s
′−xi1s

′).
Equations (7) and (8) then yield the conditional log-likelihood function for the imputed covariate matrix as

lnL(y | x; β ) =
N

∑
i=1

{
h01iln[

e∆xiI
′β

e−∆xis
′β + e∆xiI

′β ]+h10iln[
e−∆xis

′β

e−∆xis
′β + e∆xiI

′β ]

}
, (9)

The parameters of the nonlinear equation (9) are estimated iteratively using Newton-Raphson algorithm to obtain
consistent estimates β̂MLE and consequently ĉiMLE which when used back in equation (1) provides the estimated
probabilities of a success for the ith unit at a time t as

p̂it =
exit

′β̂MLE+ĉiMLE

1+ exit ′β̂MLE+ĉiMLE
. (10)
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2. The goodness-of-fit test for logistic regression model
When modeling dichotomous response variables and the predicted values obtained from the econometric model fail

to accurately portray the observed values, then the model yields large residual variations. Such a model is considered
to be a poorly fitting model [10]. The non-linearity of the logistic regression model is among the several reasons why it
does not adequately fit the data [11]. Poor model fit may also result from the exclusion of significant covariates that are
related to the response variables or higher order terms of covariates from the model. Additionally, presence of outliers
may result in a poor fit. Generally, goodness of fit in logistic regression attempts to measure how well a fitted model fits
the observed data. Since we may not necessarily get a single model that outshines the rest explicitly, it is reliably wise to
fit a series of possible models and evaluate them independently. Classical approaches to goodness-of-fit are anchored on
hypothesis testing for which the test statistics are used to establish the fit of the model through the statement:

H0: There is no significant difference between the observed data and the specified model.
H1: There is a significant difference between the observed data and the specified model.
The outstanding threat here is that we may wrongfully reject a correctly specified model or fail to reject one which is

not well fitting. Therefore, if the failure to reject a null hypothesis is viewed as evidence that the model is correctly
specified, which is obviously not always the case, then these tests may not only be ineffective but also dangerous.
It therefore suffices to derive a descriptive measure of how well a model fits which may not affect other predictive
applications of the model. This bid has become an ongoing research concern and not a single explicitly perfect solution
has been mentioned in literature.

Because we cannot explain the magnitude of the residual when the response variable is binary as we can for
continuous dependent variables, R2 or adjusted-R2 are not viable metric to quantify the predictive power in logistic
regression modelling. Even when the model is suitable for the data, Hosmer and Lemeshow [12] observe that the R2 and/or
adjusted-R2 are frequently low. The traditional Chi-square test by Pearson and the Deviance test perform admirably when
the covariates are categorical but yield incorrect p-values when there exists at least one continuous covariate. Additional
two very handy criteria to choose a better model are the Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) respectively developed by Hirotsuge [13] and Schwarz [14]. Generally, BIC offers a more accurate
model than AIC which is attributed to its Bayesian perspective. In diagnostic analysis of the logistic regression model,
the expressions of AIC and BIC are given as; AIC = −2× lnL+ 2k and BIC = −2× lnL+ k × ln(n) , where L is the
maximized value of the likelihood function, n is the sample size and k is the number of the parameters in the model [13].
For a set of models, the values of the AIC are compared to establish the better fitting model (that which has the smallest
AIC and/or Schwarz’s Criterion (SC) value).

For mixed categorical and continuous covariates, several other goodness-of-fit tests for model assessment have been
proposed. For instance, Hosmer et al. [15, 16] developed the Ĉ and Ĥ tests. Other two tests proposed by Pulksteris
et al. [17] also yielded fair results for logistic models with mixed discrete and continuous covariates but performed
poorly when the entire covariates vector space is continuous. Tsiatis [18] and Stukel [19] used score tests to evaluate
overall goodness-of-fit for the logistic regression model. In multinomial models, goodness-of-fit test statistics that are
asymptotically normal for large degrees of freedom were also proposed in studies by Osius et al. [20] and can always be
applied to the binary cases as generalizations of the Pearson Chi-square test. Despite the fact that there is a rich literature
proposing many goodness-of-fit tests, establishing the most reliable way of assessing the fit of the logistic regression
model is still elusive since each of the existing tests have different merits and demerits. The assumption of these tests is
that the data set being used is complete and balanced. How then do these goodness-of-fit tests respond to imputed data
sets?

In this study, through Monte Carlo simulation, the fit of the logit panel data model is evaluated against data sets with
imputed covariates with an aim of establishing the performance of each imputation technique in yielding the best fit model.
The aim being to confirm whether the superiority of Bayesian imputation still holds when performing model diagnostics.
Although the bias and precision of parameter estimates are comparatively lower for data sets whose missing covariates
are imputed by the Full Bayesian model based technique, the need to establish the best fitting imputed model will validate
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the imputation technique used. The underlying concept of each of the mentioned goodness of fit tests is discussed in the
next section and later applied to the simulated logit panel data set.

2.1 Framework of goodness-of-fit tests in logistic regression model

This section gives the test specifications and their technical points which bring out their outstanding relevance to
specific covariate data sets. Specific to logistic regression, we reflect on available measures of fit that have been proposed
thus far which can be clustered into “global” and “local” measures.

2.1.1Chi-square goodness-of-fit tests and deviance

In linear regression, residuals can be defined as yi − ŷi where yi is the observed response variable for the ith unit,
and ŷi the estimate from the model. This is similarly extended to logistic panel data model whose residuals are yit − p̂it

with p̂it defined as in equation (10). From these residuals, we define two tests: the chi-square goodness-of-fit test and the
deviance test.

2.1.1.1 The chi-square test

Pearson’s chi-squared goodness-of-fit test statistic is best described from its expression as the sum of the quotient
between the squared residuals per covariate pattern and the residual standard error. We also define a covariate pattern as a
unique combination of all specified covariates that can be identified to describe a given sample unit. Suppose J denotes the
number of such unique covariate patterns from the available covariates, then let m j be the total number of units belonging
to a particular covariate pattern such that j = 1, 2, . . . , J. From this description, we may observe two distinct cases: (1)
J < n when several units share covariate patterns leading to fewer number of patterns than the sample size and (2) J ≈ nt
where the n units are uniquely sampled by the covariates (there are no clusters). Still relating to the logit panel data model,
then for all the units within the jth covariate pattern, let p̂it j be the MLE estimates of pit j . This estimated probability is the
same for all m j subjects in the covariate pattern group j. We already have that, yit represents the outcome for the ith unit
observed at time t. Let y j = y js + y j f be the sum of the observed outcomes (both successes and fails) in the jth covariate
pattern. Average estimated number of successes for the units in the jth group with the jth covariate pattern is obtained as
ŷ js = m j p̂ j.

The likelihood function and the log-likelihood function for the covariate pattern can be written respectively as L(β ) =
J
∏
j=1

[
m j

y js

]
pit j

y js(1− pit j)
(m j−y js) and logL(β ) =

J
∑
j=1

{
log

[
m j

y js

]
+ y js log pit j +(m j − y js) log(1− pit j)

}
. Here pit j is the

probability of success for the unit i at time t and having the jth covariate pattern. It still follows the logistic distribution
equation (1) and is a function of parameters β . The values from each covariate pattern can be tabulated as in Table 1 for
easy visualization.

Table 1. Pearsons table for covariate patterns

Covariate Number of No. of No of Estimated Prob. Estimated Prob. No of
Pattern j subjects Successes Fails of Success of Fail Estimated Success

1 m1 y1s y1 f p̂it1 1− p̂it1 m1 p̂it1

2 m2 y2s y2 f p̂it2 1− p̂it2 m2 p̂it2

...
...

...
...

...
...

...

j m j y js y j f p̂it j 1− p̂it j m j p̂it j

...
...

...
...

...
...

...

J mJ yJs yJ f p̂itJ 1− p̂itJ mJ p̂itJ
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Consequently, if we suppose that J < nt so that m j p̂it j is large enough for every covariate pattern, it suffices to define
Pearson’s residual as

r(y js, p̂it j) =
(y js −m j p̂it j)√
{m j p̂it j(1− p̂it j)}

. (11)

By definition, we now get the Pearson’s chi-squared goodness-of-fit test statistic for the logistic panel data model as
the sum of the squared Pearson’s residuals, r(y js, p̂it j), as

X2 =
J

∑
j=1

(
r(y js, p̂it j)

)2

. (12)

The statistic (12) is distributed approximately as χ2(J − k) where k is the number of independent covariates in the
model. Worthy to note is that when there exists some continuous (one or more) covariates in the vector xit of the logistic
regression model then the number of covariate patterns is fairly high (J ≈ nt). This makes the component m j p̂it j to be
small relative to y js hence Pearson’s chi-squared test may be ineffective.

2.1.1.2 Deviance test

For the jth covariate pattern, Nelder and Wedderburn [21], used the definition of the deviance residual d to propose
another goodness-of-fit measure. For the logistic panel data model, we have d as:

d(y js, p̂it j) =±
{

2
[

y js ln(
y js

m j p̂it j

)+(m j − y js) ln(
(m j − y js)

m j(1− p̂it j)
)

]} 1
2
, (13)

where the parameters are similarly defined as those from the chi-square test. The Deviance test statistic is also obtained
from the deviance residual as:

D =
J

∑
j=1

(
d(y js, p̂it j)

)2

, (14)

and D is approximately χ2(J − k). When there exists numerous continuous covariates in the covariate vector then each
covariate pattern uniquely represents a study unit j such that m j = 1 ∀ j and equation (13) becomes:

d(yis, p̂it) =±
{

2
[

yis ln(
yis

p̂it
)+(1− yis) ln

(
1− yis

1− p̂it

)]} 1
2
, (15)

with D as D =
nt
∑

i=1

(
d(yis, p̂it)

)2

. With the assumption that yis is binary, the terms yis ln(yis) and (1−yis) ln(1−yis) vanish

hence when we use the estimator ŷis = p̂it we have
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D =−2
nt

∑
i=1

{
p̂it ln(p̂it)+(1− p̂it) ln(1− p̂it)

}
. (16)

The test statistic and the corresponding p-value for the Deviance test are relatively easier to calculate compared with
those of the Pearson Chi-square test hence giving the Deviance test an analytical preference. However, for these two tests,
the p-values are not always correct when the covariate patterns are large such that J = n [12]. Collett [11] justified the
prevalence of the Deviance statistic over the Pearson Chi-square statistic by the fact that D is minimized by the maximum
likelihood estimates of the success probabilities p̂it of the fitted logistic regressionmodel. Faced with an imputed covariate
matrix, the propagation of bias from the MLE p̂it will in turn affect the value of the test statistic.

2.1.2Hosmer-lemeshow methods

Hosmer and Lemeshow continued with the same re-grouping idea as used in deviance tests and developed two widely
used tests in which subjects are grouped according to the values of probability estimates of success. These test statistics do
not necessarily require the condition J < n as was the necessity for Pearsons Chi-square test and deviance tests [22]. The
test statistics developed by Hosmer and Lemeshow are Ĥ and Ĉ, differentiated according to how the frequencies of the
probabilities of success are obtained. Ĥ statistic is obtained by fixing a pre-determined threshold value of the estimated
success probability [15] while Ĉ is based on the percentage proportions of estimated probabilities [16].

2.1.2.1 Hosmer and Lemeshow’s Ĉ

To obtain the Ĉ test statistic we regroup the subjects into g(≤ 10) groups with each group containing n×t
g subjects.

The grouping criterion is such that the first group contains the smallest estimated success probabilities p̂it calculated from
the fitted assumed model. As such we have an ordered monotonically increasing set of groups based on the estimated
probabilities. Letting pk be the groupmean for the success probability estimates in line with the fittedmodel corresponding
to the study units in the kth group with yit = 1. Also let ok be the number of study units in the kth group with yit = 1. We
generate a two-column frequency table (Table 2) with g columns where the row values correspond to the two recordings
(observed and expected) of the response variable and the g columns representing the g groups. A plot of the observed
success probabilities against the expected success probabilities for the best fitting model is linear through the origin with
slope 1 and diagnoses the overall fit across the spectrum of predicted probabilities.

Table 2. Observed and Expected probabilities of success for each group

Group

1 2 3 … g

Observed Success probability o1 o2 o3 … og

Expected Success probability n1 p1 n2 p2 n3 p3 … ng pg

From the frequency table the Hosmer and Lemeshow test statistic Ĉ is obtained as

Ĉ =
g

∑
k=1

(ok −nk pk)
2

nk pk(1− pk)
, (17)
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where
g
∑

k=1
nk = nt with nk being the total subjects in the kth group for all k = 1, 2, . . . , g. Here again, Ĉ ∼ χ2(g−2) [10].

Limiting g = 10 and ensuring that each group has a fair number of subjects makes it difficult to choose an arbitraryW ∈N
such that nt = 10×W . Therefore, Ĉ is very sensitive to the subjective choice ofW during groups formation as evidenced
by different statistical softwares having different algorithms for defining the cut-off points. An observation by Bertolini
et al. [23] is that Hosmer and Lemeshow goodness-of-fit test results may still be inaccurate when the number of covariate
patterns J < n.

2.1.2.2 Hosmer and Lemeshow’s Ĥ

Without fixing the number of subjects per group, Ĥ is an alternative test statistic also derived by Hosmer and
Lemeshow whereby the estimated probabilities are clustered into intervals of 0.1 from 0 to 1 so as to generate the 10
(or less) desired groups. Consequently, the number of study units or subjects may vary across the different groups. Akin
to the g×2 frequency table used in the Ĉ test, the Hosmer-Lemeshow Ĥ test statistic is derived from the computation of
the Pearson chi-square statistic as:

Ĥ =
g

∑
k=1

(ok −nk pk)
2

nk pk(1− pk)
. (18)

where ok, pk and nk are similarly defined as for the case of Ĉ for large n, Ĥ ∼ χ2(g − 2) under the null hypothesis.
Comparisons of Ĉ and Ĥ tests indicate that Ĥ test is more powerful than Ĉ test except when a significant number of
estimated probabilities are within the lower two deciles [12].

Summarily, the two Hosmer-Lemeshow’s tests can be taken as extensions of the Pearson chi-square test if multiple
covariate patterns are merged into one group making the distribution of the Pearson residuals approximately normal.
Additionally, other developments on the Ĉ and Ĥ have included all probabilities for both success and failure (Y = 1 and
Y = 0) so as to make use of all available data information.

2.1.3Classification tables

A logistic regression model’s classification table is used to reveal the model’s accuracy, or how well it specifies
successes and failures of an event for a given classification cut-off probability. After obtaining all fitted values of the
binary response variable, p̂it of a logit panel model, all the fitted values are then classified according to whether they fall
above or below a predetermined threshold (cut-off) value, p0. The classification is such that all p̂it ≥ p0 are qualified as
successes of an event while p̂it < p0 are failures of the same event. This classification enables us to generate a 2 × 2 table
(Table 3) due to the dichotomous nature of the response variable.

Table 3. Classification table from a specified panel data set

Observed

Observed positive Observed negative
yit = 1 yit = 0

Predicted Predicted positive p̂it ≥ p0; yit = 1 A = TP B = FP PP = TP + FP

Predicted negative p̂it < p0; yit = 0 C = FN D = TN PN = FN + TN

OP = TP + FN ON = FP + TN Tot = TP + FP + FN + TN

The Table 3 is referred to as the classification table from which the following counts can be defined:
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i. True Positives (T P) = the number of cases that were accurately classified as positive, that is, those that were
expected to be successful and were found to be successful,

ii. False Positives (FP) = the number of cases that were incorrectly classified as positive, that is, were predicted to
be a success but were actually observed to be a failure,

iii. True Negatives (T N) = the number of cases that were correctly classified to be negative, that is, were predicted
to be a failure and were actually observed to be a failure,

iv. False Negatives (FN) = the number of cases that were incorrectly classified as negative, that is, were predicted
to be a failure but were actually observed to be a success.

Prior expectation that would indicate a good fit is to have higher counts of T P and T N, and fewer counts of FP and
FN. If otherwise, we define analytical test values for a particular model as sensitivity, specificity, precision and Model
accuracy.

2.1.3.1 Sensitivity, specificity, precision and model accuracy

From the parameters of the specification table, the following four measures are defined:

Sensitivity=
T P

T P+FN
, (19)

Specificity=
T N

T N +FP
, (20)

Precision=
T P

T P+FP
, (21)

Model Accuracy=
(T P+T N)

(T P+T N +FP+FN)
. (22)

In essence the ability of a model to correctly classify successes and failures are evaluated by the sensitivity and
specificity, respectively. Precision, however, measures how good the model is at predicting a success of an event.
Generally, higher sensitivity and specificity values would indicate a better fit of the model.

2.1.3.2 Receiver operating characteristic (ROC) curves

Receiver Operating Characteristic (ROC) curves are graphical representations commonly used in binary classification
tasks to assess the performance of a classification model. Such binary classification problems are those where the outcome
can be classified into two categories, typically denoted as positive (success of an event) and negative (failure of an
event). ROC curves are therefore widely used in medical diagnostics, machine learning, and other fields where binary
classification is common, providing a comprehensive evaluation of a model’s performance across various thresholds.
Graphically, ROC curves are plots of the true positive rate (TPR) against the false positive rate (FPR) such that each point
on the curve represents the performance of the model at a particular classification threshold.

Specific to the logistic panel data model and taking into account all possible threshold values p0 ∈ [0, 1] that can
be used to generate different classification tables, corresponding pairs of specificities and sensitivities can be collated
for every chosen cutoff value. A plot of sensitivity against 1-specificity from these paired values provides the Receiver
Operating Characteristic (ROC) curve where the domains of the axes are both [0, 1] ⊂ R. The ROC curve lies between
two limiting curves: the random chance diagonal ((Sensitivity = 1− Specificity)) and the gold standard lines (Sensitivity
= 1 and Specificity = 1). Sampling ROC curves in the Figure 1 shows diagnostic accuracy of the gold standard (lines Q;
AUC = 1) on the upper and left axes in the unit square, a typical ROC curve (curve R; AUC = 0.79), and a diagonal line
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corresponding to random chance (line S; AUC = 0.5). The overall measure of fit of the model is presented by the area
under the ROC curve (AUC of the ROC. As such, during diagnosis, a better fitting model yields an AUC value closer to
1 than 0.5.
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Figure 1. Expected Receiver Operating Characteristic (ROC) curve

3. Logit panel simulation study
In this section, we assess the impact of covariate imputation to the various goodness-of-fit statistics. Through

Monte Carlo simulation, we hypothesize and generate a panel data set with a dichotomous response variable Yit

observed in three time periods (T = 3) whose probability is predicted from a logistic distribution relating five covariates
X (1), X (2), X (3), X (4), and X (5) as

Pr(Yit = 1) =
1

1+ exp−(ci +β1x(1)it +β2x(2)it +β3x(3)it +β4x(4)it +β5x(5)it )
(23)

where ci is the individual specific fixed effect parameter specified as ci =
10∑x(1)

3n + αi and αi ∼ N(5, 1). Using
R software, the covariates X (1), X (2), . . . , X (5) are specified and randomly generated as follows: X (1) = round
(rnorm(nt, 45, 15), 0); X (2) = rpois(nt, 3); X (3) = rbinom(nt, 1, 0.65); X (4) = round(rnorm(nt, 15, 8), 2); X (5) =

bernoulli(nt) =

{
1, if X (1)+hit ≥ 40 ,

0, Otherwise .
and hit = rnorm(nt, 0, 1).

By randomly deleting proportions of the covariate matrix and imputing the values back, we calculate resultant
goodness-of-fit probabilities of the test statistics and the AUC for three different sample sizes (n = 100, n = 200 and
n = 300). The proportions of the missingness are fixed as 10% and 30% respectively for each sample size used. Figure
2 shows the empirical densities of the parameters β1 to β5 from 1,000 iterations when estimated by conditional MLE.
We collated the goodness-of-fit test results when various imputation techniques employed against each sample size and
missingness proportions in Tables 4 and 5 below. Across the Tables 4 and 5 we observe that the chi-square (χ2) statistic
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values increase with increasing sample size indicating a diminishing chance of rejecting the null hypothesis. This shows
that all the goodness-of-fit statistics considered in this study become asymptomatically valid irrespective of the imputation
technique used to compensate for the missing covariates. Comparatively, the chi-square statistic values for the Pearson’s
chi-square, Hosme-Lemeshow’s Ĉ and Ĥ are seen to be sensitive to missingness proportions and the chi-square values
are lower when a bigger proportion of the data need to be imputed. From the ROC curves (Figure 3) and the average area
under the curves (AUC), Bayesian imputation though multiple imputation by chained equations (MICE) is seen to perform
better than both median and last value carried forward (LVCF) imputations by yielding a higher AUC. The simulation
results, however, do not provide much information for mean imputation as most of the test statistic values overlapped
with those of the complete data set.
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Figure 2. Empirical densities of the parameters β1 to β5 from 1,000 iterations when estimated by conditional MLE
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Figure 3. Receiver operating characteristic curves for the different data sets used with a sample size of N = 300
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(Ĥ
)

N
=
100

N
=
200

N
=
300

N
=
100

N
=
200

N
=
300

N
=
100

N
=
200

N
=
300

Com
plete

1
1

1
9.992×

10 −
16

2.2×
10 −

16
2.2×

10 −
16

3.653×
10 −

14
2.2×

10 −
16

2.2×
10 −

16

(133.7613)
(249.2736)

(593.5277)
(88.334)

(196.91)
(504.5)

(80.631)
(183.03)

(507.19)

M
ean

Im
p

1
1

1
3.48355×

10 −
16

2.2×
10 −

16
2.2×

10 −
16

3.653×
10 −

14
2.2×

10 −
16

2.2×
10 −

16

(135.5542)
(249.6281)

(595.2572)
(88.989)

(197.24)
(505.15)

(80.801)
(182.11)

(507.912)

M
edian

Im
p

0
0.99971

1
3.038×

10 −
13

2.2×
10 −

16
2.2×

10 −
16

3.348×
10 −

8
2.2×

10 −
16

2.2×
10 −

16

(2642.748)
(483.4743)

(616.364)
(107.44)

(112.72)
(377.53)

(108.81)
(113.09)

(383.95)

LV
CF

0.9657643
1

1
1.176×

10 −
10

2.2×
10 −

16
2.2×

10 −
16

1.787×
10 −

13
2.2×

10 −
16

2.2×
10 −

16

(252.322)
(281.3253)

(621.1517)
(63.04)

(148.44)
(488)

(77.199)
(146.36)

(423)

Bayesian
(M

ICE
Im
p)

0.04804199
1

1
2.2×

10 −
16

2.2×
10 −

16
2.2×

10 −
16

2.2×
10 −

16
2.2×

10 −
16

2.2×
10 −

16

(336.5688)
(342.0526)

(539.783)
(151.68)

(168.1)
(351.02)

(141.93)
(175.53)

(339.91)

Sensitivity
(cut-offp

=
0.5)

Specificity
(cut-offp

=
0.5)

A
U
C

Com
plete

0.736434
0.8689956

0.8215223
1

0.9973046
1

0.9291
0.58

0.5

M
ean

Im
p

0.737841
0.8677265

0.8199215
1

0.9971216
1

0.9279
0.58

0.5

M
edian

Im
p

0.72973
0.8136364

0.7615385
0.3274336

0.9447368
0.9686275

0.9411
0.5588

0.5

LV
CF

0.701613
0.8916256

0.8214286
0.9545455

0.9521411
0.9738806

0.8769
0.555

0.5

Bayesian
(M

ICE
Im
p)

0.628571
0.6515342

0.6601732
0.95625

0.974026
0.9817352

0.889
0.78

0.5351

Volume 5 Issue 4|2024| 4639 Contemporary Mathematics



Ta
bl
e
5.
G
oo
dn
es
s-
of
-fi
tt
es
ts
ta
tis
tic
sf
or
di
ffe
re
nt
im
pu
ta
tio
n
te
ch
ni
qu
es
ac
ro
ss
va
ry
in
g
sa
m
pl
e
siz
es
at
30
%
m
iss
in
gn
es
sp

ro
po
rti
on

G
oo
dn
es
so

fF
it
Te
st
St
at
ist
ic
(M

iss
in
gn
es
sP

ro
po
rti
on

=
30
%
)

Ch
is
qu
ar
e
Te
st
St
at
ist
ic

H
os
m
er
-L
em

es
ho
w
C
St
at
ist
ic

H
os
m
er
-L
em

es
ho
w
H
St
at
ist
ic

p v
al

ue
p v

al
ue

p v
al

ue

(X
2 )

(Ĉ
)

(Ĥ
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4. Conclusion
In this paper, we carried out a comparative study on the impacts of various imputation techniques on the goodness-

of-fit test statistics used when fitting logistic panel data models. The biases introduced to parameter estimates as a result
of imputation of missing covariates is in turn propagated into the calculation of the goodness-of-fit test statistics. Our
simulation study reveals that for the conditional MLE of the logit panel data model, the model-based imputation (Bayesian,
MICE) impacts less on the goodness-of-fit test statistics in comparison with other classical imputation techniques. In
addition, the simulation also establishes that larger missingness proportions tended to reduce the confidence interval of
the test statistics hence reducing the chances of adopting whichever model under study as it were.

Apart from the measures of goodness-of-fit considered in the study here-in, there exist more openings for other
unique proposals for goodness-of-fit test statistics that would be even more robust to imputation and yield plausible model
diagnosis results.
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