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Abstract: The cancer cell starts dividing, infiltrating neighboring tissues and traveling throughout the lymphatic system.
While there are ways to stop the spread of disease or get rid of infected cells, most of the approaches are unable to identify
the early warning indicators of such an occurrence. Using diverse types of differential equations, especially ordinary
differential equations (ODESs), is a helpful catalyst that experts employ. Using differential equations, researching resistance
to chemotherapy, forecasting potential treatment failure, or evaluating the result and prognosis following various forms
of therapy. Living things always include cancer cells, but a biological regulatory system keeps them from spreading to a
dangerous degree (think overpopulation vs. natural resources). Therefore, the most efficient method of determining when
to effectively intervene with the tumor growth is to use the cytokinetic method of quantitatively assessing the cancer cells’
progression. Cancer Metabolism: One of the main characteristics of cancer is metabolic reprogramming, in which the
metabolism of cancer cells is changed to fuel their explosive growth and multiplication. New models of cancer metabolism
investigate the roles that dysregulated metabolic pathways play in the genesis and spread of tumors, providing prospective
avenues for therapeutic intervention. The mathematical models of tumor growth modeling of ordinary differential
equations (ODEs cancer). The tumor grows voraciously, and the scientists and mathematicians who tried to have a better
understanding grow. The study of such treatments on models of tumor growth leads to one or more ODEs. Which gives
some ideas on the relation between equations and tumor growth in cancer cells introduce ODEs to provide mathematical
models of tumor growth. The dynamics of tumor cells and their growths through clinical, experimental, and theoretical
approaches, new ideas for different cancer therapies are developed with the goal of controlling and reducing the death
rate for earlier diagnosis. The kinetics of tumor cell proliferation and its treatment approach were covered in this research.
In order to comprehend the proliferation of tumor cells, we expanded the study and xamined a feew basic mathematical
models.
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1. Introduction

The tumor-growth and therapeutic interactions using the ordinary and delay differential equations. We investigate
how adoptive cellular immunotherapy affects the model and outline the conditions that lead to tumor eradication.
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Cancer diseases and one of the most difficult to cure clinically is cancer. Consequently, there is a lot of studythe
tumor cells and the immune system interact. The use of ordinary differential equations in mathematical models is crucial
for comprehending the dynamics and monitoring tumor and immunological populations throughout time. Despite the fact
that research on tumor immune dynamics.

The simple models of tumor growth and treatment on single nonlinear ODEs to the equation of exponential growth,

M
— =AM ()

where, A is a constant, and M(r) is a continuous function on time ¢ and represents the number of cells in tumor cells.
The generalized a nonlinear first order (ODEs) incorporate growth deceleration.

M
s =ron) @

The systems of ODEs consider two cell populations. The models are based on systems for ordinary differential
equations.

2. Mathematical modeling of tumor growth and treatment
2.1 Ordinary d equations of tumor growth

Cancer is a disease that occurs when some body cells grow out of control and spread to other body regions. The
human body is made up of trillions of cells [1]. Human cells often divide into new cells as needed in the body, a process
called cell division.

A tumor is a mass of tissue that may resemble swelling. Not all tumors are cancerous.

Suppose that the rate of change for the population is proportional to the number of individuals at any time in the
differential equation [2].

ay

- =K. 3)

with the initial condition Y (#p) = ¥p. The population Y positive and increasing to different biological factors and mutation
k > 0. The solution is [3]

Y =Y. “4)

A generalization for the exponential model is given as:

dy
= =ar’.

dt ©)

Consider the tumor cell population by DE of the form
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dy
o =aY —bY?, Y (1) =Yo. (©)

where a > 0 chooses b > 0 in order to inhibit the growth for y demanded by reality. This equation is termed a logistic
equation, which is called the logistic [4] law of cancer tumor growth and can be solved by the separation of variables
method. Let fy then

ab
Y =Ymax = a/h—_t (7)
1 + (TO — )(3 B
. a
Ymax = llmt*mY = Z (8)
Consider V(T') [5] it for the case of tumor volume. The growth of cancer can be modeled by
dv
— =KV. 9
7 )
where V(T') denotes the volume for dividing cells at time #, with initial volume V (0) = Vj.
If the growth is proportional [6] to the surface area and the death is proportional to the tumor size 7 [7].
dv
— =av¥?—pv. 10
T (10)

This model is applied to describe human tumor growth. The tumor doubling time ¢ was introduced to measure and
n2
quantify how fast a tumor grows and quantify the growth rate, which is nT as the [8] tumor becomes larger, the doubling

time ¢ of the total tumor volume continuously increases. The exponential modeling predicts early growth well.

V() = Voexp S (1 — ). (an

a

where k and a are positive constants. It states that tumors grow and more slowly with that passage [9] of time, the growth

k/a

rate, given by the following nonlinear equation ODEs Vpe*/¢ where k is constant.

Let model the growth of malignant tumors is given by

d
E8 _ KP(InP, — InP) (12)
dt
where P is the population of cancer cells, and £ is constants.
Let’s use nonlinear ODEs and assume that is real, and k is the host carrying capacity [10].
The value is to be understood as a limit; taking the limit gives a Gompertz equation.
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Fon)y =20 (G, w0, k> 0. (13)

1%

where v > 0 is the real and k is host carrying capacity. For the value v = 0 to be understood as a limit.

dM M
== _uln—. 14
7 pin— (14)

The tumor treatments on cell killing by external agents, a very common assumption is the treatment modifies this
equation [11]

aM

O = —ec)+ f(M). (1)

Here, € is the positive constant, the strength for the chemotherapeutic agent, and c(¢) is the agent concentration
at the location of the tumor cells. The mathematicians and scientists devoted their studies to such diseases using their
mathematical modeling on [11] ODEs.

3. Modeling tumor treatment

The dynamics of the number of tumor cells at the time 7, M(¢) is described by differential equation forms for the
growth law, where f(M) is the tumor cell growth dynamics, G(z, M) describes the effects of the drug on the system, and
an indicator function (= 1) if # = #sreery [12], and zero otherwise. Surgery is assumed to be instantaneous and remove
[13] a fixed fraction of exp(—Kj) of the tumor cells, where & is the fraction of removed cells during surgery [14].

d
TA;[ = f(M) — G(t, M) — K (t = tyrgery)M. (16)

The mathematical model of [15] inhibition proposes is the following models:

d k
e (M)' (17)
% = —ec(t)+ BM — yKM?/3. (18)

where the first equation represents the endothelium compartment, and the second equation [16] represents the tumor
compartment.
Differential equation models easily include the impacts of both cancer therapy options [17].

dc c
E:—lcln(f)—gc. (19)
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dK
= de- OKc*? —TKg(1). (20)

In the simple case, anti-tumor treatment induces a continuous tumor cells kill with strength 0 < £ > 1 conceivable
as the chemotherapy or immunotherapy.

4. Ordinary differential equaition based model for tumor cell and analysis
4.1 Model formulation

The model formulation that is being developed is called the normal-tumors immune-unhealthy.
The following is required of the formulation:

M(t) := normal cells at the time z.

T (t) := tumor cells at the time 7.

I(¢) := immune system at the time .

The model is based by following assumptions:

There is a high growth rate in the cells populations. Due to this.

5. The method solving differential equaition

Depending on the exact model being utilized, there are multiple ways to solve differential equations in mathematical
modeling of cancer. This is a broad synopsis of the procedure:

Create the Model: You must create a mathematical model that explains how cancer cells behave and interact with their
surroundings before you can begin to solve any equations. Differential equations are frequently used in this to account
for changes over time.

Discretization: In order to solve continuous differential equations in your model numerically, you’ll probably need
to discretize them. Usually, this entails segmenting space and time into tiny grids or intervals.

Select a Numerical approach: To solve the discretized equations, choose a suitable numerical approach. Finite
element, finite difference, and finite volume methods are common techniques. The decision is based on various
considerations, including the model’s complexity and the required level of accuracy.

Put the Numerical Solver into Practice: Write code to put the selected numerical technique into practice. Programming
languages like Python, MATLAB, or C++ may be used for this.

Establish initial and boundary conditions. For each variable in your model, such as the initial cancer cell distribution,
specify the initial circumstances.

Determine Parameters: Establish the parameters of your model, including diffusion coefficients, growth and death
rates from the tissues normal cells to transition into tumor cells will take time [18].

Logistics when there is not a tumor and immune cells as:

am
— =rM(15M). 21
dt

But with the interaction between tumor and immune cells, the equations [19] become

am

- = M(1BM) —nMIyMT (22)
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The parameters
a. r suppose indicative the populations for the normal cells growth rate.

b. & denote the cell saturations.

r
c. 1 indicative the rate of interaction between the normal cells and the immune cells.
d. y indicative the rate of interaction between the normal cells and tumor cells.

The growth of the tumor cells is governed by the logistic population model when there is not an interaction with
normal cells and immune cells.

T
=& T(1&T). 23
5 = arier’) (23)
and Including that the interaction of the cells,
daT
E :SlT(lng)+ﬁ2MT—83TI. (24)

The parameters
a. €] indicative the growth rate of the tumor cells.

£ .
b. 8—1 denotes the tumor cell saturation.
2
¢. B indicative of the interaction between normal cells and tumor cells.
d. & indicative of the interactions between the tumor and immune cells.
In modeling the immune system, we have to consider the constant source of immune system booster (o). The immune
system depletes at a natural rate [13] 8, s. The reaction rate is

As
R(s) = . 25
(5) = @3)
[A, K constants]
dl pMI p1TI
=0-461 MI TI. 26
dr oM T TR (26)
m+ M cell appearance stimulation the immune system to respond.
a. p indicative of this response rate.
b. m indicates the immune system rate.
c. U indicates the reduction of the immune cells to the interaction with the normal cells.
d. p; indicates the reduction of the immune cells to their interactions with the tumor cells.
. 1 . ..
The second term depicted by [20] p1 1 inhibits the tumor cells.
mq
The following system expresses in the normal-tumor-immune-model unhealthy diet model.
am
W:rM(l—BlM)—nMT—}/MT. 27
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dr
— =T(1—&T)+ BMT —&TI. (28)

dt

di pMI  piTI

— =8I+ MI+wTI. 29
ar T Ty e TR (29

All parameters r, B1, 1, ¥, €1, &, B2, &, 0, 6, U, U1, P, P1, are positives.

6. Model aalysis
6.1 Postivity of solutions

The model of the equation above displays the interaction between normal cells and tumor cells with the influence
of the immune cell system. It is common sense. The M, T, and I are positive. This is because we do not have negative
populations and values. In addition to the fact. All parameters are positive values; they are also values between zero and
one. Suppose that,

I'=(M,T,I)eR

The next theorem shows the positivity of solutions.

7. Theorem 1

The dynamic system region of the mathematical model I" C R, is positive invariant, and a positive solution exists 7.
From the mathematical model of the normal cells, we have this equaition,

M

5 S YM(t)yB1M(t) (30)

We have [21],

M@p a  mMap S TP 3D
Suppose that,
S=M(t)", (32)
then [22],
dz(t) —aM
o - MO (33)
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This gives,

—dS(1)
- 7 < _
o vz < —7Bi,
Z(t)
7 < .
dt+ﬁfﬂ1

(34

(35)

This has been reduced to a linear [23] first-order equation (ODEs), solving by using an integrating factor, we have,

Multiply through by e”.

eV

Integrating equation [24],

[-F=elv—¢r

S(t)

vt
SeV* < % +C.
Y
S<Bi+Ce ",
1
denote that S = —,
M
L prce
— e 7.
u =P
The solution to this equation is given by
M(r) < 1
~ Pi+Ce
As t — oo, the solution of the equation is given by
M(t) < !
B

From the (ODEs) describing the behavior of tumor cells, we obtain, that

Co iporary Math tics

t
7 —l—eWVS < eWYﬁl'

(36)

(37

(3%

(39

(40)

(41)

(42)
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iy
— < gT(1eT).
dt — 1T(1&T)

By using Bernoulli’s method,
daT )
— < ¢gg&eT”.
g = aae

aT

— 8 < & 6T>.
Divide through by 7?2
1 dT
ar ﬁbﬁ < g 8.
Let, S=T"",
Inputting this,

S gz< —g€
— — &S —&1&82.
dt

dZ+s < +e€€
dr 12 < t&18.

The equation is reduced to a first-order linear equation (ODEs), using an integrating factor.

I.F= g,/.fldf — eSII'
Multiply both side by €',

€

eelzd(Seell)

n < efllgg,.

Integrating equation [25],
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e IIE +efllgz< il g,

(43)

(44)

(45)

(46)

(47)

(4%)

(49)

(50)

C2))

(52)
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Sefit < 16 / ildr. (53)

Sl < gl 4 C. (54)
S<e+Ce . (55)
denotes that
1
S= T (56)
1 —E&t
T <g+Ce ™. (57)
< 1
~ g+ Cert’ (38)
As t — oo, we have that,
1
< (59)

Applying the integrating factor method [25] for first order ODE,

dl
— <o-94I 60
dt — ° (60)

The integrating factor is,
I-F =l 01t — o9 (61)
Multiply both sides by the integrating [26] factor,
e&% +e%81< 6. (62)

ot
dIe < eétG
dat —

(63)

Integrating both sides give,
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St

16" < <o +C. (64)
Dividing both sides by, %
I< % +Ce b, (65)
The solutions are given by,
() < % e, (66)
Ast —> oo. The solution is given by
I(1) < % (67)

Then the solution (M(z), T(z), 1(2)) is positive for all time ¢, [27]

Q=Qc:=(M,T,I)€R (68)
M= ! 69
=B (69)

1

1

8. Equilibrium points

The steady state solutions is gotten when the left hand side of the equations is set to zero as follows.

dN
1. —=0
dt
N(rBINYITT) = 0. (72)
dT
. —=0
dt
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T(oy(10pT)+ BoNogl) = 0. (73)

pNI p1T1
col+ ——
+m+N+m1 +T

+ UNI 4TI =0. (74)

Solving for N, T, I we have the following based on either N or T are zero or both are zero.
1. When both N and T is zero then The third equation will reduce to

6é6l=0 (75)
o
I1=—. 6
S (76)
The equilibrium point is
E,= (0,0, %). (77)

The resisting stage, p>: This period comes into existence when abnormal cells begin to turn into tumor cells. The
Equilibrium point at this stage is given as follows:

P = (0, 11, 11). (78)
Where
1 st+veatdes+2a1 03¢ oz(—one +€1)
=6 (79)
60 oo U+ (e3+e3+4es)
& =2 + (8 +mp —p1) >0 (80)
& =3u(1(1+mon)(d+u)—oomp+aoz0)>0 (81)

& =aiod(one (e )+ o5 (287 +2(—myuy +p1)?) — 8(Smipy +4p;)

+9(11 4 (8 +2my g + pr ) oo >0 (82)
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s =—0 o (o (p (€1 11) + 05 (8% + (—mi iy + p1) 282 (mypy +2p1))) — 3203 1162)° > 0. (83)

8.1 Remark

From the positivity of solutions and the biological meaning of the equi- librium point p,, we deduced that: The tumor
cells compete for survival at the resisting stage by rapidly dividing and growing. Therefore,

1
1§T1§a—where02a221. (34)
2

There is a suppression to the activity of immune cells because of rapid growth and division of tumors cells . Therefore,

1 < % where 0% —1(0)=1.22 (85)

9. Remark

According to the physiological meaning of cell cycle life, we can deduce that the rate of division normal cell to
abnormal cells is very small compared with the rate of the natural divide of cell. Thus, 0 < ; <0.

10. Vascular adaptation

Secomb and Pries’ series of articles, which simulate vessels in the rat mesentry, come to the following conclusion:
R(t) = radius at time 7

R(t+dt) = R(t) + RdtS
(86)
=M+ Mes+C.

M = mechanical input (stress on the wall), Me = metabolic requirements, s = shrinkage.

11. Model development

Hybrid cellular automata: Separate cells functioning separately Development, decline, and adaptation. The fields
that are continuous are H+, glucose, and oxygen. After each generation, find the steady-state metabolite fields traits
depending on genes. Hyperplasticity: growth away from the wall of the basement. Glycolytic: improved glucose uptake
and utilization. Acid-resistant: To inflict damage, lower the extracellular pH.
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12. Reult and discussion

Tumor Growth Dynamics: By modeling the growth of cancer cells and their interactions with surrounding tissue,
ODE models can replicate the evolution of a tumor over time. Predictions regarding the tumor’s size, growth rate, and
geographic dispersion could be among the outcomes.

Response to Treatment: Using ODE models, one can replicate the outcomes of several cancer therapies, including
radiation, chemotherapy, and targeted therapy. Predictions of tumor regression, recurrence risk, and the emergence of
treatment resistance are possible outcomes.

Tumor Heterogeneity: ODE models can take into account variations in the proliferative rates, migratory capacities,
and therapeutic responsiveness of cancer cells. The findings could provide light on how treatment outcomes and the
formation of drug-resistant subpopulations are impacted by tumor heterogeneity.

ODE models can include immune surveillance, tumor evasion strategies, and therapeutic therapies, among other
interactions between cancer cells and the immune system. The findings might clarify how the immune system affects
tumor growth and prognosis after treatment.

We presented a family of models (ODEs and DDEs) to characterize the dynamics of the tumor immune system in this
work. With varying values of the parameters (the rate of tumor cells preceded by the effector cells) and (the maximum
growth rate of the tumor cells population), the models’ evolution and quality have been presented.

Despite the simplicity of the underlying models, they exhibit extremely rich dynamics and provide a clear
representation of the phenomena of the actual interaction between immunotherapy and tumor growth. As a consequence
of the glycolytic cycle, lactic acid lowers the extracellular pH, which damages healthy cells while simultaneously
encouraging the growth of malignant cells.

Over the last few decades, research on cancer has incorporated an increasing amount of mathematical models. Here,
we’ve shown how simple quantitative models can be developed, compared to experimental data, and used to illustrate
complex biological processes and interactions.

The suggested course of treatment involved applying specific medications in a precisely scheduled order to achieve
the intended result.

Determining this time-dependent method required an understanding of signaling pathway dynamics, or how protein
concentrations vary over time. Without the need for time-consuming trials until a viable solution was found, the
development of the ODE dynamical system model made it easier to investigate novel treatment approaches in simulation.
So, the model made it possible to create intelligent experiments, whereas biological research that lacks mathematical
models is forced to use guessing and intuition to direct the creation of new tests models have been included into cancer
research. Here, we’ve demonstrated how basic quantitative models can be used to simulate intricate biological processes
and interactions by demonstrating how they’re produced and contrasted with experimental data. For the sake of simplicity,
we have selected seminal publications as examples and have had to omit a substantial amount of great literature on
mathematical modeling. Recent review articles and books that provide a more thorough summary of the state-of-the-
art in cancer modeling are recommended reading for interested readers.

13. Cancer treatments

Cancer therapies (drugs, immunotherapy, or chemotherapy). The addition of a cancer treatment to the model will
impact the prediction.

Chemotherapy: The delivery of chemotherapeutic medicines to target cancer cells can be simulated mathematically.
The model can be enhanced by including parameters related to drug pharmacokinetics, dose scheduling, and drug
resistance mechanisms, which can help maximize treatment plans and reduce adverse effects.

Targeted Therapy: Growth factor receptors and signaling pathways are two examples of molecular targets that can
be precisely inhibited by targeted medicines. These effects can be modeled. These models aid in understanding resistance
mechanisms, predicting the effectiveness of targeted medicines, and determining the best dose regimens.
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Immunotherapy: ODE models of immunological responses to cancer can mimic the actions of immunotherapeutic
treatments such as cancer vaccines, adoptive cell therapy, and immune checkpoint inhibitors. These models assist in
clarifying the processes of immune cell activation, immune evasion by tumors.

Radiation therapy: Targeting and eliminating cancer cells while preserving healthy tissue can be replicated using
mathematical models. The model incorporates parameters pertaining to tissue radiobiology, fractionation schedules,
radiation dose, and treatment plan optimization in order to minimize radiation-induced toxicity.

Combination Therapies: Models can evaluate the effectiveness of multimodal treatment regimens, like chemotherapy
with immunotherapy or targeted therapy. To optimize therapy outcomes, these models assist in determining the best drug
combinations, synergistic effects, and treatment sequencing techniques.

14. The best model for cancer growth

The three models /V = f(V) for V are the Gompertz, logistic, and Bertalanffy models at Table 1. Utilize the model
equations. Remember that K = a/b in the logistic model. Determine the optimal values for parameters a and b by
minimizing the NMSE. Which model best captures the progression of cancer? Using Matlab, Excel’s “Solver” feature,
or any other program of your choice.

When the differential equations are numerically solved in Excel using Euler’s approach, the model estimate can be
evaluated: V; = Vi + f(Vi1)(titin), i = 1, 2, ..., 45.

15. Modeling cancer growth

With reference to the Excel “Solver” function, the following optimal parameter values at 1 and NMSE are obtained:
Bertalanfty a = 0.4340, b = 0.2158, NMSE = 0.0089.

Logistic a = 0.3389, b = 0.0489, NMSE = 0.0138.

Gompertz a = 0.2375, b =0.1179, NMSE = 0.0049.

The Gompertz model provides the most accurate fit to the data on tumor growth with an NMSE of 0.49.

Table 1. Modeling cancer growth

Value 1  Value2 Value3 Value4 Value5 Value6 Value7 Value8 Value9  Value 10

3.46 0.0158 12.39 0.4977 04977 3.2046  5.9668 48.29 3.2046 5.9668
4.58 0.0264 13.42 0.6033 0.6033  4.5241] 6.6945 49.24 4.5241 6.6945
5.67 0.0326 15.19 0.8441 0.8441 43459  6.6395 50.19 4.3459 6.6395
6.64 0.0445 16.24 1.2163 1.2163 5.1374  6.8971 51.14 5.1374 6.8971
7.63 0.0646 17.23 1.4470 1.4470  5.5376  7.2966 52.10 5.5376 7.2966
8.41 0.0933 18.18 2.3298 23298 48946  7.2268 54.00 4.8946 7.2268
9.32 0.1454 19.29 2.5342  2.5342  5.0660  6.8815 56.33 5.0660 6.8815
10.27 0.2183 21.23 3.0064  3.0064  6.1494  8.0993 57.33 6.1494 8.0993
11.19 0.2842 21.99 3.4044  3.4044  6.8548 7.2112 59.38 6.8548 7.2112

16. Conclusions

Early detection of the cancer allows for the application of chemo or immunotherapy when necessary, preventing the
disease from spreading further.

In cancer biology, ordinary differential equation-based models are helpful for examining the evolution of biological
systems. It is necessary to gather data at many intervals in order to estimate models with adequate accuracy. A more
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thorough grasp of the underlying dynamics can be attained by qualitatively analyzing models. Here, we demonstrated
a number of uses of ODEs in cancer biology. ODEs and mathematical models in general have the ability to validate
experimental results and open up new directions for scientific research.

Since employing ODEs at Table 2 to simulate a biological mathematical model necessitates that there be only one
independent variable (such as time) and that all others (such as space) can be omitted, the mathematical modeling in the
cancer study uses ODEs.

We stress that, in general, mathematical models and ODEs [28] can validate experimental results and open up new
lines of inquiry for science [29].

We did not evaluate the models, but we did remember that in order to have a greater knowledge of the underlying
dynamic system, all mathematical models should be analyzed from a qualitative point of view.

Table 2. Parmeters description mathematical model of cancer with ordinary differential equaitions

Parmeter Description
M(t) continuous function on time ¢
Y (1) positive and increasing to different biological factors
ODEs Ordinary Differential Equaitions
V(T) the volume for dividing cells at time
p the population of cancer cells
k host carrying capacity
M) normal cells at the time
T(1) tumor cells at the time
(1) immune system at the time
r indicative the populations for the normal cells growth rate
B the cell saturations
n indicative the rate of interaction between the normal cells and the immune cells
Y indicative the rate of interaction between the normal cells and tumor cells
€] indicative the growth rate of the tumor cells
B indicative of the interaction between normal cells and tumor cells
& the tumor cell saturation
& indicative of the interactions between the tumor and immune cells
positive invariant
p indicative of this response rate
m indicates the immune system rate
u indicates the reduction of the immune cells to the interaction with the normal cells
i indicates the reduction of the immune cells to their interactions with the tumor
M mechanical input (stress on the wall)
Me metabolic requirements
s shrinkage
a, b minimizing the NMSE

17. Future studies

Computational science and mathematics have collaborated to improve our understanding of biological systems. The
immune systems was developed in this work to provide a dynamical, analytical, and numerical analysis of the effect of
a compromised immune system on the development of cancer. There was no doubt that the biological and mathematical
mechanisms were related. We can infer from the analytical results that the development of abnormal cells in the tissue
was made possible by the instability of the reaction to the abnormal cells. Because there was an instance of semi-stability
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in the coexistence stage, which meant that tumor cells could arise at any time, this led to malignancies. This suggests that
the cells are unable to coexist.

In conclusion, the immune system’s dynamic response when aberrant cells were able to settle in the tissue and started
to develop into tumor cells. It was clear that there was a connection between the biological mechanisms underlying the
various stages of cancer progression and the mathematical principles of the immune systems. To validate the outcomes of
our mathematical model and provide more accurate results, we suggest carrying out additional experimental research to
clinically examine the findings of this study and add to the analysis of actual instances. In subsequent research, we will
refine this model by examining the impacts of variables that are associated with an elevated risk of cancer, like dictary
factors.
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