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Abstract: This study is focused on a new generalized system of extended non-linear variational inequalities (GSENVI,
for short) involving 3k-distinct non-linear relaxed cocoercive operators. We give the equivalent formulation of GSENVI
in a more convenient form by using auxiliary principal technique. Through the projection technique, we demonstrate that
the non-linear projection equations are analogous to equivalent form of GSENVI. By the use of alternative fixed point
formulations, we proposed the k-steps Gauss-Seidel type iterative algorithms to obtain an approximate solution of the
GSENVI. Further, we discuss the convergence of proposed k-step Gauss Seidel type iterative algorithms. Several special
cases of GSENVI are discussed for the reliability of our findings.
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1. Introduction
The mathematical theory of variational inequalities was initially developed to deal with equilibrium problems,

precisely the Signorini problem: in that model problem, the functional involved was obtained as the first variation of
the involved potential energy. Therefore, it has a variational origin, recalled by the name of the general abstract problem.
In recent years, variational inequalities have received a lot of attention due to its applications. Since non-linear variational
inequalities may be used to create a unified, innovative and general framework to explore a broad range of issues that come
up in applied sciences, transportation, network analysis, elasticity, finance, economics, optimization, etc., see for example
[1–21]. It blends new developments in theory and algorithms with a fresh set of applications. We currently have a range
of methods to recommend and evaluate different iterative algorithms for resolving variational inequalities and related
optimization issues as a result of interaction between several mathematics and engineering scientific disciplines. The
projection technique is one feasible and effective way among many iterative algorithms for obtaining numerical solutions
of variational inequalities. The Wiener-Hopf equations and the projection method, both of which have their roots in
Lions and Stampacchia [2], are valuable resources for estimating the approximate solution of variational inequalities. The
primary aim of this method is to use the concept of projection to show that the variational inequality and the fixed-point
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problem are equivalent. It is widely recognized that for projection methods to converge, the operator needs to be both
strongly monotone and Lipschitz continuous. These convergence conditions ensure the effectiveness of the projection
technique in obtaining accurate numerical solutions in various practical scenarios.

In recent studies, several researchers, including Hao et al. [3], Noor et al. [4, 5], Verma [6, 7], and Zhang [8], have
explored the application of two and three-step iterative update schemes, double projection and projection type methods.
These schemes have been utilized to establish the existence and approximate solutions for systems of non-linear variational
inequalities.

However, these sequential iterative methods are only suitable for implementing on the traditional single-processor
computer. They may not fully meet the practical demands of modern multiprocessor systems. To satisfy this practical
requirements of modern multiprocessor systems, efficient iterative methods having parallel characteristics need to be
further developed for the system of variational inequalities. In 2010, Yang et al. [9] introduced and studied the system
of nonlinear variational inequalities involving two different nonlinear operators. Using the parallel projection technique,
they suggested and analyzed an iterative method for this system of variational inequalities.

In 2009, Noor [10] introduced and studied the extended general variational inequality problem involving three non-
linear univariate strongly monotone operators and discuss the projection iterative method for solving extended general
variational inequality problem in [11]. In 2016, Noor et al. [12] presented an application wherein they demonstrated
that the optimality conditions of a nonconvex minimax problem can be analyzed through a system of extended general
variational inequalities involving six non-linear univariate strongly monotone operators. Furthermore, they utilized
an equivalent fixed point formulation to address this problem. In 2018, Kim [13] considered a system of extended
general variational inequalities featuring six nonlinear univariate operators. Specifically, he focused on relaxed cocoercive
operators, which are more generalized than strongly monotone operators, thereby expanding the analytical framework and
enhancing the versatility of the approach.

Motivated by above recent advancements in the field, we introduce and investigate a novel generalized system
of extended non-linear variational inequalities (GSENVI) by using k-steps Gauss-Seidel type iterative algorithm.
Specifically, our focus lies in establishing connections with 3k-distinct non-linear multivariate and univariate operators.
Notably, we explore the application of 3k-relaxed (r, s)-cocoercive operators, a more generalized class compared to
stronglymonotone operators. We go over how theGSENVI ismade up of several systems of variational inequalities aswell
as a class of variational inequalities as special cases. We give the equivalent form of GSENVI in a more convenient form
by using auxiliary principal technique. Through the projection technique, we show that the non-linear projection equations
are analogue to GSENVI. By the use of alternative fixed point formulations, we proposed the k-steps Gauss-Seidel type
iterative algorithm to obtain an approximate solution of the GSENVI. Further, we discuss the convergence of proposed
k-step Gauss Seidel type iterative algorithms. We have given an example in support of our main result. Importantly, our
work serves as an extension, refinement, and improvement of well-established results discussed in previous works such
as [10–13]. It is encouraged that those with an interest in the pure and applied sciences look for innovative, original, and
novel approaches to use variational inequalities and optimization problems. Researchers should also go in the direction
of implementing the novel approaches that are suggested in this work. The remaining part of this paper is organized as
follows.

In the next section, we will explore fundamental concepts and established findings necessary for our discussion
moving forward. We’ll also introduce the GSENVIP and discuss the special cases of the GSENVIP. In section 3, we will
concentrate on establishing the equivalence between GSENVIP and a fixed-point problem while also outlining iterative
algorithms designed to approximate solutions to GSENVIP. In the final section, we’ll furnish a proof of the existence of
solutions for GSENVIP and analyze the convergence criteria for sequences generated by the iterative algorithms outlined
earlier. Lastly, we’ll conclude the paper with a summary of our findings and potential implications.

Volume 5 Issue 3|2024| 3039 Contemporary Mathematics



2. Pertinent terminology and properties
Hereafter, we consider Z as a real Hilbert space and its norm and inner product are presented by ∥.∥ and ⟨., .⟩. Let

D be a closed and convex subset of real Hilbert space Z .
Let A , f , g : Z → Z be the non-linear operators, then a generalized extended variational inequality problem

(GEVIP, in short) is to find q∗ ∈ Z : g(q∗) ∈ D such that

⟨A (q∗), f (q)−g(q∗)⟩ ≥ 0, ∀ q ∈ Z , f (q) ∈ D . (1)

The GEVIP (1) is equivalent to a problem (2), which becomes more important in application point of view of finding
q∗ ∈ Z : g(q∗) ∈ D such that

⟨A (q∗)+g(q∗)− f (q∗), f (q)−g(q∗)⟩ ≥ 0, ∀ q ∈ Z , f (q) ∈ D . (2)

Lemma 2.1 [14] Let D be a closed and convex subset of Z . It is given p∗ ∈ Z , then q∗ ∈ D satisfies

⟨q∗− p∗, q−q∗⟩ ≥ 0, q ∈ D ,

iff q∗ = PD (p∗). Here PD is the projection operator from H onto D .
Nonexpansive is the well known property of projection operator PD , that is,

∥PD (q)−PD (q∗)∥ ≤ ∥q−q∗∥, ∀ q, q∗ ∈ Z .

Lemma 2.2 [10] The function q∗ ∈ Z : f (q∗) ∈ D is a solution of the GEVIP (2) if and only if q∗ ∈ Z : f (q∗) ∈ D

satisfies g(q∗) = PD [ f (q∗)−ηA q∗], where PD is the projection operator and η > 0 is a constant.
It is easy to show that q∗ is a solution of GEVIP (2) iff q∗ is a fixed point of I − g−PD [ f −ηA ], where I is the

identity mapping.
If f = g, then the GEVIP (2) is equivalent to find q∗ ∈ H : g(q∗) ∈ D such that

⟨A (q∗), g(q)−g(q∗)⟩ ≥ 0, ∀ q ∈ Z , g(q) ∈ D . (3)

If g = f = I, then GEVIP (3) coincides with (4) to find q∗ ∈ D as

⟨A (q∗), q−q∗⟩ ≥ 0, ∀q ∈ D . (4)

Problem (4) represents the classical variational inequality which was considered and studied by Stampacchia [15].
Definition 2.1 [6] Let us consider a non-linear operator A : Z → Z . Then:
(i) An operator A is called monotone if
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⟨A q1 −A q1∗, q1 −q1∗⟩ ≥ 0, ∀q1, q1∗ ∈ Z .

(ii) An operator A is called µ-strongly monotone if there exists non-negative µ as

⟨A q1 −A q1∗, q1 −q1∗⟩ ≥ µ∥q1 −q1∗∥2, ∀q1, q1∗ ∈ Z .

This implies that A is µ-expansive that is

∥A q1 −A q1∗∥ ≥ µ∥q1 −q1∗∥, ∀q1, q1∗ ∈ Z .

If µ = 1, then A is expansive.
(iii) An operator A is called t̄-Lipschitz continuous if there exists non-negative t̄ as

∥A q1 −A q1∗∥ ≤ t̄∥q1 −q1∗∥, ∀q1, q1∗ ∈ Z .

(iv) An operator A is called relaxed r̄-cocoercive if there exists non-negative r̄ as

⟨A q1 −A q1∗, q1 −q1∗⟩ ≥ −r̄∥A q1 −A q1∗∥2, ∀q1, q1∗ ∈ Z .

It is evident that every r̄-cocoercive operator A is
1
r̄
-Lipschitz continuous.

(v) An operator A is called relaxed (r̄, s̄)-cocoercive if there exist non-negative r̄, s̄ as

⟨A q1 −A q1∗, q1 −q1∗⟩ ≥ −r̄∥A q1 −A q1∗∥2 + s̄∥q1 −q1∗∥2, ∀q1, q1∗ ∈ Z .

If r̄ = 0, then A is s-strongly monotone. The class of relaxed (r̄, s̄)-cocoercive operators is more generalized than
the class of r̄-strongly monotone operators. It is easy to observe that the r̄-strong monotonicity implies the relaxed (r̄, s̄)-
cocoercitivity.

For each i ∈ {1, 2, ..., k}, let Ai : Z ×Z × ...×Z︸ ︷︷ ︸
(k times)

→ Z and fi, gi : Z → Z be 3k-distinct non-linear operators.

Then generalized system of extended non-linear variational inequalities problem (GSENVIP) is to find (q1, q2, ..., qk) ∈
Z ×Z × ...×Z︸ ︷︷ ︸

(k times)

: g1(q2) ∈ D1, g2(q3) ∈ D2, ..., gk−1(qk) ∈ Dk−1, gk(q1) ∈ Dk such that



⟨A1(q2, q3, ..., qk, q1), f1(q)−g1(q1)⟩ ≥ 0, ∀q ∈ Z , f1(q) ∈ D1,

⟨A2(q3, q4, ..., q1, q2), f2(q)−g2(q2)⟩ ≥ 0, ∀q ∈ Z , f2(q) ∈ D2,

:
:
⟨Ak(q1, q2, ..., qk−1, qk), fk(q)−gk(qk)⟩ ≥ 0, ∀q ∈ Z , fk(q) ∈ Dk.

(5)
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Now, we discuss some special cases of GSENVIP (5):
(I) If Ai for each i ∈ {1, 2}, is univariate non-linear mapping, then GSENVIP (5) reduces to extended general

variational inequality (6) with 6 non-linear operators to find q1q2 ∈ Z : f2(q2) ∈ D1, g2(q1) ∈ D2 such that

{
⟨A1(q1), f1(q)− f2(q2)⟩ ≥ 0, ∀q ∈ Z , f1(q) ∈ D1,

⟨A2(q2), g1(q)−g2(q1)⟩ ≥ 0, ∀q ∈ Z , g1(q) ∈ D2.
(6)

Problem (6) was studied by Noor et al. [12] and Kim [13].
(II) If f1 = g1 = f , f2 = g2 = g, D1 = D2 = D , is univariate non-linear mapping, then GSENVIP (5) reduces to

extended general variational inequality (7) with 4 non-linear operators to find q1q2 ∈ Z : g1(q2), g2(q1) ∈ D such that

{
⟨A1(q1), f (q)−g(q2)⟩ ≥ 0, ∀q ∈ Z , f (q) ∈ D ,

⟨A2(q2), f (q)−g(q1)⟩ ≥ 0, ∀q ∈ Z , f (q) ∈ D .
(7)

Problem (7) was studied by Noor et al. [12].
(III) If Ai is univariate non-linear mapping with Ai = A , Di = D for each i ∈ {1}, then GSENVIP (5) reduces to

extended general variational inequality (8) to find q1 ∈ Z : g(q1) ∈ D such that

⟨A1(q1), f (q)−g(q1)⟩ ≥ 0, ∀q ∈ Z , f (q) ∈ D . (8)

Problem (8) was studied by Noor et al. [10, 11].
Several new and well-known classes of variational inequalities can be obtained with proper operators and spaces

chosen. Regarding contemporary implementations, existence theory, iterative techniques, sensitivity analysis, and various
facets of problem (8), consult [10, 11, 16–31] and the references provided therein.

By the auxiliary principle technique of Glowinski and lions [32], as developed by Noor [10, 21], we can rewrite the
GSENVIP (5) equivalently to (9) to find (q1, q2, ..., qk) ∈Z ×Z × ...×Z︸ ︷︷ ︸

(k times)

: g1(q2) ∈D1, g2(q3) ∈D2, ..., gk−1(qk) ∈

Dk−1, gk(q1) ∈ Dk such that



⟨η1A1(q2, q3, ..., qk, q1)+g1(q1)− f1(q2), f1(q)−g1(q1)⟩ ≥ 0, ∀q ∈ Z , f1(q) ∈ D1,

⟨η2A2(q3, q4, ..., q1, q2)+g2(q2)− f2(q3), f2(q)−g2(q2)⟩ ≥ 0, ∀q ∈ Z , f2(q) ∈ D2,

:
:
⟨ηkAk(q1, q2, ..., qk−1, qk)+gk(qk)− fk(q1), fk(q)−gk(qk)⟩ ≥ 0, ∀q ∈ Z , fk(q) ∈ Dk,

for each ηi > 0, i ∈ {1, 2, ..., k}.

(9)

3. k-Steps gauss seidel type iterative algorithms
Here, we introduce a k-steps Gauss-Seidel type iterative algorithm to approximate the solution of the GSENVIP (9)

(12), utilizing its alternative fixed-point problem denoted by equation (13).
Lemma 3.1 The GSENVIP (5) has a solution (q1, q2, ..., qk) ∈ Z ×Z × ...×Z︸ ︷︷ ︸

(k times)

: g1(q2
0) ∈ D1 ⊂ f1(Z ), g1(Z ),
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g2(q3
0) ∈ D2 ⊂ f2(Z ), g2(Z ), ..., gk−1(qk

0) ∈ Dk−1 ⊂ fk−1(Z ), gk−1(Z ), gk(q1
0) ∈ Dk ⊂ fk(Z ), gk(Z ) iff, (q1, q2, ...,

qk) ∈ Z ×Z × ...×Z︸ ︷︷ ︸
(k times)

: g1(q2
0) ∈ D1, g2(q3

0) ∈ D2, ..., gk−1(qk
0) ∈ Dk−1, gk(q1

0) ∈ Dk satisfies the relations



g1(q1) = PD1 [ f1(q2)−η1A1(q2, q3, ..., qk, q1)],

gk(qk) = PDk [ fk(q1)−ηkAk(q1, q2, ..., qk−1, qk)],

:
:
g2(q2) = PD2 [ f2(q3)−η2A2(q3, q4, ..., q1, q2)],

for each ηi > 0, i ∈ {1, 2, ..., k}.

(10)

Proof. The first variaional inequity of (9) is can be written as

⟨η1A1(q2, q3, ..., qk, q1)+g1(q1)− f1(q2), f1(q)−g1(q1)⟩ ≥ 0, ∀q ∈ Z , f1(q) ∈ D1, η1 > 0.

By Lemma 2.1 and nonexpansive property of projection operator, the above inequality is equivalent to

g1(q1) = PD1 [ f1(q2)−η1A1(q2, q3, ..., qk, q1)], η1 > 0.

Similarly, the rest variational inequalities are equivalent to the following projection formula:

gk(qk) = PDk [ fk(q1)−ηkAk(q1, q2, ..., qk−1, qk)], ηk > 0,

:

g3(q3) = PD3 [ f3(q4)−η3A3(q4, q5, ..., q2, q3)], η3 > 0,

g2(q2) = PD2 [ f2(q3)−η2A2(q3, q4, ..., q1, q2)], η2 > 0.

This completes the proof of Lemma 3.1.
Lemma 3.1 allows us to give equivalent fixed point problems (10) corresponding to GSENVIP (9). This alternative

fixed point formulation (10) has significant theoretical and numerical implications. Using the formulations (10), we
propose few iterative algorithms. Now system (10) can be rewritten as:



q1 = (1− ε1
n )q

1 + ε1
n
{

q1 −g1(q1)+PD1 [ f1(q2)−η1A1(q2, q3, ..., qk, q1)]
}
,

qk = (1− ε1
n )q

k + εk
n
{

qk −gk(qk)+PDk [ fk(q1)−ηkAk(q1, q2, ..., qk−1, qk)]
}
,

:
:
q2 = (1− ε2

n )q
2 + ε2

n
{

q2 −g2(q2)+PD2 [ f2(q3)−η2A2(q3, q4, ..., q1, q2)]
}
,

(11)

for each ηi > 0, i ∈ {1, 2, ..., k}.
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Algorithm 3.1 For any (q1
0, q2

0, ..., qk
0)∈Z ×Z × ...×Z︸ ︷︷ ︸

(k times)

: g1(q2
0)∈D1, g2(q3

0)∈D2, ..., gk−1(qk
0)∈Dk−1, gk(q1

0)

∈ Dk, compute the sequences {q1
n+1}, {q2

n+1}, ..., {qk
n+1} by



q1
n+1 = (1− ε1

n )q
1
n + ε1

n{q1
n −g1(q1

n)+PD1 [ f1(q2
n)−η1A1(q2

n, q3
n, ..., qk

n, q1
n)]},

qk
n+1 = (1− ε1

n )q
k
n + εk

n
{

qk
n −gk(qk

n)+PDk [ fk(q1
n+1)−ηkAk(q1

n+1, q2
n, ..., qk−1

n , qk
n)]

}
,

:
:
q2

n+1 = (1− ε2
n )q

2
n + ε2

n
{

q2
n −g2(q2

n)+PD2 [ f2(q3
n+1)−η2A2(q3

n+1, q4
n, ..., q1

n, q2
n)]

}
,

(12)

where ηi > 0 and sequence ε i
n ∈ [0,1], i ∈ {1, 2, ..., k} for all n ≥ 0.

For each i ∈ {1, 2, ..., k}, let gi(qi) = PDi(z
i), where zi = fi(qi)− ηiAi(qi+1, qi+2, ..., qi). Then problem (13)

coincides with GSENVIP (9).
From Lemma 3.1, we can easily observed that, the GSENVIP (9) has a solution (q1, q2, ..., qk) ∈ Z ×Z × ...×Z︸ ︷︷ ︸

(k times)

with g1(q2
0) ∈ D1, g2(q3

0) ∈ D2, ..., gk−1(qk
0) ∈ Dk−1, gk(q1

0) ∈ Dk iff, (q1, q2, ..., qk) ∈ Z ×Z × ...×Z︸ ︷︷ ︸
(k times)

with g1(q2
0) ∈

D1, g2(q3
0) ∈ D2, ..., gk−1(qk

0) ∈ Dk−1, gk(q1
0) ∈ Dk satisfies the relations



g1(q1) = PD1(z
1),

gk(qk) = PDk(z
k),

:
:
g2(q2) = PD2(z

2),

z1 = f1(q2)−η1A1(q2, q3, ..., qk, q1),

zk = fk(q1)−ηkAk(q1, q2, ..., qk−1, qk),

:
:
z2 = f2(q3)−η2A2(q3, q4, ..., q1, q2),

(13)

for each ηi > 0, i ∈ {1, 2, ..., k}. Equivalent problem (13) can be utilize to suggest and analyze the following iteration
process to solve GSENVIP (9).

For each i ∈ {1, 2, ..., k}, let gi(qi) = PDi(z
i
n), where zi

n = fi(qi
n)−ηiAi(qi+1

n , qi+2
n , ..., qi

n). Then Algorithm 3.1
coincides with the Algorithm 3.2.

Algorithm3.2 For any (q1
0, q2

0, ..., qk
0)∈Z ×Z × ...×Z︸ ︷︷ ︸

(k times)

: g1(q2
0)∈D1, g2(q3

0)∈D2, ..., gk−1(qk
0)∈Dk−1, gk(q1

0)∈

Dk, compute the sequences {q1
n+1}, {q2

n+1}, ..., {qk
n+1} by
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

q1
n+1 = (1− ε1

n )q
1
n + ε1

n
{

q1
n −g1(q1

n)+PD1(z
1
n)
}
,

qk
n+1 = (1− ε1

n )q
k
n + εk

n
{

qk
n −gk(qk

n)+PDk(z
k

n)
}
,

:
:
q2

n+1 = (1− ε2
n )q

2
n + ε2

n
{

q2
n −g2(q2

n)+PD2(z
2
n)
}
,

z1
n = f1(q2

n)−η1A1(q2
n, q3

n, ..., qk
n, q1

n),

zk
n = fk(q1

n+1)−ηkAk(q1
n+1, q2

n, ..., qk−1
n , qk

n),

:
:
z2

n = f2(q3
n+1)−η2A2(q3

n+1, q4
n, ..., q1

n, q2
n),

(14)

where ηi > 0 and sequence ε i
n ∈ [0, 1], i ∈ {1, 2, ..., k} for all n ≥ 0.

Remark 1
1. For each i ∈ {1, 2}, let Ai be univariate mapping, then Algorithm 3.1 coincides with Algorithm 1 obtained by Kim

[13].
2. For each i∈{1, 2}, letAi be univariate andAi, fi, gi are stronglymonotonemappings, thenAlgorithm 3.1 coincides

with Algorithm 1 obtained by Noor et al. [12].
3. For each i ∈ {1}, let Ai is univariate and Ai, fi, gi are strongly monotone mappings, then Algorithm 3.1 coincides

with Algorithm 1 obtained by Noor et al. [10, 11].
Definition 3.1 A mapping A : Z ×Z × ...×Z︸ ︷︷ ︸

k times

→ Z

(i) is said to be β -strongly monotone in jth argument, if there exist non-negative β such that

〈
A

(
q1, ..., q j−1, q̃ j, q j+1, ..., qk

)
−A

(
q1∗, ..., q j−1∗, q̃ j∗, q j+1∗, ..., qk∗

)
, q̃ j − q̃ j∗

〉

≥ β
∥∥∥q̃ j − q̃ j∗

∥∥∥2
, ∀ q̃ j, q̃ j∗, q2, ..., qk, q2∗, ..., qk∗ ∈ Z .

(ii) is said to be relaxed (α, β )-cocoercive in jth argument, if there exist non-negative α, β such that

〈
A

(
q1, ..., q j−1, q̃ j,q j+1, ..., qk

)
−A

(
q1∗, ..., q j−1∗, q̃ j∗, q j+1∗, ..., qk∗

)
, q̃ j − q̃ j∗

〉

≥ −α
∥∥∥A

(
q1, ..., q j−1, q̃ j, q j+1, ..., qk

)
−A

(
q1∗, ..., q j−1∗, q̃ j∗, q j+1∗, ..., qk∗

)∥∥∥2
+β

∥∥∥q̃ j − q̃ j∗
∥∥∥2
,

∀ q̃ j, q̃ j∗, q2, ..., qk, q2∗, ..., qk∗ ∈ Z .

(iii) is said to be κ-Lipschitz continuous in jth argument, if there exists non-negative κ such that
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∥∥∥A
(

q1, ..., q j−1, q̃ j, q j+1, ..., qk
)
−A

(
q1∗, ..., q j−1∗, q̃ j∗, q j+1∗, ..., qk∗

)∥∥∥
≤ κ

∥∥∥q̃ j − q̃ j∗
∥∥∥, ∀ q̃ j, q̃ j∗, q2, ..., qk, q2∗, ..., qk∗ ∈ Z .

Lemma 3.2 [33] If {αn}∞
0 is a non-negative sequence satisfying the following inequality:

αn+1 ≤ (1−λn) αn +βn, ∀ n ≥ 0, (15)

with λn ∈ [0, 1], ∑∞
n=0 λn = ∞, and βn = o(λn). Then limn→∞ αn = 0.

4. Convergence analysis
In this section, we examine GSENVIP (9) and its equivalence to a system of fixed-point problems. This alternative

equivalent problem is employed to formulate iteration schemes for solving GSENVIP (9).
To simplify the computation steps easily, let us given the following equations which are used in Theorem 4.1,

Corollary 4.1 and Theorem 4.2.

A1 :



1−ν = ε1
n (k

∗
1 + k∗∗1 )≥ 0 such that ∑∞

n=0 ε1
n (k

∗
1 + k∗∗1 ) = ∞;

1− ε1 = (1− k1)ε1
n − (k∗k + k∗∗k )εk

n ≥ 0 such that ∑∞
n=0(1− k1)ε1

n − (k∗k + k∗∗k )εk
n = ∞;

1− ε2 = (1− k2)ε2
n ≥ 0 such that ∑∞

n=0(1− k2)ε2
n = ∞;

:
:
1− εk = (1− kk)εk

n − (k∗k−1 + k∗∗k−1)ε
k−1
n ≥ 0 such that ∑∞

n=0(1− kk)εk
n − (k∗k + k∗∗k )εk

n = ∞.

A2 :



u1∗ = (q1∗, q2∗, ..., qk∗), u1
n+1 = (q1

n+1, q2
n, ..., qk

n)

u2∗ = (q2∗, q3∗, ..., q1∗), u2
n+1 = (q2

n+1, q3
n, ..., q1

n)

:
:
uk∗ = (qk∗, q1∗, ..., q(k−1)∗), uk

n+1 = (qk
n+1, q1

n, ..., qk−1
n ).

We now examine the convergence analysis of the Algorithm 3.1 which is the core of our following result.
Theorem 4.1 For i∈ {1, 2, ..., k}, letAi : Z ×Z × ...×Z︸ ︷︷ ︸

k times

→Z be relaxed (αi, βi)-cocoercive and κi-Lipschitzian

in the first argument. Let fi, gi : Z → Z be relaxed (r̄i, s̄i)-cocoercive and t̄i-Lipschitzian, (ri, si)-cocoercive and ti-
Lipschitzian, respectively. If the following conditions (16)-(18) are satisfied with condition (A1):

ki = [1 + 2rit2
i −2si + t2

i ]
1/2 with 2si − (2rit2

i + t2
i )< 1; (16)

k∗i = [1 + 2ηiαiκ2
i −2ηiβi + η2

i κ2
i ]

1/2 with 0 < k′ < 1; (17)
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k∗∗i = [1 + 2r̄it̄2
i −2s̄i + t̄2

i ]
1/2 with 2s̄i − (2r̄it̄2

i + t̄2
i )< 1; (18)

and ε i
n ∈ [0, 1] for each i ∈ {1, 2, ..., k}, and n ≥ 0. Then sequences {q1

n}, {q2
n}, ..., {qk

n} generated from Algorithm 3.1
strongly converge to the solution (q1∗, q2∗, ..., qk∗) of GSENVIP (9).

Proof. Let (q1∗, q2∗, ..., qk∗) be the solution of GSENVIP (9). From (11), it follows that



q1∗ = (1− ε1
n )q

1∗+ ε1
n
{

q1∗−g1(q1∗)+PD1 [ f1(q2∗)−η1A1(u2∗)]
}
,

qk∗ = (1− ε1
n )q

k∗+ εk
n
{

qk∗−gk(qk∗)+PDk [ fk(q1∗)−ηkAk(u1∗)]
}
,

:
:
q2∗ = (1− ε2

n )q
2∗+ ε2

n
{

q2∗−g2(q2∗)+PD2 [ f2(q3∗)−η2A2(u3∗)]
}
,

for each ηi > 0, i ∈ {1, 2, ..., k}.

(19)

Using Algorithm 3.1 and Lemma 3.1, we obtain

∥q1
n+1 −q1∗∥= ∥(1− ε1

n )q
1
n + ε1

n
{

q1
n −g1(q1

n)+PD1 [ f1(q2
n+1)−η1A1(u2

n+1)]
}

− (1− ε1
n )q

1∗− ε1
n
{

q1∗−g1(q1∗)+PD1 [ f1(q2∗)−η1A1(u2∗)]
}
∥

≤ (1− ε1
n )∥q1

n −q1∗
n ∥+ ε1

n∥q1
n −q1∗− (g1(q1

n)−g1(q1∗))∥

+ ε1
n∥ f1(q2

n+1)− f1(q2∗)−η1(A1(u2
n+1)−η1A1(u2∗))∥

≤ (1− ε1
n )∥q1

n −q1∗∥+ ε1
n∥q1

n −q1∗− (g1(q1
n)−g1(q1∗))∥

+ ε1
n∥ f1(q2

n+1)− f1(q2∗)−η1(A1(u2
n+1)−A1(u2∗))∥

≤ (1− ε1
n )∥q1

n −q1∗∥+ ε1
n∥q2

n+1 −q2∗−η1(A1(u2
n+1)−A1(u2∗))∥

+ ε1
n∥q1

n −q1∗− (g1(q1
n)−g1(q1∗))∥+ ε1

n∥q2
n+1 −q2∗− ( f1(q2

n+1)− f2(q2∗)∥.

(20)

Since Ai is relaxed (αi, βi)-cocoercive as well as κi-Lipschitz continuous in the first argument for i = 1, then it
follows that

∥q2
n+1 −q2∗−η1(A1(u2

n+1)−A1(u2∗))∥2

= ∥q2
n+1 −q2∗∥2 −2η1⟨A1(u2

n+1)−A1(u2∗), q2
n+1 −q2∗⟩+ η2

1 ∥A1(u2
n+1)−A1(u2∗)∥2
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≤ ∥q2
n+1 −q2∗∥2 −2η1 [−α1∥A1(u2

n+1)−A1(u2∗)∥2 +β1∥q2
n+1 −q2∗∥2] + η2

1 ∥A1(u2
n+1)−A1(u2∗)∥2

≤ ∥q2
n+1 −q2∗∥2 +2η1α1κ2

1∥q2
n+1 −q2∗∥2 −2η1β1∥q2

n+1 −q2∗∥2 +η2
1 κ2

1∥q2
n+1 −q2∗∥2

= [1 + 2η1α1κ2
1 −2η1β1 + η2

1 κ2
1 ]∥q2

n+1 −q2∗∥2

= k∗1∥q2
n+1 −q2∗∥2,

(21)

where k∗1 is given by (17) for i = 1.
Since gi is relaxed (ri, si)-cocoercive as well as ti-Lipschitz continuous in the first argument for i = 1, then it follows

that

∥q1
n −q1∗− (g1(q1

n)−g1(q1∗))∥2 ≤ k1∥q1
n −q1∗∥, (22)

where k1 is given by (22) for i = 1.
Since fi is relaxed (r̄i, s̄i)-cocoercive as well as t̄i-Lipschitz continuous in the first argument for i = 1, then it follows

that

∥q2
n+1 −q2∗− ( f1(q2

n+1)− f1(q2∗))∥2 ≤ k∗∗1 ∥q2
n+1 −q2∗∥, (23)

where k∗∗1 is given by (18) for i = 1.
Using (21)-(23) in (20), we have

∥q1
n+1 −q1∗∥ ≤ [1− (1− k1)ε1

n ]∥q1
n −q1∗∥ + ε1

n (k
∗
1 + k∗∗1 )∥q2

n+1 −q2∗∥. (24)

In the light of (20), we have

∥q2
n+1 −q2∗∥= ∥(1− ε2

n )q
2
n + ε2

n
{

q2
n −g2(q2

n)+PD2 [ f2(q3
n)−η1A2(u3

n)]
}

− (1− ε2
n )q

2∗− ε2
n
{

q2∗−g2(q2∗)+PD2 [ f2(q3∗)−η2A2(u3∗)]
}
∥

≤ (1− ε2
n )∥q2

n −q2∗∥+ ε2
n∥q3

n −q3∗−η2(A2(u3
n)−A2(u3∗))∥

+ ε2
n∥q2

n −q2∗− (g2(q2
n)−g2(q2∗))∥+ ε2

n∥q3
n −q3∗− ( f2(q3

n)− f2(q3∗)∥.

(25)

Similarly using the given condition on gi, fi and Ai for i = 2, we have
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∥q3
n −q3∗−η1(A2(u3

n)−A2(u3∗))∥2 ≤ k∗2∥q3
n −q3∗∥2, (26)

where k∗2 is given by (17) for i = 2.

∥q2
n −q2∗− (g2(q2

n)−g2(q2∗))∥2 ≤ k2∥q2
n −q2∗∥, k2 given by (16) for i = 2. (27)

∥q3
n −q3∗− ( f2(q3

n)− f2(q3∗))∥2 ≤ k∗∗2 ∥q3
n −q3∗∥, (28)

where k∗∗2 is given by (18) for i = 2.
Using (26)-(27) in (25), we get

∥q2
n+1 −q2∗∥ ≤ [1− (1− k2)ε2

n ]∥q2
n −q2∗∥ + ε2

n (k
∗
2 + k∗∗2 )∥q3

n −q3∗∥. (29)

Now, we can compute the following (30) by using the above similar steps

∥qk
n+1 −qk∗∥ ≤ (1− εk

n)∥qk
n −qk∗∥+ εk

n∥qk
n −qk∗−ηk(Ak(u1

n)−Ak(u1∗))∥

+ εk
n∥qk

n −qk∗− (gk(qk
n)−gk(qk∗))∥+ εk

n∥q1
n −q1∗− ( fk(q1

n)− fk(q1∗)∥.
(30)

Similarly using the given conditions on gi, fi and Ai for i = k, we have

∥q1
n −q1∗−ηk(Ak(u1

n)−Ak(u1∗))∥2 ≤ k∗k∥qk
n −qk∗∥2, (31)

where k∗k is given by (18) for i = k.

∥qk
n −qk∗− (gk(qk

n)−gk(q2∗))∥2 ≤ kk∥qk
n −qk∗∥, kk given by (16) for i = k. (32)

∥q1
n −q1∗− ( fk(q1

n)− fk(qk∗))∥2 ≤ k∗∗k ∥q1
n −q1∗∥, k∗∗k given by (16) for i = k. (33)

Using (31)-(33) in (30), we get

∥qk
n+1 −qk∗∥ ≤ [1− (1− kk)εk

n ]∥qk
n −qk∗∥+ εk

n(k
∗
k + k∗∗k )∥q1

n −q1∗∥. (34)

We compute
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∥q1
n+1 −q1∗∥+∥q2

n+1 −q2∗∥+ ...+∥qk
n+1 −qk∗∥

≤ [1− (1− k1)ε1
n +(k∗k + k∗∗k )εk

n ]∥q1
n −q1∗∥

+[1− (1− k2)ε2
n ]∥q2

n −q2∗∥+(k∗1 + k∗∗1 )ε1
n∥q2

n+1 −q2∗∥

:

:

+[1− (1− kk)εk
n +(k∗k−1 + k∗∗k−1)ε

k−1
n ]∥q2

n −q2∗∥

∥q1
n+1 −q1∗∥+[1− ε1

n (k
∗
1 + k∗∗1 )]∥q2

n+1 −q2∗∥+ ...+∥qk
n+1 −qk∗∥

≤ [1− (1− k1)ε1
n +(k∗k + k∗∗k )εk

n ]∥q1
n −q1∗∥

+[1− (1− k2)ε2
n ]∥q2

n −q2∗∥

:

:

+[1− (1− kk)εk
n +(k∗k−1 + k∗∗k−1)ε

k−1
n ]∥q2

n −q2∗∥.

Thus, we have

∥q1
n+1 −q1∗∥+ν∥q2

n+1 −q2∗∥+ ...+∥qk
n+1 −qk∗∥

≤ max(ε1 + ε2 + ...+ εk)
{
|q1

n −q1∗∥+∥q2
n −q2∗∥+ ...+∥qk

n −qk∗∥
}

≤ ε
{
∥q1

n −q1∗∥+∥q2
n −q2∗∥+ ...+∥qk

n −qk∗∥
}
,

where

ν = 1− ε1
n (k

∗
1 + k∗∗1 )
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ε1 = 1− (1− k1)ε1
n +(k∗k + k∗∗k )εk

n

ε2 = 1− (1− k2)ε2
n

:

:

εk = 1− (1− kk)εk
n +(k∗k−1 + k∗∗k−1)ε

k−1
n

ε = max(ε1 + ε2 + ...+ εk).

From (16)-(18) and (A1), we can obtain ε < 1.
Using Lemma 3.2, we have

lim
n→∞

∥q1
n+1 −q1∗∥+ν∥q2

n+1 −q2∗∥+ ...+∥qk
n+1 −qk∗∥= 0. (35)

This implies that

lim
n→∞

∥q1
n+1 −q1∗∥= lim

n→∞
∥q2

n+1 −q2∗∥= ...= lim
n→∞

∥qk
n+1 −qk∗∥= 0. (36)

This completes the proof.
Remark 4.1
(i) For each i ∈ {1, 2} if Ai is univariate mapping then we can obtain the convergence result for GSENVIP (9) which

is equivalent to (6) by using Algorithms 3.1, studied in [12, 13].
(ii) For each i ∈ {1, 2} if fi = f and gi = g then we can obtain the convergence result for GSENVIP (9) which is

equivalent to (7) by using Algorithms 3.1, studied in [12].
(iii) For each i ∈ {1} if fi = f and gi = g, then we can obtain the convergence result for GSENVIP (9) which is

equivalent to (8) by using Algorithms 3.1, studied in [10, 11].
Corollary 4.1 For i ∈ {1, 2, ..., k}, let Ai : Z ×Z × ...Z︸ ︷︷ ︸

k times

→ Z be βi-strongly monotone and κi-Lipschitzian in the

first argument. Let fi, gi : Z →Z be s̄i-strongly monotone and t̄i-Lipschitzian, si-strongly monotone and ti-Lipschitzian,
respectively. If the following conditions (37)-(39) are satisfied with condition (A1):

ki = [1 −2si + t2
i ]

1/2 with 2si − t2
i < 1; (37)

k∗i = [1−2ηiβi + η2
i κ2

i ]
1/2 with 0 < k′i < 1; (38)
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k∗∗i = [1−2s̄i + t̄2
i ]

1/2 with 2s̄i − t̄2
i < 1; (39)

and ε i
n ∈ [0, 1] for each i ∈ {1, 2, ..., k} and n ≥ 0.
Then sequences {q1

n}, {q2
n}, ..., {qk

n} generated fromAlgorithm 3.1 strongly converges to the solution of (q1∗, q2∗, ...,

qk∗) of GSENVIP (9).
In Theorem 4.1, using Definition 2.1 (i) and (iii), we can choose αi = si = s̄i for each i ∈ {1, 2, ..., k} to obtain the

result of Corollary 4.1.
Theorem 4.2 For i∈ {1, 2, ..., k}, letAi : Z ×Z × ...×Z︸ ︷︷ ︸

k times

→Z be relaxed (αi, βi)-cocoercive and κi-Lipschitzian

in the first argument. Let fi, gi : Z → Z be relaxed (r̄i, s̄i)-cocoercive and t̄i-Lipschitzian, (ri, si)-cocoercive and ti-
Lipschitzian, respectively. If the following conditions (40)-(42) are satisfied with condition (A1):

ki = [1 + 2rit2
i −2si + t2

i ]
1/2 with 2si − (2rit2

i + t2
i )< 1; (40)

k∗i = [1 + 2ηiαiκ2
i −2ηiβi + η2

i κ2
i ]

1/2 with 0 < k∗ < 1; (41)

k∗∗i = [1 + 2r̄it̄2
i −2s̄i + t̄2

i ]
1/2 with 2s̄i − (2r̄it̄2

i + t̄2
i )< 1; (42)

and ε i
n ∈ [0, 1] for each i ∈ {1, 2, ..., k} and n ≥ 0.
Then iterative {q1

n}, {q2
n}, ..., {qk

n} generated fromAlgorithm 3.2 strongly converges to the solution (q1∗, q2∗, ..., qk∗)

of GSENVIP (9).
Proof. Let (q1∗, q2∗, ..., qk∗) be the solution of GSENVIP (9). From (13), It follows that



q1∗ = (1− ε1
n )q

1∗+ ε1
n
{

q1∗−g1(q1∗)+PD1(z
1∗)

}
,

qk∗ = (1− ε1
n )q

k∗+ εk
n
{

qk∗−gk(qk∗)+PDk(z
k∗)

}
,

:
:
q2∗ = (1− ε2

n )q
2∗+ ε2

n
{

q2∗−g2(q2∗)+PD2(z
2∗)

}
,

z1∗ = f1(q2∗)−η1A1(u2∗),

zk∗ = fk(q1∗)−ηkAk(u1∗),

:
:
z2∗ = f2(q3∗)−η2A2(u3∗),

for each ηi > 0, i ∈ {1, 2, ..., k}.

(43)

Using Algorithm 3.2 and (13), we get

∥z1
n − z1∗∥= ∥ f1(q2

n+1)−η1A1(u2
n+1)− f1(q2∗)+η1A1(u2∗)∥

≤ ∥q2
n+1 −q2∗−η1(A1(u2

n+1)−A1(u2∗))∥+∥q2
n+1 −q2∗− ( f1(q2

n+1)− f1(q2∗))∥.
(44)
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Using (21) and (23) in (44), we get

∥z1
n − z1∗∥ ≤ [k∗1 + k∗∗1 ]∥q2

n+1 −q2∗∥, (45)

where k∗1, k∗∗1 are given by (41), (42) for i = 1.

∥q1
n+1 −q1∗∥= (1− ε1

n )∥q1
n −q1∗∥+ ε1

n∥q1
n −q1∗− (g1(q1

n)−g1(q1∗))∥+ ε1
n∥PD1(z

1
n)−PD1(z

1∗)∥. (46)

Using (22), (45) in (46), we get

∥q1
n+1 −q1∗∥ ≤ [1− (1− k1)ε1

n ]∥q1
n −q1∗∥+ ε1

n [k
∗
1 + k∗∗1 ]∥q2

n+1 −q2∗∥. (47)

Using Algorithm 3.2 and (13) to evaluate the following

∥z2
n − z2∗∥ = ∥ f2(q3

n)−η2A2(u3
n)− ( f2(q3∗)−η2A2(u3∗))∥ (48)

≤ ∥q3
n −q3∗−η2(A2(u3

n)−A2(u3∗))∥+∥q3
n −q3∗− ( f2(q3

n)− f2(q3∗))∥. (49)

Using (26), (27) in (48), we get

∥z2
n − z2∗∥ ≤ [k∗2 + k∗∗2 ]∥q3

n −q3∗∥, (50)

where k∗2, k∗∗2 are given by (41), (42) for i = 2.

∥q2
n+1 −q2∗∥ ≤ (1− ε2

n )∥q2
n −q2∗∥+ ε2

n∥q2
n −q2∗− (g2(q2

n)−g2(q2∗))∥+ ε2
n∥PD2(z

2
n)−PD2(z

2∗)∥. (51)

Using (26), (50) in (51), we get

∥q2
n+1 −q2∗∥ ≤ [1− (1− k2)ε2

n ]∥q2
n −q2∗∥+ ε2

n [k
∗
2 + k∗∗2 ]∥q3

n −q3∗∥. (52)

Through this similar process, we can evaluate

∥zk
n − zk∗∥= ∥ fk(q1

n)−ηkAk(u1
n)− ( fk(q1∗)−η2Ak(u1∗))∥

≤ ∥q1
n −q1∗−ηk(Ak(u1

n)−Ak(u1∗))∥

+∥q1
n −q1∗− ( fk(q1

n)− fk(q1∗))∥.

(53)
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Using (31), (33) in (53), we get

∥zk
n − zk∗∥ ≤ [k∗k + k∗∗k ]∥qk

n −qk∗∥, where k∗k , k∗∗k are given by (41), (42) for i = k. (54)

∥qk
n+1 −qk∗∥ ≤ (1− εk

n)∥qk
n −qk∗∥+ εk

n∥qk
n −qk∗− (gk(qk

n)−gk(qk∗))∥+ ε2
n∥PD2(z

k
n)−PD2(z

k∗)∥. (55)

Using (32), (54) in (55), we get

∥qk
n+1 −qk∗∥ ≤ [1− (1− kk)εk

n ]∥qk
n −qk∗∥+ εk

n [k
∗
k + k∗∗k ]∥q1

n −q1∗∥ (56)

Now, we compute

∥q1
n+1 −q1∗∥+∥q2

n+1 −q2∗∥+ ...+∥qk
n+1 −qk∗∥

≤ [1− (1− k1)ε1
n +(k∗k + k∗∗k )εk

n ]∥q1
n −q1∗∥

+[1− (1− k2)ε2
n ]∥q2

n −q2∗∥+(k∗1 + k∗∗1 )ε1
n∥q2

n+1 −q2∗∥

:

:

+[1− (1− kk)εk
n +(k∗k−1 + k∗∗k−1)ε

k−1
n ]∥q2

n −q2∗∥

∥q1
n+1 −q1∗∥+[1− ε1

n (k
∗
1 + k∗∗1 )]∥q2

n+1 −q2∗∥+ ...+∥qk
n+1 −qk∗∥

≤ [1− (1− k1)ε1
n +(k∗k + k∗∗k )εk

n ]∥q1
n −q1∗∥+[1− (1− k2)ε2

n ]∥q2
n −q2∗∥

:

:

+[1− (1− kk)εk
n +(k∗k−1 + k∗∗k−1)ε

k−1
n ]∥q2

n −q2∗∥.

Thus, we have
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∥q1
n+1 −q1∗∥+ν∥q2

n+1 −q2∗∥+ ...+∥qk
n+1 −qk∗∥

≤ max(ε1 + ε2 + ...+ εk)
{
|q1

n −q1∗∥+∥q2
n −q2∗∥+ ...+∥qk

n −qk∗∥
}

≤ ε
{
∥q1

n −q1∗∥+∥q2
n −q2∗∥+ ...+∥qk

n −qk∗∥
}
,

where

ν = 1− ε1
n (k

∗
1 + k∗∗1 )

ε1 = 1− (1− k1)ε1
n +(k∗k + k∗∗k )εk

n

ε2 = 1− (1− k2)ε2
n

:

:

εk = 1− (1− kk)εk
n +(k∗k−1 + k∗∗k−1)ε

k−1
n

ε = max(ε1 + ε2 + ...+ εk).

From (40)-(42) and (A1), we can obtain ε < 1. Using Lemma 2.2, we have

lim
n→∞

∥q1
n+1 −q1∗∥+ν∥q2

n+1 −q2∗∥+ ...+∥qk
n+1 −qk∗∥= 0. (57)

This implies that

lim
n→∞

∥q1
n+1 −q1∗∥= lim

n→∞
∥q2

n+1 −q2∗∥= ...= lim
n→∞

∥qk
n+1 −qk∗∥= 0. (58)

This completes the proof.
In support of Theorem 4.1, we construct the following example:
Example 4.1 Let Z = R with usual inner product and norm. Let k = 3 and f1, f2, f3, g1, g2, q3 : R→ R, are given

by
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f1(q) =
3q
4
, f2(q) =

3q
5
, f3(q) =

4q
5
, ∀q ∈ R,

g1(q) =
3q
7
, g2(q) =

4q
7
, g3(q) =

2q
3
, ∀q ∈ R.

Assume that Ai : R×R×R→ R is defined by

A1(q1, q2, q3) =
q1

3
+q2 +q3,

A1(q1, q2, q3) = q1 +
q2

3
+q3,

A1(q1, q2, q3) = q1 +q2 +
q3

3
∀q ∈ R.

Now, it is easy to show that

〈
A1(q1, q2, q3)−A1(q̂1, q̂2, q̂3), q1 − q̂1

〉
≥−1

4

∥∥∥A1(q1, q2, q3)−A1(q̂1, q̂2, q̂3)
∥∥∥2

+
1
5

∥∥∥q1 − q̂2
1

∥∥∥2
.

Then it is obvious that, A1 is
(1

4
,

1
5

)
-relaxed cocoercive in first argument. Similarly, we can show that, A2, A3 are

also
(1

4
,

1
5

)
-relaxed cocoercive in second and third arguments, respectively.

∥∥∥A1(q1, q2, q3)−A1(q̂1, q̂2, q̂3)
∥∥∥=

1
3
∥q1 − q̂1∥ ≤

2
5
∥q1 − q̂1∥2.

Therefore, A1 is
2
5
-Lipschitz continuous in first argument. Similarly, we can show that A2, A3 are also

2
5
,

2
5
-

Lipschitz continuous in the second and third arguments, respectively.
It is easy to show that

〈
f1(q)− f1(q̂), q− q̂

〉
≥− 1

10

∥∥∥ f1(q)− f1(q̂)
∥∥∥2

+
1
2

∥∥∥q1 − q̂1

∥∥∥2
,

∥∥∥ f1(q)− f1(q̂)
∥∥∥=

3
4

∥∥∥q1 − q̂1

∥∥∥≤ 6
7

∥∥∥q1 − q̂1

∥∥∥.
Therefore, f1 is

( 1
10

,
1
2

)
-relaxed cocoercive and

6
7
-Lipschitz continuous. Similarly, we can show that f2 is

(1
8
,

1
3

)
-

relaxed cocoercive and
2
3
-Lipschitz continuous, and f3 is

(1
7
,

1
2

)
-relaxed cocoercive and

8
9
-Lipschitz continuous.
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In this sequence, we can also show that g1 is
(1

2
,

1
3

)
-relaxed cocoercive and

6
13

-Lipschitz continuous, g2 is
(1

4
,

1
3

)
-

relaxed cocoercive and
8
13

-Lipschitz continuous, and g3 is
(1

5
,

1
2

)
-relaxed cocoercive and

4
5
-Lipschitz continuous.

(
α1, β1

)
=
(1

4
,

1
5

)
,
(

α2, β2

)
=
(1

4
,

1
5

)
,
(

α3, β3

)
=
(1

4
,

1
5

)
, κ1 =

2
5
, κ2 =

2
5
, κ3 =

2
5
,

(
r̄1, s̄1

)
=
( 1

10
,

1
2

)
,
(

r̄2, s̄2

)
=
(1

8
,

1
3

)
,
(

r̄3, s̄3

)
=
(1

9
,

1
2

)
, t̄1 =

6
7
, t̄2 =

2
3
, t̄3 =

8
9
,

(
r1, s1

)
=
(1

2
,

1
3

)
,
(

r2, s2

)
=
(1

4
,

1
3

)
,
(

r3, s3

)
=
(1

5
,

1
2

)
, t1 =

6
13

, t2 =
8
13

, t3 =
4
5
,

η1 = η2 = η3 = 1, ε1 = 0.1, ε2 = 0.2, ε3 = 0.

In view of constants computed above, all the constants referenced in the conditions of Theorem 4.1 have been
computed subsequently.

k1 = [1 + 2r1t2
1 −2s1 + t2

1 ]
1/2 = 0.866 with 2s1 − (2r1t2

1 + t2
1 )< 1;

k2 = [1 + 2r2t2
2 −2s2 + t2

2 ]
1/2 = 0.948 with 2s2 − (2r2t2

2 + t2
2 )< 1;

k3 = [1 + 2r3t2
3 −2s3 + t2

3 ]
1/2 = 0.888 with 2s3 − (2r3t2

3 + t2
3 )< 1;

k∗1 = [1 + 2η1α1κ2
1 −2η1β1 + η2

1 κ2
1 ]

1/2 = 0.875 with 0 < k∗1 < 1;

k∗2 = [1 + 2η2α2κ2
2 −2η2β2 + η2

2 κ2
2 ]

1/2 = 0.875 with 0 < k∗2 < 1;

k∗3 = [1 + 2η3α3κ2
3 −2η3β3 + η2

3 κ2
3 ]

1/2 = 0.875 with 0 < k∗3 < 1;

k∗∗1 = [1 + 2r̄1t̄2
1 −2s̄1 + t̄2

1 ]
1/2 = 0.937 with 2s̄1 − (2r̄1t̄2

1 + t̄2
1 )< 1;

k∗∗1 = [1 + 2r̄2t̄2
2 −2s̄2 + t̄2

2 ]
1/2 = 0.940 with 2s̄2 − (2r̄2t̄2

2 + t̄2
2 )< 1;

k∗∗1 = [1 + 2r̄3t̄2
3 −2s̄3 + t̄2

3 ]
1/2 = 0.950 with 2s̄i − (2r̄3t̄2

3 + t̄2
3 )< 1.

Thus, all the conditions of Theorem 4.1 are satisfied and hence in view of Theorem 4.1, there exists a solution of
generalized variational inclusion problem (4.1).
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5. Conclusions
The present article described the generalized system of extended non-linear variational inequalities, GSENVI (5) and

shown that it is also given as GSENVI (9) by using the auxiliary principal technique of Glowinski and Lions [32]. We
designed the Gauss-seidel type terative Algorithm 3.1 by using the alternative fixed point problem (10) which is equivalent
to GSNEVIP (9). In support of our main rsult Theorem 4.1, we have constructed an example to show the existence of
solution of GSENVIP (9). It should be emphasized that Theorems 4.1-4.2 and Corollary 4.1 extended, enriched, improved,
unified and modified numerous preceding findings in the following ways:
·By substituting i = 1, 2, and Ai being univariate then GSENVIP (9) convert to a system of extended general

variational inequalities with six non-linear operators. Consequently, Algorithm 3.1, Algorithm 3.2 are transformed to
Algorithm 1 and Algorithm 2, respectively, while and Theoorem 4.1 and Theorem 4.2 transformed to Theorem 1 and
Theorem 2, respectively, as studied by Kim [13].
·If i = 1, 2, and Ai, gi, fi be univariate and strongly monotone then GSENVIP (9) involves six non-linear operators.

Consequently, Algorithm 3.1, Algorithm 3.2 are transformed to Algorithm 1 and Algorith 5, respectively, while and
Theoorem 4.1 and Theorem 4.2 transformed to Theorem 1 and Theorem 6, respectively, as studied by Noor et al. [12].

·If i = 1, and Ai, gi, fi be univariate and strongly monotone then GSENVIP (9) convert to extended general
variational inequalities characterized by 3 non-linear operators. One can get the results of Noor [10].

·The nonconvex minimax problem can be characterized by a system of extended general variational inequalities
of the type GSENVIP (5) as discussed in [12]. Utilizing the Gauss-Seidel iterative method, we approximate the solution
to GSENVIP (5), which in turn approximates the solution to the nonconvex minimax problem. Thus underline algorithm
would be adapted to solve optimization problems, such as minimizing or maximizing objective functions subject to
constraints. This is valuable in operations research, logistics, and machine learning, among other areas.

However, it is crucial to emphasize that the implementation of these algorithms and their comparison with alternative
techniques require further investigation. This research serves as a stepping stone, and we believe that the encouragement
of additional studies in this domain will contribute to the ongoing advancement of knowledge.
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