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the existing literature.

Keywords: metric type space, fixed point, wb-distance, multivalued contraction

MSC: 47H09, 54H25

1. Introduction
Introducing the notion of multivalued contractions via Hausdorff metric, Nadler [1] has presented a multivalued

version of the well-known Banach Contraction Principle (BCP). Since then, a number of extensions of this interesting
result have been appeared. It is worth to mention that many of these results can be extended to various cases without
relying on the Hausdorff metric; see [2–4], and others.

The classical metric space has been studied and extended by a number of authors via significant modifications to
the metric axioms. Specifically, the concept of a metric type (or b-metric) space represents a valuable extension of the
classical metric space. In fact, this idea initially explored by Bakhtin [5], and later refining the idea of b-metric, Czerwik
[6] studied some basic fixed point results including the BCP. In this direction much work has been on the existence of
fixed points for contraction type mappings; see [7–9] and some other related references [10–13].

In [14], Kada et al. introduced the idea of w-distance on metric spaces and then improve some known result. In
[15], Suzuki and Takahashi proposed the concepts of singlevalued and multivalued weakly contractive mappings with
respect to w-distance, and then extended a number of classical fixed point results in this context including BCP and
Nadler fixed point result. Subsequently, much work of a significant quality has been done in this area; see [16–18] and
references therein. Hussain et al. defined the wt-distance on metric type spaces and proved certain fixed point results for
singlevalued mappings via wt-distance. For further research work in this area, see [9, 19–21] and others.
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In this paper, using the concept of wb-distance, we first establish key lemmas and then present some new results on
the existence of fixed point for some multivalued contractive type mappings involving general conditions. Two nontrivial
examples are included. Our results either generalize or improve a number of fixed point results including the corresponding
results of Feng and Liu [3], Klim and Wardowski [4], Ciric [2, 22], Latif and Abdou [23, 24], Liu et al. [17, 25, 26] and
Latif et al. [27, 28].

2. Materials and methods
Before presenting our main results, we recall some useful notations, concepts, and facts. In this section, we

consider X is a metric space with the metric d, otherwise stated. We denote 2X = {E ⊂ X : E ̸= /0}, C(X) = {E ⊂
X : E is non-empty and closed}, CB(X) = {E ⊂ X : E is non-empty closed and bounded}. For any L, Z ∈CB(X), define

H(L, Z) = max{sup
s∈L

d(s, Z), sup
z∈Z

d(z, L)},

where d(s, Z) = inf
z∈Z

d(s, z). It is known that H is a metric on CB(X), referred to as the Hausdorff metric.

A multivalued mapping T : X → 2X is called multivalued contraction if for any s, z of X , H(T (s), T (z))≤ ad(s, z),
for a fixed a ∈ (0, 1). An element s ∈ X is called a fixed point of T if s in T (s). The set of all fixed points of T will be
denoted by Fix(T ). A sequence {sn} in X is called an orbit of T at s0 ∈ X if sn ∈ T (sn−1) for all n ≥ 1. A map f : X →R
is said to be lower semi-continuous if, for any sequence {sn} ⊂ X with sn → s ∈ X , imply that f (s) ≤ liminf

n→∞
f (sn). We

denote R+ = [0, ∞).
Using the concept of Hausdorff metric, Nadler [1] established the following multivalued version of the Banach

Contraction Principle.
Theorem 1 [1] For a complete metric space X , each multivalued contraction mapping T from X into CB(X) has a

fixed point.
In [29], Mizoguchi and Takahashi generalized Theorem 1 as follows.
Theorem 2 [29] Let T be a closed and bounded valued mapping on X . Assume that X is complete and for all s, z of

X , H(T (s), T (z))≤ ψ(d(s, z))d(s, z), where ψ: R+ → [0, 1) with limsup
ν→t+

ψ(ν)< 1 for every t ∈ R+. Then Fix(T ) ̸= /0.

Without using the Hausdorff metric, Feng and Liu [3] generalized Theorem 1 as follows.
Theorem 3 [3] Let T be a closed valued mapping on X and let h be a lower semi-continuous function on X with

h(s) = d(s, T (s)). Assume that X is complete and for each s of X and for fixed constants c, a ∈ (0, 1) with, c < a there
is z of Is

a = {z ∈ T (s): ad(s, z)≤ h(s)} such that h(z)≤ cd(s, z). Then Fix(T ) ̸= /0.
Later, Klim and Wardowski [4] obtained the following result which contains Theorem 3.
Theorem 4 [4] Let T be a closed valued mapping on X and let h be a lower semi-continuous function on X with

h(s) = d(s, T (s)). Assume that X is complete and for each s of X and for a fixed constant a ∈ (0, 1) there is z ∈ Is
a such

that h(z)≤ ψ(d(s, z))d(s, z), where ψ: R+ → [0, a) with limsup
ν→t+

ψ(ν)< a for every t ∈ R+. Then Fix(T ) ̸= /0.

In [22], Ciric established a more general fixed point results as follows.
Theorem 5 [22] Let T be a closed valued mapping on X and let h be a lower semi-continuous function on X with

h(s) = d(s, T (s)). Assume that X is complete and for each s of X there is z of T (s) such that

√
φ(d(s, z)) d(s, z)≤ h(s) and h(z)≤ φ(d(s, z)) d(s, z), (1)

where φ is a function from R+ to [c, 1), c ∈ (0, 1) with limsup
ν→t+

φ(ν)< 1, t ≥ 0. Then Fix(T ) ̸= /0.
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Remark 1 Note that Theorem 4 generalizes Theorem 1 and Theorem 3. In [4], Klim and Wardowski pointed out
that their Theorem 4 do not generalize Theorem 2. However, Theorem 5 generalized all the above mentioned fixed point
results.

Theorem 6 [22] Let T be a closed valued mapping on X and let h be a lower semi-continuous function on X with
h(s) = d(s, T (s)). Assume that X is complete and for each s of X there is z of T (s) such that

√
φ(h(s)) d(s, z)≤ h(s) and h(z)≤ φ(h(s)) d(s, z), (2)

where φ is a function from R+ to [c, 1), c ∈ (0, 1) with limsup
ν→t+

φ(ν)< 1, t ≥ 0. Then Fix(T ) ̸= /0.

In [26], Liu et al. extended Theorem 6 and Theorem 3 as follows.
Theorem 7 [26] Let T be a closed valued mapping on X and let h be a lower semi-continuous function on X with

h(s) = d(s, T (s)). Assume that X is complete and for each s of X there is z of T (s) satisfying

α(h(s))d(s, z)≤ h(s) and h(z)≤ β (h(s)) d(s, z), (3)

where

α: B → (0, 1], β : B → [0, 1) with B =


[0, suph(X)] if suph(X)< ∞

[0, ∞) if suph(X) = ∞

such that for all t ∈ B

liminf
ν→0+

α(ν)> 0 and limsup
ν→t+

β (ν)
α(ν)

< 1.

Then Fix(T ) ̸= /0.
Kada et al. [14], introduced the concept of w-distance on metric spaces as follows.
A function p: X ×X → R+ is called a w-distance on X if it satisfies the following conditions for each s, z, u ∈ X :
(i) p(s, u)≤ p(s, z)+ p(z, u);
(ii) the function p(s, ·): X → R+ is lower semi-continuous (that is, if a sequence {zn} in X with zn → z ∈ X , then

p(s, z)≤ liminf
n→∞

p(s, zn));
(iii) for any ε > 0, there exists δ > 0 such that p(u, s)≤ δ and p(u, z)≤ δ imply d(s, z)≤ ε .
Clearly, any metric d is a w-distance on X . Let (M, ∥·∥) be a normed space. Then, the functions p1, p2: M×M →R+

defined by p1(u, v) = ∥v∥ and p2(u, v) = ∥u∥+∥v∥ for all u, v ∈ M are w-distances [14]. Let Z be a metric space, and let
T : Z → Z be a continuous map. The function p: Z ×Z → R+ defined by p(u, v) =max{d(T (u), v), d(T (u), T (v))} for
all u, v ∈ Z is a w-distance [14]. For further examples and properties of w-distance, we refer [14].

Kada et al. [14] improved certain standard conclusions in metric fixed point theory by using the notion of the w-
distance. While, Susuki and Takahashi [15] presented fixed point results for singlevalued and multivalued contractive
type mappings with respect to w-distance and consequently extended the Nadler fixed point result and BCP. In the existing
literature, a number of known metric fixed point results have been generalized with respect to w-distance.

In [24], Latif and Abdou improved Theorem 6 [22, Theorem 2.1] as follows.
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Theorem 8 [24] Let p be a w-distance on a complete metric space X and T be a closed valued mapping on X .
Assume that h is lower semi-continuous function on X , defined by h(s) = p(s, T (s)) and for each s of X there is z of T (s)
with

√
φ(h(s)) p(s, z)≤ h(s) and h(z)≤ φ(h(s)) p(s, z), (4)

where φ is a function from R+ to [c, 1), c ∈ (0, 1) with limsup
ν→t+

φ(ν) < 1, t ≥ 0. Then there exists z0 ∈ X such that

h(z0) = 0. Further, if p(z0, z0) = 0, then z0 ∈ T (z0).
Further results in this direction can be founded in [16–18, 25].
In [6, 8] Czerwik introduced the following notion of metric type or (b-metric) space.

Let X be a nonempty set, b ≥ 1 and Db: X ×X → R+ be a function satisfying the following conditions for all s, z, u ∈ X :
(i) Db(s, z) = 0 if and only if s = z;
(ii) Db(s, z) = Db(z, s);
(iii) Db(s, z)≤ b[Db(s, u)+Db(u, z)].
Then Db is called a b-metric on X , and (X , Db) is called a b-metric space (also known as a metric type space [9]). In

the sequel, we also call it a metric type space. Note that, every metric space is a metric type space but the converse may
not be true, see [5, 6, 30]. Thus, the family of metric type spaces contains the family of metric spaces.

Example 1 [5] If X = [0, 1] and a function Db: X ×X →R+, defined by Db(s, z) = (s− z)2, for any s, z ∈ X . Then
(X , Db) is a metric type space with b = 2, but it is not a metric space.

For further details of metric type spaces, see [6]. Contrarily to the metric, metric type Db may not be continuous in
each variable, in general; see [31] (Examples 3.9 and 3.10). But, it has been observed that a topology can be defined with
convergence on such spaces [31]. A set M in (X , Db) is called open if and only if for any s of M, there is a positive number
ς such that the open ball Bo(s, ς) is contained in M. We denote τ as a collection of all open subsets of X , which becomes a
topology on (X , Db). For metric type spaces, the notions of convergence sequence, Cauchy sequence, etc can be defined
usual way as of metric spaces, see [7, 9, 30, 32, 33]. Further, any M ̸= /0 of X is closed provided any sequence {sn} in M
converging to s, implies s ∈ M, see [9]. Also, recall that a real-valued function h on X is b-lower semi-continuous if for
any sequence {sn} in X with sn → s ∈ X , then h(s)≤ liminf

n→∞
(bh(sn)).

The following basic results for metric type spaces are useful.
Lemma 1 [8] If M is a closed set of (X , Db) and s ∈ X . Then Db(s, M) = 0 ⇔ s ∈ M = M, where Db(s, M) =

inf{Db(s, z): z ∈ M}, and M is the closure of the set M.
Lemma 2 [34] Let (X , Db) be a metric type space and let {zn} be a sequence in X . Assume that there exists

a ∈ [0, 1) satisfying Db(zn+1, zn+2)≤ aDb(zn, zn+1) for any n ∈ N. Then {zn} is Cauchy.
Applying Lemma 2, Suzuki [34] established a general fixed point result for multivalued mappings of metric type

spaces and then deduced classical fixed point results due to Nadler [1] and Mizoguchi and Takahashi [29].
Motivated by the work of Kada et al. [14], Hussain et al. [30] defined w-distance on metric type spaces, called it

wt-distance (in the sequel, we call it wb-distance).
Let (X , Db) be a metric type space. A function pb: X ×X →R+ is calledwb-distance on X , if it satisfies the following

conditions for any s, z, u ∈ X :
(i) the b-weighted triangle inequality holds (that is, pb(s, u)≤ b [pb(s, z)+ pb(z, u)]);
(ii) the function pb(s, ·): X → R+ is b-lower semi-continuous (that is for any sequence {sn} in X with sn → x ∈ X ,

then pb(s, x)≤ liminf
n→∞

(b pb(s, sn)));
(iii) for any ε > 0, there exists δ > 0 such that pb(u, s)≤ δ and pb(u, z)≤ δ yield Db(s, z)≤ ε .
Note that for b = 1, each wb-distance reduces to the w-distance.
Example 2 [30] LetX =R (the set of reals) andDb(u, v)= (u−v)2, u, v∈X . Then, the functions pb1 , pb2 : X×X →

R+ defined by pb1(u, v) = |u|2 + |v|2 and pb2(u, v) = |v|2 for every u, v ∈ X are wb-distances on X .
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Several examples of wb-distances may be found in [30, 32, 35]. It has been observed that each metric type Db is a
wb-distance but the converse may not be true, in general [35]. The wb-function pb induces via natural way a topology
τ(pb) on X which can be constructed, as metric type case; that is τ(pb) is collection of all sets in X which contains some
open ball Bp(x, η) of X with respect to pb, where Bp(x, η) = {y ∈ X : pb(x, y) < η}. Finally, due to uniformity τ(pb)

turns out a metrizable topology. For further facts concerning wb-function, see [21, 30, 32, 33, 35].
The following results concerning convergence and Cauchy sequences via wb-distance, play important roles for the

proof of our main results.
Lemma 3 [30] Let (X , Db) be a metric type space, and let pb be awb−distance on X . Let {sn} and {zn} be sequences

in X . Let {αn} and {βn} be sequences in R+ converging to zero. Then the following hold for any s, z, u ∈ X :
(a) if pb (sn, z)≤ αn and pb (sn, u)≤ βn for any n ∈N, then z = u. In particular, if pb(s, z) = 0 and pb(s, u) = 0, then

z = u;
(b) if pb (sn, zn)≤ αn and pb (sn, u)≤ βn for any n ∈ N, then Db (zn, u)→ 0;
(c) if pb (sn, sm)≤ αn for any n, m ∈ N with m > n, then {sn} is a Cauchy sequence;
(d) if pb (z, sn)≤ αn for any n ∈ N, then {sn} is a Cauchy sequence.
Lemma 4 [21] Let A be a closed subset of a metric type space (X , Db), and let pb be a wb-distance on X . Suppose

that there exists u ∈ X such that pb(u, u) = 0. Then pb(u, A) = 0 ⇔ u ∈ A, where pb(u, A) = inf{pb(u, v): v ∈ A}.
Let (X , Db) be a metric type space, T : X →C(X) and h(u) = pb(u, T (u)), u ∈ X . We denote diameter of the space

X with diam(X) = sup{pb(s, z): s, z ∈ X}, also we define

Apb =

{
[0, diam(X)] if diam(X)< ∞
[0, ∞) if diam(X) = ∞

and

Bpb =

{
[0, suph(X)] if suph(X)< ∞
[0, ∞) if suph(X) = ∞

.

3. Results
Throughout this section, (X , Db) is a metric type space and pb is a wb-distance on X . In this section, we present our

results on the existence of fixed points and iterative approximations for nonlinear multivalued contractive type mappings
with respect to wb-distance on metric type spaces.

First, we prove key lemmas in the setting of metric type spaces.
Lemma 5 Consider a mapping T : X → C(X) with a non-negative real-valued function h on X defined by h(s) =

pb(s, T (s)). Assume that the following conditions hold: for any s ∈ X , there is z ∈ T (s) satisfying

α(h(s)) φ(pb(s, z))≤ h(s) and h(z)≤ β (h(s)) ψ(pb(s, z)), (5)

where α and β are functions from Bpb into (0, 1] and [0, 1), respectively, with

β (0)< α(0), liminf
ν→0+

α(ν)> 0, limsup
ν→t+

β (ν)
α(ν)

< 1, ∀ t ∈ Bpb and ψ(t)≤ φ(t), ∀ t ∈ Apb , (6)
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where φ and ψ are functions from Apb into R+. Then, there exists an orbit {sn} of T in X such that the sequence of
non-negative real numbers {h(sn)} is strictly decreasing to zero.

Proof. Put γ(t) = β (t)
α(t) for all t ∈ Bpb . Note that

0 ≤ γ(t)< 1, ∀ t ∈ Bpb . (7)

For any fixed element s0 of X , there is s1 ∈ T (s0) satisfying

α (h(s0))φ (pb (s0, s1))≤ h(s0) and h(s1)≤ β (h(s0))ψ(pb (s0, s1)). (8)

Note that

h(s1)≤ β (h(s0))φ(pb (s0, s1))≤ β (h(s0))
h(s0)

α (h(s0))

and thus,

h(s1)≤ γ(h(s0))h(s0).

By this way, we can get an orbit {sn} of T at s0 ∈ X with sn+1 ∈ T (sn) satisfying

α (h(sn))φ (pb (sn, sn+1))≤ h(sn) and h(sn+1)≤ β (h(sn))ψ(pb (sn, sn+1)). (9)

Thus, we get

h(sn+1)≤ γ(h(sn))h(sn). (10)

From (7) we have for all n ≥ 0, h(sn+1)< h(sn). Thus, the sequence of non-negative real numbers {h(sn)} is strictly
decreasing and bounded below, thus convergent. Therefore, there is some η ≥ 0 such that lim

n→∞
h(sn) = η . Suppose that

η > 0. Using (6), (7) and (10) we get

η ≤ η limsup
ν→η+

γ(ν)< η ,

which is a contradiction. Hence η = 0, that is; lim
n→∞

h(sn) = 0.
Lemma 6 Suppose that all the hypotheses of Lemma 5 hold. Further, assume that the function φ satisfying the

following conditions:

φ is subadditive and strictly increasing on Apb with lim
t→0+

φ−1(t) = 0, (11)
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where φ−1 is the inverse of the function φ . Then, there exists an orbit {sn} of T in X which is a Cauchy sequence.
Proof. As in the proof of Lemma 5, we get an orbit {sn} of T at s0 ∈ X such that

lim
n→∞

h(sn) = 0. (12)

Now, put l = limsup
n→∞

γ (h(sn)) and c = liminf
n→∞

α (h(sn)). Then we get

0 ≤ l < 1 and c > 0. (13)

Since b ⩾ 1, choose q ∈
(
0, 1

b

)
with l < q < 1. Let k ∈ (0, c). Then, there is n0 > 0 and for all n ≥ n0, we have

γ (h(sn))< q and α (h(sn))> k.

Using (9) and (10) we deduce that

φ (pb (sn, sn+1))≤
h(sn)

k
and h(sn+1)≤ qh(sn) .

By induction, for all n ≥ n0, we obtain

φ (pb (sn, sn+1))≤
h
(
sn0

)
k

qn−n0 and h(sn+1)≤ qn+1−n0h
(
sn0

)
. (14)

Since pb is the wb-distance, then for any n, m ∈ N, m > n, we have

pb(sn, sm) ≤ b
[
pb(sn, sn+1)+ pb(sn+1, sm)

]
≤ b pb(sn, sn+1)+b

(
b
[
pb(sn+1, sn+2)+ pb(sn+2, sm)

])
≤ b pb(sn, sn+1)+b2 pb(sn+1, sn+2)

+b2 (b[pb(sn+2, sn+3)+ pb(sn+3, sm)
])

...

≤ b pb(sn, sn+1)+b2 pb(sn+1, sn+2)+ ...

+bm−n−1 (pb(sm−2, sm−1)+ pb(sm−1, sm)
)
. (15)
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Since φ is subadditive on Apb and from (14) we get

φ(pb (sn, sm))≤
b
k

qn−n0
[
1+bq+(bq)2 + . . .+(bq)m−n−2 +bm−n−2qm−n−1]h(sn0).

Since bq < 1, then for all m, n ∈ N with m > n ≥ n0, we have

φ(pb (sn, sm))≤
bqn−n0

k(1−bq)
h(sn0). (16)

Since φ is strictly increasing, so does φ−1. Then we obtain

pb (sn, sm) = φ−1 (φ (pb (sn, sm)))≤ φ−1

(
bh
(
sn0

)
k(1−bq)

qn−n0

)
, for all m > n ≥ n0.

Since lim
t→0+

φ−1(t) = 0, then φ−1
(

bh(sn0)
k(1−bq)qn−n0

)
→ 0 as n → ∞. We conclude from Lemma 3 that {sn} is a Cauchy

sequence in X .
Now, we present a general result on the existence of fixed points for multivalued mappings of metric type spaces,

which improve/generalize a number of known fixed point results.
Theorem 9 Let (X , Db) be a complete metric type space. Suppose that all the hypotheses of Lemma 6 hold. Assume

that the function h is b-lower semi-continuous on X . Then there is some v ∈ X such that pb(v, T (v)) = 0. Further, if
pb(v, v) = 0, then v ∈ T (v).

Proof. Note that there exists an orbit {sn} of T , which becomes a Cauchy sequence in X . Due to the completeness
of the X , there is some u0 ∈ X such that {sn} converges to u0. Now, using the properties of the function h and (12), we
obtain

0 ≤ h(u0)≤ liminf
n→∞

(bh(sn)) = 0,

and hence, h(u0) = pb (u0, T (u0)) = 0. If pb (u0, u0) = 0, then it follows from Lemma 4 that u0 ∈ T (u0).
We observe that the conclusion of the Theorem 9 still holds, if we replace the b-lower semi-continuity of the function

h with another suitable conditions.
Theorem 10 Suppose that all the hypotheses of Theorem 9 hold except the b-lower semi-continuity of the function

h. Assume that one of the following hold for every u ∈ X with u /∈ T (u) :

inf{pb (sn, u)+φ (pb (sn, sn+1)) : n ≥ 0}> 0; (17)

inf{pb (sn, u)+ pb (sn, T (sn)) : n ≥ 0}> 0. (18)

Then Fix(T ) ̸= /0.
Proof. As in the proof of Theorem 9, we get an orbit {sn} of T , which becomes a Cauchy sequence in X . Due to the

completeness of the X , there is some u0 ∈ X such that {sn} converges to u0. From (14) we conclude that,
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lim
n→∞

φ (pb (sn, sn+1)) = 0. (19)

Now we show that lim
n→∞

pb (sn, u0) = 0. From Lemma 6 we observe that for all m > n ≥ n0

pb (sn, sm) = φ−1 (φ (pb (sn, sm)))≤ φ−1

(
bh
(
sn0

)
k(1−bq)

qn−n0

)
.

Thus by the b-lower semi-continuity of pb and lim
t→0+

φ−1(t) = 0, we have

pb (sn, u0)≤ liminf
m→∞

(b pb (sn, sm))≤ φ−1

(
bh
(
sn0

)
k(1−bq)

qn−n0

)
→ 0 as n → ∞.

Suppose that u0 /∈ T (u0). If the condition (17) holds. Then we obtain that

0 < inf{pb (sn, u0)+φ (pb (sn, sn+1)) : n ⩾ 0}= 0,

which is a contradiction. Now if (18) holds, then we conclude that

0 < inf{pb (sn, u0)+ pb (sn, T (sn)) : n ⩾ 0}= 0,

which is also contradiction. Thus, u0 ∈ T (u0).
Lemma 7 Suppose that all the hypotheses of Lemma 5 with α and β are functions from Apb into (0, 1] and [0, 1),

respectively such that either α or β is non-decreasing on Apb . Assume that for any s ∈ X , there is z ∈ T (s) satisfying

α(pb(s, z)) φ(pb(s, z))≤ h(s) and h(z)≤ β (pb(s, z)) ψ(pb(s, z)). (20)

Further, assume that φ is strictly increasing on Apb . Then, there exists an orbit {sn} of T in X such that the sequence
{h(sn)} is decreasing to zero.

Proof. Putting γ(t) = β (t)
α(t) . Note that 0 ≤ γ(t) < 1, for all t ∈ Apb . Following similar arguments as in the proof of

Lemma 5, one can construct an iterative sequence {sn} in X such that sn+1 ∈ T (sn) and satisfying

α (pb(sn, sn+1))φ (pb (sn, sn+1))≤ h(sn) , (21)

and

h(sn+1)≤ β (pb(sn, sn+1))ψ(pb (sn, sn+1)). (22)
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For each n ≥ 0 put τn = pb(sn, sn+1). Then we obtain that

h(sn+1)≤ γ(τn)h(sn). (23)

Using (21) and (22) we get

φ (τn+1)≤
β (τn)ψ(τn)

α (τn+1)
. (24)

Now we claim that τn+1 ≤ τn, for all n ≥ 0. Suppose that there is a positive integer n0 satisfying τn0+1 > τn0 , it
follows from (24) that

φ
(
τn0+1

)
≤

β (τn0)ψ(τn0)

α
(
τn0+1

) ,

as either α or β is non-decreasing, we have β (τn0+1)> β (τn0). Hence,

φ
(
τn0+1

)
≤

β (τn0)ψ(τn0)

α
(
τn0+1

)

≤
β (τn0+1)ψ(τn0)

α
(
τn0+1

)
= γ(τn0+1)ψ(τn0)

≤ max
{

γ
(
τn0+1

)
, γ
(
τn0

)}
ψ(τn0).

Since γ(t) < 1 for each t ∈ Apb and from (6) we have φ
(
τn0+1

)
≤ φ(τn0). Since φ is strictly increasing, so we get

that

φ
(
τn0+1

)
≤ φ(τn0)< φ

(
τn0+1

)
,

which is impossible. Thus, τn+1 ≤ τn, for all n ≥ 0, that is the sequence {τn} is non-negative and decreasing. Hence there
is some θ ≥ 0 such that lim

n→∞
τn = θ . Now we show that lim

n→∞
h(sn) = 0. Since γ(t) < 1 for all t ∈ Apb , we conclude that

the sequence {h(sn)} is strictly decreasing and bounded below, thus convergent. Therefore, there is some η ≥ 0 such that
lim
n→∞

h(sn) = η . Suppose that η > 0. Using (23), we get

η ≤ η limsup
t→θ+

γ(t)< η ,
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which is a contradiction. Thus, lim
n→∞

h(sn) = 0.
Lemma 8 Suppose that all the hypotheses of Lemma 7 hold with condition (11). Then, there exists an orbit {sn} of

T in X which is a Cauchy sequence.
Proof. Put l = limsup

n→∞
γ (pb (sn, sn+1)) and c = liminf

n→∞
α (pb (sn, sn+1)). It follows from (6) that 0 ≤ l < 1 and c > 0.

Since b ⩾ 1, choose q ∈
(
0, 1

b

)
with l < q < 1. Let k ∈ (0, c). Then there is a positive integer n0 such that for all n ≥ n0

we have

γ (pb (sn, sn+1))< q and α (pb (sn, sn+1))> k,

using (21) and (23) we obtain

φ (pb (sn, sn+1))≤
h(sn)

k
and h(sn+1)≤ qh(sn) ,

then the following inequalities have been observed in the proof of Lemma 6, for all n ≥ n0

φ (pb (sn, sn+1))≤
h
(
sn0

)
k

qn−n0 and h(sn+1)≤ qn+1−n0h
(
sn0

)
pb(sn, sm)≤ b pb(sn, sn+1)+b2 pb(sn+1, sn+2)+ ...+bm−n−1 (pb(sm−2, sm−1)+ pb(sm−1, sm)

)
.

Proceeding as in the proof of Lemma 6, we can get an orbit {sn} of T in X which is a Cauchy sequence.
Following the similar method as in the proof of Theorem 9, we can obtain the following fixed point result.
Theorem 11 Let (X ,Db) be a complete metric type space. Suppose that all the hypotheses of Lemma 8 hold. Assume

that the function h is b-lower semi-continuous on X . Then, there is some u0 ∈ X such that pb(u0, T (u0)) = 0. Further, if
pb (u0, u0) = 0, then u0 ∈ T (u0).

Following the proof of Theorem 9, and techniques of Theorem 10, we have the following result which extend the
results [17, Theorem 2.2] and [25, Theorem 3.4].

Theorem 12 Suppose that all the hypotheses of Theorem 11 hold except the b-lower semi-continuity of the function
h. Assume that either the condition (17) or the condition (18) hold. Then Fix(T ) ̸= /0.

Now we present the following example in support of Theorem 9.
Example 3 Let X = [0, 1]∪{ 13

10}. For each s, z ∈ X , we define Db(s, z) = (s− z)2 and pb(s, z) = z2. Then X is a
metric type space with b = 2 and pb is a wb-distance on X . Let T : X →C(X) be a multivalued mapping defined by

T (s) =


{

s2

2

}
, s ∈

[
0, 7

10

)
∪
( 7

10 , 1
]

{ 7
40 ,

9
40

}
, s ∈ { 7

10 ,
13
10}

and define the functions α, β from [0, 1
4 ] to (0, 1], [0, 1) respectively and φ, ψ:

[
0, 169

100

]
→ R+ by
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α(t) =
4+

√
t

5
, β (t) =

3+
√

t
5

, ∀t ∈
[

0,
1
4

]

φ(t) = t, ∀t ∈
[

0,
169
100

]
, ψ(t) =


t
2 , t ∈ [0, 169

100 )

0, t = 169
100

it is easy to see that Apb =
[
0, 169

100

]
, Bpb =

[
0, 1

4

]
, ψ(t) ≤ φ(t) for all t ∈

[
0, 169

100

]
and φ is subadditive and strictly

increasing on Apb with lim
t→0+

φ−1(t) = 0. Note that

h(s) = pb(s, T (s)) =


s4

4 , s ∈
[
0, 7

10

)
∪
( 7

10 , 1
]

( 7
40

)2
, s ∈ { 7

10 ,
13
10}

is b-lower semi-continuous. Moreover, for each t ∈ Bpb

β (0) =
3
5
<

4
5
= α(0), liminf

ν→0+
α(ν) =

4
5
> 0

and

limsup
ν→t+

β (ν)
α(ν)

=
3+

√
t

4+
√

t
< 1.

For each s ∈
[
0, 7

10

)
∪
( 7

10 , 1
]
, there exists z = s2

2 ∈ T (s) =
{

s2

2

}
satisfying

α (h(s))φ(pb(s, z)) =

(
4+ s2

2
5

)(
s4

4

)
≤ s4

4
= h(s)

and

h(z) =
( s2

2 )
4

4
=

(
s2

16

)(
s4

4

)
≤

(
3+ s2

2
10

)(
s4

4

)
= β (h(s))ψ(pb(s, z)).

Letting, s ∈
{ 7

10 ,
13
10

}
, we have T (s) =

{ 7
40 ,

9
40

}
. Clearly, there exists z = 7

40 ∈ T (s) such that

α (h(s))φ(pb(s, z)) =

(
4+ 7

40
5

)(
7
40

)2

≤
(

7
40

)2

= h(s)
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and

h(z) =
( 7

40 )
4

4
≤

(
3+ 7

40
10

)(
7
40

)2

= β (h(s))ψ(pb(s, z)).

Thus, all the assumptions of Theorem 9 are satisfied. Hence, Fix(T ) ̸= /0 and Fix(T ) = {0}. Note that pb is not a
metric on X , consequently the results of [26, Theorem 2.1], [22, Theorem 2.1] and [3, Theorem 3.1] are unapplicable.
In addition, note that pb is not a w-distance on X , so the results of [17, Theorem 2.1] and [25, Theorem 3.1] are not
applicable.

We present the following example in support of Theorem 11.
Example 4 Let X = R+ with Db and pb as in Example 3. Let T : X →C(X) be defined by

T (s) =


{ s

4

}
, s ∈ [0, 1]

{
0, s− 1

3

}
, s ∈ (1, ∞)

Define the functions α: R+ → (0, 1], β : R+ → [0, 1) and φ, ψ: R+ → R+ by

α(t) =


40+t
500 , t ∈ [0, 1]

95+t5

100+t5 , t ∈ (1, ∞)

, β (t) =


30+t
500 , t ∈ [0, 1]

130
170+t5 , t ∈ (1, ∞)

φ(t) = 2t, ∀t ∈ [0, ∞), ψ(t) =


2t, t ∈ [0, 1)

0, t ∈ [1, ∞)

it is easy to see that Apb = [0, ∞), ψ(t) ≤ φ(t) for all t ∈ Apb and φ is subadditive and strictly increasing on Apb with
lim

t→0+
φ−1(t) = 0. Note that

h(s) = pb(s, T (s)) =


s2

16 , s ∈ [0, 1]

0, s ∈ (1, ∞)

is b-lower semi-continuous and α is nondecreasing. If t ∈ [0, 1], then

β (0) =
30

500
<

40
500

= α(0), liminf
ν→0+

α(ν) =
4
50

> 0,

and
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limsup
ν→t+

β (ν)
α(ν)

=
30+ t
40+ t

< 1.

If t ∈ (1, ∞), then

liminf
ν→0+

α(ν) =
95

100
> 0

and

limsup
ν→t+

β (ν)
α(ν)

= limsup
ν→t+

130(100+ν5)

(170+ν5)(95+ν5)
=

13000+130t5

16150+265t5 + t10 < 1.

For each s ∈ [0, 1], there exists z = s
4 ∈ T (s) =

{ s
4

}
satisfying

α (pb(s, z))φ(pb(s, z)) =

(
80+ s2

8
500

)(
s2

16

)
≤ s2

16
= h(s)

and

h(z) =
( s

4 )
2

16
=

s2

256
≤

(
30+ s2

16
500

)(
2x2

16

)
= β (pb(s, z))ψ(pb(s, z))

if s ∈ (1, ∞), there exists z = 0 ∈ T (s) =
{

0, s− 1
3

}
satisfying

α (pb(s, z))φ(pb(s, z)) = 0 = h(s)

and

h(z) = 0 = β (pb(s, z))ψ(pb(s, z)).

Thus, for each s ∈ R+, all the conditions of Theorem 3.3 are satisfied. Hence, Fix(T ) ̸= /0 and Fix(T ) = {0}. Note
that pb is a wb-distance but not a metric on X , so T does not satisfy the hypotheses of [26, Theorem 2.3], [22, Theorem
2.2], [3, Theorem 3.1], [4, Theorem 2.1] and [2, Theorem 6]. Further, note that pb is a wb-distance but not a w-distance
on X . Therefore, the results of [17, Theorem 2.2] and [25, Theorem 3.3] are not applicable.

4. Conclusion
(1) Theorem 9 generalizes the corresponding fixed point results of Liu et al. [17, Theorem 2.1] and [25, Theorem

3.1]. Further, Theorem 9 contains [26, Theorem 2.1] of Liu et al. as a special case.
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(2) Theorem 9 extends fixed point results of Feng and Liu [3, Theorem 3.1], Ciric [22, Theorem 2.1], Latif and Albar
[24, Theorem 2.1], [23, Theorem 2.2], Latif et al. [27, Theorem 2.1] and [28, Theorem 3.1].

(3) Theorem 10 generalizes fixed point results of Liu et al. [17, Theorem 2.1] and [25, Theorem 3.2].
(4) Theorem 10 extends fixed point results of Latif and Albar [24, Theorem 2.2], [23, Theorem 2.4], Latif et al. [27,

Theorem 2.2] and [28, Theorem 3.2].
(5) Theorem 11 generalizes fixed point results of Liu et al. [17, Theorem 2.2] and [25, Theorem 3.3]. Further,

Theorem 11 contains [26, Theorem 2.3] of Liu et al. as a special case.
(6) Theorem 11 extends and unifies the fixed point results of Feng and Liu [3, Theorem 3.1], Klim andWardowski [4,

Theorem 2.1], Ciric [22, Theorem 2.2], Latif and Albar [24, Theorem 2.3], Ciric [2, Theorem 6], Latif et al. [27, Theorem
2.3] and [28, Theorem 3.3].

(7) Theorem 12 generalizes the fixed point results of Latif and Albar [24, Theorem 2.5], Latif et al. [27, Theorem
2.4] and [28, Theorem 3.4].
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