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Abstract: In the investigation of harmonic and potential functions on the Euclidean spaces, the Runge-type approximation
theorem and Laurent decomposition theorem for harmonic functions are important. Their extensions to subharmonic
functions are also crucial. In this note, we investigate various aspects of these results in the context of discrete potential
theory on infinite trees. Given an infinite tree T with positive potentials, we prove that for a harmonic function h outside
a finite set, there exists a harmonic function H on T such that h−H is bounded outside a finite set. Developing other
results based on this theorem, we investigate in detail biharmonic functions on T and study their properties. The thrust is
to extend these results to the study of discrete biharmonic and bisuperharmonic functions on infinite trees. This is always
true in Rn, n ≥ 5 because the fundamental solution of ∆2 on this case tends to 0 at infinity. Based on this property we also
define the notion of a tapered biharmonic space.
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1. Introduction
The study of biharmonic functions on Rn by Nicolesco [1] with the help of the Almansi representation leads to

Liouville-Picard-Hadamard theorem for biharmonic functions; and that of bisuperharmonic functions by Smyrnelis [2] in
the framework of Brelot-Bauer axiomatic potential theory on locally compact spaces is carried out extending the known
properties of harmonic functions and potentials on the Euclidean spaces. A discrete analogue of the biharmonic Green
kernel is given in Yamasaki [3] when the transition functions of the infinite network are symmetric. A discrete biharmonic
calculus for ∆2 is presented in Ben-Artzi and Katriel [4]; and a recently published paper by Bajunaid [5] which deals with
biharmonic functions on Schrödinger networks. Motivation for this work is provided by thework of Anandam in axiomatic
potential theory where he used a local Riesz representation to give a meaning to an equation of the form ∆u = f , where ∆
has a minimal use as a differential operator (see [6]). Consequently, the biharmonic function and related notions can be
defined not only in a Riemannian manifold and in Rn, but also in any Riemann surface and more generally in any infinite
tree.

Our aim in this work is to prove extension theorems for biharmonic functions and a consequence a very useful
representation for biharmonic functions defined outside a finite set is obtained. Section 2 is the preliminaries giving
definitions and notation on trees. The definition of harmonic functions and potentials are recalled (see [7]); some important
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properties of superharmonic functions are obtained. Riesz and Laurent decomposition are investigated. In Section 3 which
entitled “Bisuperharmonic functions near infinity onRn”, we introduce the biharmonic and the bisuperharmonic functions
on the Euclidean spaces without making use of the derivatives. That would serve as a model in the development of
discrete biharmonic and bisuperharmonic functions on infinite trees. Section 4, outlines the concepts of bisuperharmonic
functions on infinite trees and prove the discrete version of the classical Riquier problem in a general form. Section 5
on “Biharmonic Extensions”, a study of bipotentials which are discrete versions of the fundamental solutions of ∆2 on
Rn, n ≥ 5 is concerned. In Section 6, many properties of biharmonic functions are developed: Laurent decomposition
for biharmonic functions defined on ring domains, the problem of finding biharmonic function B in a tree T such that for
biharmonic function b given outside a finite set in T , (b−B) is bounded near infinity. Finally, based on this last property,
we define the notion of a tapered bipotential trees and prove that in such a space above-stated problem has a solution.
A tapered tree is a discrete counterpart of the Euclidean spaces Rn, n ≥ 5, in which the fundamental solution of ∆2 is
proportional to r4−n, hence tends to 0 at the point at infinity.

2. Preliminaries
In mathematical terms, a tree T is a special kind of drawing (graph) with vertices connected by edges. The key thing

is that there are no circles or loops, and each dot only connects to a limited number of others. We can also think of the
tree as just the collection of all its vertices. In a tree, vertices called v and w are considered neighbors if an edge directly
connects them. We use v ∼ w to show this connection. Imagine following a sequence of connected vertices in a tree, like
hopping from one to the next. This sequence, written as [x0, x1, ...], such that xk ∼ xk+1 is called a path. A special type
of path, called geodesic path is a path [x0, x1, ...] such that xk−1 ̸= xk+1 for all k. A ray is an infinite geodesic path. If x
and y are any vertices, the unique geodesic path joining them is denoted by [x, y]. Fixing a nonterminal vertex e as a root
of the tree, the predecessor u− of a vertex u, with u ̸= e, is the next to the last vertex of the path from e to u.

Imagine a tree where every vertex has the same number of neighbors. A homogeneous tree of degree q+1 (where
q is a number greater than or equal to 2) is a tree such that each vertex has exactly q+1 neighbors.

Definition 2.1 For a finite subset S of T , the interior of S is the set
◦
S only includes vertices x ∈ S such that every

vertex of T which is neighbor of x belongs to S. In contrast, the boundary of S in T is defined as the set ∂S = S\
◦
S.

Let Bn = {x : |x| ≤ n}, n ≥ 1.
A tree T may be endowed with a metric d as follows: If x and y are vertices, then d (x, y) is the number of edges you

need to traverse along the geodesic path to get from x to y. Additionally, we can assign a length to each vertex x based on
its distance from e. This length is written as |x|= d (x, e). Given x ∈ T , let N(x) denotes the set of neighbors of x.

Given a tree T , let p be a nearest-neighbor transition probability on the vertices of T , that is, p(x, y)≥ 0, p(x, y)> 0,
if and only if x and y are neighbors, and for any fixed vertex x, ∑

y∼x
p(x, y) = 1. By a function on a tree, we mean a function

on its vertices.
The Laplacian of a function f : T → R is defined as

−∆ f (x) = ∑
y∼x

p(x,y) [ f (x)− f (y)] for all vertices x ∈ T.

Definition 2.2A real valued function u on T is considered harmonic at x if ∆u(x) equals zero. A real valued function
u on T is said to be superharmonic at x if ∆u(x) is less than or equal to zero. Conversely, a real valued function u on T
is said to be subharmonic if ∆u(x) is greater than or equal to zero. Finally, a potential is a special type of function. It has
non-negative values and is superharmonic, but with an important twist: there’s no positive harmonic function on the tree
that’s less than or equal to it.

Definition 2.3 The harmonic support of a superharmonic function s is the complement of the largest open set on
which s is harmonic.
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Definition 2.4 A P-tree is a tree on which there is a positive potential. An S-tree is a tree on which no positive
potential exists.

Theorem 2.5 For some n > 1, let u(x) be a real-valued function defined for |x|= n. Then u(x) extends as a harmonic
function on T .

Proof. First extend u(x) harmonically on |x| < n (take the Dirichlet solution on |x| < n with boundary value u (see
Theorem 2 [8] and [9]). Here’s the next step: imagine expanding the area by one layer, including vertices with distance
|x|= n+1. Note {x : |x|= n+1} ⊂ ∪|y|=nN(y). Assign a value α to all the new vertices on N(y)∩{x : |x|= n+1}, for
some y with |y|= n, such that u is harmonic at y. Since y is arbitrary except for the condition |y|= n, this method defines
the function u(x) for |x|= n+1 also. Thus u(x) is defined on Bn+1 and ∆u(x) = 0 on

◦
Bn+1. By induction, u(x) is defined

harmonically on T .
Corollary 2.6 Let u be harmonic for |x| ≤ n, for some n ≥ 1. Then we can expand u to encompass the entire tree

while preserving its harmonic property and the resulting function h(x) = u(x) for |x| ≤ n.
Theorem 2.7 For a vertex e in T , there is a function qe(x) on T such that −∆qe(x) = δe(x), the Dirac measure at e.

This function acts as the Green potential Ge (x) when T is P-tree.
Proof. See, [8, Theorem 1].
If u is a nonnegative superharmonic function which has a harmonic minorant, then u has a greatest harmonic minorant

(see [10, Theorem 2.4]).
Riesz decomposition: Suppose s is a nonnegative real-valued superharmonic function on a set ω in a tree T . Then s

can be expressed as a sum s = p+h of a potential p on ω and a positive harmonic function h on ω , where h is the greatest
harmonic minorant of s on ω . This way of breaking down a superharmonic function s is unique.

Let T be an S-tree. Fix an unbounded subharmonic function H which has the following properties on T :
H ≥ 0, ∆H(e) = 1, H(e) = 0 and H is harmonic on T\{e}. For the existence of such an H see [10, Proposition 4.2].
Recalling Theorem 4.3 in Bajunaid et al. [10], it is shown that given any vertex e in an S-tree T , there are a unique

function called the pseudo-potential, denoted by qe (x) which is superharmonic on T with harmonic point support {e},
and a uniquely determined positive constant αe such that (−∆)qe(x) = δe(x) for all x in T , and qe(x)−αeH(x) is bounded
outside a finite set in T .

If A is a set of vertices, the function q(x) = ∑xi∈A βiqxi (x), is a superharmonic function on T , where for each i, qxi

is pseudopotential with harmonic support {xi} and βi is positive constants. q(x) is referred as a pseudo-potential with
harmonic support A.

Lemma 2.8 Suppose u(x) is defined on n ≤ |x| ≤ n+m and harmonic on n < |x|< n+m. Then u(x) can be extended
as a harmonic function on |x|> n.

Proof. Let |x0| = n + m + 1. Then x0 ∈ N (y) for some y with |y| = n + m. Choose the constant α such that if
u(x) = α on A = N (y)∩ {x : |x|= n+m+1}, then u(x) is harmonic at y. That is u(y) = α0 p(y, y−) +α ∑

x∈A
p(y, x),

where α0 = u(y−).
Thus u(x) is defined for |x| = n + m + 1 and harmonic on n < |x| < n + m + 1. By induction, u(x) is defined

harmonically on |x|> n.
Proposition 2.9 If u is a subharmonic function defined outside a finite set in a P-tree (respectively. S-tree) T , then

there exist a subharmonic function v and two potentials (respectively. pseudo-potentials) p1 and p2 with finite harmonic
support on T such that u = v+ p1 − p2 outside a finite set and p1 − p2 is bounded on T if it is a P-tree. Moreover, in case
u is harmonic outside a finite set, v is harmonic on T ; and in this case the harmonic function v is uniquely determined.
If T is an S-tree, since the p’s are pseudo-potentials with finite harmonic support, for some constant α, v− v′−αH is
bounded outside a finite set. Since v−v′ is harmonic on T, α = 0. This implies that v−v′ becomes constant everywhere
on the tree T .

Proof. Let y ∈
◦
T , and let Qy (x) be the potential (respectively pseudo-potential) with harmonic support at y if T is a

P−tree (respectively an S−tree). In all cases, we have (−∆)Qy (y) = 1. For a fixed nonterminal vertex e, and for large n,
let Bnu denote the Dirichlet solution on |x|< n with boundary values u(x) on |x|= n.

Define
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s(x) =


u(x) if n < |x|

Bnu if n ≥ |x|
.

Then ∆s(x)≥ 0 if n < |x| and ∆s(x) = 0 if n > |x|. Let v(x) = s(x)+ ∑
|y|=n

∆s(y)Qy (x). Clearly ∆v(x)≥ 0 if |x| ̸= n

and if |x| = n, x = y, ∆v(y) = 0. Thus ∆v(x) ≥ 0 for every x ∈
◦
T . Therefore v is subharmonic on the entire tree T and

when |x| > n, u(x) = v(x)+ p1 (x)− p2 (x) where p1 (x) = ∑
|y|=n

[∆s(y)]− Qy (x) and p2 (x) = ∑
|y|=n

[∆s(y)]+ Qy (x) so that

p1 and p2 are potentials (respectively pseudo-potentials) with finite harmonic support if T is a P−tree (respectively. an
S−tree) [10, Theorem 2.11], if T is a P−tree, p1 − p2 is bounded.

Finally, suppose u is harmonic outside a finite set. Then ∆v(x) = ∆s(x) = 0 if |x| ̸= n, so that ∆v = 0 on
◦
T . Hence v

is harmonic on T . Now, suppose u = v′+ p′1 − p′2 is another such representation outside a finite set. Then, if T is a P-tree,
the subharmonic function |v− v′| is majorized by the sum of all potentials p1 + p2 + p′1 + p′2 outside a finite set A. Select
a potential L > 0 on T . Because A is finite, we can find a positive constant λ such that |v− v′| ≤ λL on A. This implies
that |v− v′| ≤ λL+(p1 + p2 + p′1 + p′2) on T . Since the subharmonic function |v− v′| is majorized by a potential on T ,
|v− v′| ≤ 0 and hence v is unique.

If T is an S-tree, since the p,s are pseudo -potentials with finite harmonic support, for some constant α , v−v′−αH is
bounded outside a finite set. Since v− v′ is harmonic on T , α = 0. This implies that v− v′ becomes constant everywhere
on the tree.

Corollary 2.10 (Laurent decomposition) Suppose u(x) is defined on n ≤ |x| ≤ n + m, for an integer m ≥ 1 and
harmonic on n < |x| < n+m. Then there exist a harmonic function t(x) on |x| ≤ n+m and a harmonic function s(x) on
|x| ≥ n such that u(x) = s(x)− t(x) on n ≤ |x| ≤ n+m. Furthermore, s(x) can be chosen as follows:

(1) if T is a P-tree, then there exists a potential p(x) on T such that |s(x)| ≤ p(x) everywhere except for a small finite
set of the tree. Hence the decomposition is unique.

(2) if T is an S-tree, then there exists a unique α such that s(x)−αH (x) is bounded outside a finite set. Hence the
decomposition is unique up to an additive constant.

Proof. First apply Lemma 2.8 to extend u as a harmonic function on all of |x| > n. Then by Proposition 2.9, there
exists a harmonic function v on T such that u = v+ p1− p2 on |x|> n, where if T is a P-tree, p1 and p2 are potentials with
finite harmonic support and if T is an S-tree, p1 and p2 are pseudo-potentials with finite harmonic support; the harmonic
supports of p1 and p2 are in |x|= n.

Define s(x) = u(x)− v(x) on |x| ≥ n and t(x) =−v(x) on |x| ≤ n+m. This decomposition allows us to confirm the
claims made in the corollary.

A harmonic function defined outside a finite set of vertices does not necessarily extend to a harmonic function on
the whole tree. An example will be shown next to illustrate this point:

Example 2.11 Let x0 be a vertex of a tree T ,C1,C2, ...,Cm be the connected components of T\{x0}, and β1, β2, ..., βm

be distinct real constant. Let h be defined on T\{x0} by h(x) = βi if x ∈Ci, i = 1, ..., m. h is harmonic outside {x0} and
its neighbors since it is locally constant, but h can not be extended to a harmonic function on the whole tree T .

3. Bisuperharmonic functions near infinity on Rn

Terminology: The concept “near infinity” describes a set which is the complement of a compact set in Rn, n ≥ 2.
Recall:
(1) If h is a harmonic function defined outside a compact in Rn, then there exists a harmonic function H in Rn such

that h(x)−H (x) is bounded near infinity if n ≥ 3 and h(x)−H (x)−α log |x| is bounded near infinity if n = 2.
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(2) If n ≥ 3, h(x) = H (x)+b(x) near infinity where b(x) tends to 0 at infinity and |b(x)| ≤ p(x) for a potential p(x)
in Rn.

(3) [11] If u is a superharmonic function defined outside a compact set in Rn, then there exists a nonconstant
superharmonic function v in Rn such that outside a compact set u(x) = v(x)−α log |x| if n = 2, for some constant α ≤ 0,
and u(x) = v(x)−β |x|2−n if n ≥ 3, for some constant β ≥ 0.

In particular, near infinity u(x) is the difference of two superharmonic functions defined on Rn.
(4) [12] If f (x) is a non-negative locally Lebesgue integrable function on Rn, then there exists a superharmonic

function s(x) on Rn such that −∆s(x) = f (x) on Rn. If f (x) is a locally Lebesgue integrable function on Rn, then there
exist two superharmonic functions s1 (x) and s2 (x) on Rn such that s(x) = s1 (x)− s2 (x) and −∆s(x) = f (x).

Definition 3.1 A function u defined on an open set ω in Rn is said to be bisuperharmonic (respectively, a
bisubharmonic ) if −∆u(x) is superharmonic (respectively, subharmonic) on ω .

Definition 3.2 Let p and q be two potentials defined on an open set ω in Rn, such that −∆q(x) = p(x) on ω . Then
q is called a bipotential on ω and ω is called a bipotential domain.

Remark 3.3
(a) A bisuperharmonic function u defined on an open set ω in Rn is the difference of two superharmonic functions

in ω . For ∆u = s can be split into two equations ∆u1 = s+ and ∆u2 = s−.
(b) A biharmonic function b(x) in |x| < r in Rn can be represented as b(x) = |x|2 u(x)+h(x) where u(x) and h(x)

are harmonic in |x|< r.
(c) If b(x) is biharmonic and s(x) is subharmonic inRn, n ≥ 1 such that b(x)≥ s(x), then b(x) = c |x|2+h(x) where

c ≥ 0 is constant and h is harmonic.
(d) Any bounded biharmonic function in Rn, n ≥ 1 is constant.
(e) |x|4−n is a positive bisuperharmonic function that is superharmonic in Rn, n ≥ 5. But there are no nonconstant

positive bisuperharmonic functions that are superharmonic in Rn, 2 ≤ n ≤ 4.
We see that a superharmonic function defined outside a compact set is the difference of two superharmonic

functions on Rn. As an extension, we remark that a bisuperharmonic function near infinity in Rn is the difference of
two bisuperharmonic functions on Rn up to an additive harmonic function near infinity. Precisely:

Proposition 3.4 Let s(x) be a bisuperharmonic function near infinity. Then there exist bisuperharmonic functions
s1 (x) and s2 (x) on Rn such that s(x) = s1 (x)− s2 (x)+h(x) near infinity, where h(x) is harmonic near infinity.

Proof. Outside a compact set K in Rn, −∆s(x) = u(x) is a superharmonic function.
Hence, if n = 2, u(x) = v(x)−α log |x| where α ≤ 0 and v(x) is a superharmonic function defined on Rn. Take

s1 (x) such that −∆s1 (x) = v(x) on Rn. Then s1 (x) is a bisuperharmonic function on Rn. Consequently, −∆s(x) =

u(x) = −∆s1 (x)−∆
[
γ |x|2 (−1+ log |x|)

]
outside the compact set K and γ ≤ 0. Hence s(x) can be expressed as s(x) =

s1 (x)− s2 (x)+ h(x) outside K where s2 (x) is a bisuperharmonic function on Rn and h(x) is a harmonic function near
infinity.

If n ≥ 3, u(x) = v(x)−β |x|2−n where β ≥ 0. Take s1 (x) such that −∆s1 (x) = v(x) on Rn. Consequently, outside
a compact set, −∆s(x) = u(x) = −∆s1 (x)−∆

[
δ |x|4−n

]
, where δ > 0. Hence, s(x) = s1 (x)− s2 (x)+ h(x) outside a

compact set, where s2 (x) is a bisuperharmonic function on Rn (incidentally, it is actually a bipotential in Rn if n ≥ 5) and
h(x) is a harmonic function near infinity.

4. Discrete bisuperharmonic functions on infinite trees
Theorem4.1 If f is a real-valued function defined on a treeT , then there exists a function u on T such that (−∆)u(x)=

f (x) on T .
Proof. For every vertex y on the tree T , there exists a unique superharmonic function qy(x) on T such that for every

x in T , (−∆)qy(x) = δy(x) (Theorem 2.7 and Remark 3.3).
Let
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fn (x) =


f (x) if |x|= n

0 if |x| ̸= n

.

If sn(x) = ∑
y∈∂Bn

f (y)qy(x), then if x /∈ ∂Bn, (−∆)sn(x) = 0 and if x ∈ ∂Bn, (−∆)sn(x) = f (x) that is

(−∆)sn(x) = fn(x), ∀x ∈ T.

Using Corollary 2.6, we can fined a harmonic function hn(x) on T such that hn(x) = sn(x) for |x| ≤ n.
Let

s(x) =
∞

∑
n=1

[sn(x)−hn(x)] .

Note that in
∞

∑
n=1

[sn(x)−hn(x)] all the terms except a finite number of them are 0 on any Bm, and hence the infinite

sum is well-defined on Bm and consequently on T .
Hence s(x) is a real-valued function such that

(−∆)s(x) =
∞

∑
n=1

(−∆)sn(x) =


f (x) if |x| ≥ 1

0 if x = e

.

Let u(x) = f (e)qe(x)+ s(x). Then (−∆)u(x) = f (x) on T .
Corollary 4.2 Let f be a positive real-valued function defined on a tree T . Then there is a superharmonic function

u on T such that (−∆)u(x) = f (x) on T .
If f is an arbitrary real-valued function on T , then we have a δ -superharmonic function u on T such that (−∆)u(x) =

f (x) on T . We say that u is generated by f .
Definition 4.3A functionB on T is called biharmonic if there exists a harmonic function h on T such that (−∆)B(x) =

h(x) on T .
u is said to be a bisuperharmonic (respectively. a bisubharmonic) function on T if there exists a superharmonic

(respectively. subharmonic) function v on T such that (−∆)u(x) = v(x) on T .
We can now prove the discrete version of the classical Require problem in a general form.
Theorem 4.4 (Riquier Problem) Let T be a tree. Let g1 and g2 be two functions defined on A = {x : |x|= n}, n ≥ 1.

There exist a biharmonic function f on T such that f |A = g1,− ∆ f |A = g2 and f is unique determined in |x| ≤ n.
Proof. First use Theorem 2.5 to extend g2 as a harmonic function h2 on T . Let u be a biharmonic function on T

generated by h2, that is (−∆)u = h2.
Use Theorem 2.5 again to extend u− g1 on A as a harmonic function h1 on T . Let f = u− h1 on T . Then f |A=

u− (u−g1) = g1.
f is biharmonic on T , and − ∆ f |A = h2|A = g2.
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Suppose F is another such biharmonic solution. Let φ = f −F . Then ∆φ is harmonic on |x| ≤ n and equals 0 on
|x|= n which implies that ∆φ = 0 on |x| ≤ n. Hence φ is harmonic on |x| ≤ n. Note φ = 0 on |x|= n. Therefore φ = 0
on |x| ≤ n and f is unique.

5. Biharmonic extensions
Theorem 5.1 If b is a biharmonic function defined on |x| ≤ n in T , then there is a biharmonic function B on T such

that b(x) = B(x) for |x| ≤ n.
Proof. Let h1 be a harmonic function on |x| ≤ n in T such that (−∆)b(x) = h1(x). By Corollary 2.6, there is a

harmonic function H on T such that h1 = H on |x| ≤ n. Let (−∆)B1(x) = H(x). Then B1 is a biharmonic function on T .
Write r(x) = B1(x)−b(x) if |x| ≤ n. Then if x ∈

◦
Bn,

(−∆)r (x) =(−∆)B1 (x)− (−∆)b(x)

=H (x)−h(x)

=0.

Hence r(x) is harmonic on |x| ≤ n, which implies that there exists a harmonic function h2 on T such that h2 = r on
|x| ≤ n. Take B(x) = B1(x)−h2(x). Then B(x) is biharmonic function defined on T such that b(x) = B(x) for |x| ≤ n.

Definition 5.2 In a P-tree T , a biharmonic function b defined outside a finite set is said to be regular at infinity if
there exists a potential p, such that |∆b| ≤ p outside a finite set.

Remark 5.3
(1) In a tree T , a biharmonic function B is regular at infinity if and only if B is harmonic in T . (2) If b1 and b2 are two

biharmonic functions defined outside a finite set in T and regular at infinity, then the biharmonic function β1b1 +β2b2 is
regular at infinity for any real numbers β1 and β2.

Theorem 5.4 If T is a P-tree, and b is a function defined on n ≤ |x| ≤ N and biharmonic on n < |x|< N, then we can
find a biharmonic function b1 in |x|> n regular at infinity, and a biharmonic function b2 in |x|< N such that b = b1 −b2

in n < |x|< N. Up to an additive harmonic function, this decomposition is unique in T .
Proof. Let (−∆b) = h, h is harmonic in n < |x| < N. Using Corollary 2.10, h = s− t in n ≤ |x| ≤ N, where s is

harmonic in |x|> N and t is harmonic in |x|< N. From the proof of Corollary 2.10, it is clear that s can be chosen so that
outside a finite set, |s| ≤ p where p is a potential in T .

Now let u1 be a function in |x| > n such that (−∆) u1 = s and u2 be a function in |x| < N such that (−∆)u2 = t.
Consequently (−∆)(u1 − u2) = s− t = h in n < |x| < N, and therefore b− (u1 − u2) is harmonic in n < |x| < N. Hence
there are functions s1 and t1 such that s1 is harmonic in |x| > n and t1 is harmonic in |x| < N and b− (u1 −u2) = s1 − t1
in n < |x|< N. Setting b1 = u1 + s1 and b2 = u2 + t1, we see that b1 is biharmonic in |x|> n which is regular at infinity,
b2 is biharmonic in |x|< N and b = b1 −b2 in n < |x|< N.

To prove the uniqueness of this decomposition, consider another representation b = b′1 −b′2. Then the function

B(x) =


b2 −b′2 in |x|< N

b1 −b′1 in |x|> n,
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is biharmonic in T which is regular at infinity. Hence B is harmonic in the tree T .
Proposition 5.5 Let b be a biharmonic function outside a finite set |x| ≤ n in a tree T . Then there is a biharmonic

function B in T , unique up to an additive harmonic function, such that B−b is regular at infinity.
Proof. Let N be a positive integer such that N > n. Then, by Theorem 5.4, there exist a biharmonic function b1 in

|x|> n, regular at infinity and a biharmonic function b2 in |x|< N such that b = b1 −b2 in n < |x|< N.
Define

B(x) =


b−b1 in |x|> n

−b2 in |x|< N

.

Then B is biharmonic in T . Moreover B−b is biharmonic in |x|> n and regular at infinity.
To prove the uniqueness of B, let B′ be another such biharmonic extension of b, then B−B′ is biharmonic in T ,

regular at infinity. Consequently B−B′ is harmonic in T .
Remark 5.6 In Proposition 5.5, (b−B) may not be bounded outside a finite set. For example, if in a homogeneous

tree T of order q, b(x) = d(e,x) for |x| ≥ 1 and b(e) = 1, then b is biharmonic in |x|> 1. For if |x|= n, n > 1

∆b(x) =
q(n+1)+(n−1)

q+1
−n

=
q−1
q+1

.

Hence ∆2b(x) = 0 and b is biharmonic in |x| > 1. Take B ≡ 0, then B is biharmonic in T and b−B is not bounded
outside a finite set.

Definition 5.7 A potential q > 0 on a P-tree is called bipotential if (−∆)q is a potential on T .
A P-tree is said to be a bipotential tree if there exist potentials p and q on T such that ∆q =−p on T .

6. Tapered bipotential trees
Definition 6.1A bipotential tree T is said to be tapered if there exist potentials p > 0 and q > 0 in T , q being bounded

outside a finite set such that (−∆)q = p in T .
Proposition 6.2 A bipotential tree T is tapered if and only if there exist two bounded potentials p and q on T such

that ∆q =−p.
Proof. Let T be tapered. That is by Definition 6.1 there are two positive potentials p and q on T such that q is

bounded outside a finite set and ∆q =−p.
Since any superharmonic function is bounded on a finite set, by the definition, q should be bounded on T . Suppose

q ≤ M.
Then at vertex x,
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p(x) = (−∆)q(x)

= q(x)− ∑
z∼x

p(x,z)q(z)

≤ q(x)+ ∑
z∼x

p(x,z)q(z)

≤ M+M

(
∑
z∼x

p(x,z)

)

= 2M.

Hence p and q should be bounded potentials on T .
The converse is evident.
Proposition 6.3 A bipotential tree is tapered if and only if there exists a bounded bipotential on T .
Proof. Let q be a bounded bipotential on T . Since q is bounded, p = (−∆)q is bounded as shown above. Hence p

and q are bounded potentials on T such that ∆q =−p. That is, T is tapered.
Conversely, if T is tapered, there exist by the above proposition bounded potentials p and q such that ∆q =−p. That

is, q is a bounded bipotential on T .
In a P−tree, it is not true that given a potential p we can find a potential q such that ∆q = −p on T . It is not even

true in bipotential tree. In this context, the following theorem is useful.
Theorem 6.4 Let q be a bipotential on T generated by a potential q1. Let p1 be a potential on T such that p1 ≤ q1.

Then there is a unique bipotential p such that p ≤ q on T and ∆p =−p1.
Proof. As in Theorem 4.1, choose a superharmonic function s on T such that (−∆)s = p1 on T . By hypothesis,

(−∆)q = q1 ≥ p1 on T . Choose a superharmonic function t on T, such that (−∆)t = q1 − p1 on T . Then q = s+ t+ (a
harmonic function h1). s has a subharmonic minorant on T since q ≥ 0. So that s = p+h2 and t = p′+h′2 on T , where p
and p′ are potentials and h2 and h′2 are harmonic on T . Thus q = p+ p′+(h1 +h2 +h′2). Equating the potential parts, we
have q = p+ p′. Therefore p ≤ q; it’s important to remember that (−∆)p = (−∆)s = p1 on T .

For the uniqueness, suppose p2 is another bipotential generated by p1. Since (−∆)p = p1 = (−∆)p2, p2 = p+ (a
harmonic function h) on T ; and since p and p2 are potentials, h ≡ 0. Hence the bipotential generated by p1 is unique.

Corollary 6.5 In a tapered bipotential tree T , let p1 be a potential with finite harmonic support. Then p1 generates
a bounded bipotential p on T .

Proof. Since T is tapered, there exist bounded potentials q and q1 on T such that ∆q = −q1 on T . Then we can
choose λ > 0 so that p1 ≤ λq1 on T , since p1 has finite harmonic support. Hence p1 generates a bipotential on T by
Theorem 6.4, since λq1 is bipotential on T . Moreover, if ∆p = −p1, then by construction p ≤ λq on T . Hence p is
bounded on T .

Let R̂E
1 = inf{s : s is superharmonic function> 0 on T such that s ≥ 1 on E}. Then u = R̂E

1 is a potential on T such
that u ≤ 1 on T , u is harmonic on T\E and u ≡ 1 on E. If T is a tapered bipotential tree, the by Corollary 6.5, R̂E

1 generates
a bipotential on T .

Theorem 6.6A bipotential tree T is tapered if and only if for one (and hence any) finite set E in T , there is a bounded
potential u in T such that (−∆)u = R̂E

1 .
Proof. Let E be a finite set in a tapered tree T . Since T is tapered, there are potentials p and q in T , q being bounded

outside a finite set, such that (−∆)q = p. Now, p being a potential, R̂E
1 ≤ (infE p)−1 p. Hence, if u is the potential in T
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such that (−∆)u = R̂E
1 ,u ≤ (infE p)−1 q. For, if q1 = (infE p)−1 q, there exists a subharmonic function s in T such that

u = q1 + s in T . This implies that s ≤ 0 since the potential u ≥ s; hence u ≤ q1. u is bounded outside a finite set since q1

is so. Moreover, since u is bounded outside a finite set in T , u is bounded on T .
The converse is evident.
Theorem 6.7 Let T be a tapered tree and s be a function generated by a potential with finite harmonic support in T .

Then s = v+h where h is harmonic in T and v is a potential bounded outside a finite set.
Proof. Let (−∆)s = p where p is a potential with finite harmonic support E in T . If K is a finite set such that

◦
K ⊃ E,

then there is a constant λ such that p ≤ λ R̂K
1 in T . Since by Corollary 6.5, there exists a bounded potential u in T such that

(−∆)u = R̂K
1 , there also exists a potential v in T , bounded outside a finite set such that (−∆)v = p, consequently, s = v+h,

where h is harmonic in T . Also, since the potential v is bounded outside a finite set in T , v is bounded in T .
Theorem 6.8 In a bipotential tree T , the following are equivalent (1) T is tapered. (2) If b is a biharmonic function

defined outside a finite set in T , there is a biharmonic function B in T such that B−b is regular at infinity and bounded
outside a finite set. (3) Any bipotential with finite harmonic support in T is bounded outside a finite set.

Proof. (1)⇒ (2) : Let b be a biharmonic function defined outside a finite set in T and (−∆)b= h. Since h is harmonic
outside a finite set, there exist two potentials p1 and p2 with finite harmonic support and a harmonic function H on T such
that u= p1− p2+H outside a finite set. If (−∆)s1 = p1, (−∆)s2 = p2 and (−∆)B1 =H, then b=−s1−s2+B1+v outside
a finite set, where v is harmonic function. Writing v = q1 − q2 + v1 where q1 and q2 are potentials with finite harmonic
support and v1 is harmonic in T . Let B = B1 + v1. Then B is biharmonic in T and b = s1 − s2 + q1 − q2 +B. Since by
assumption T is tapered, si (i = 1,2) being superharmonic function with finite biharmonic support, can be considered as
potential bounded outside a finite set as in Theorem 6.7. Since qi is a potential with harmonic support, it is also bounded
outside a finite set. Hence (b−B) is bounded outside a finite set and |∆(b−B)| ≤ p1 + p2 outside a finite set.

(2) ⇒ (3) : Let q be bipotential with finite biharmonic support in T . Then, by the assumption, there exists a
biharmonic function B in T such that (q−B) is regular at infinity and bounded outside a finite set. Since |∆(q−B)| ≤ p
outside a finite set, where p is a potential in T and since (−∆)q is also a potential in T , the harmonic function ∆B is
bounded by a potential outside a finite set in T and hence ∆B ≡ 0; that is B harmonic in T . Since |(q−B)| ≤ M outside a
finite set E and since q is also a potential in T, |B| ≤ q+M in T\E. Hence the subharmonic function |B| in T is bounded
by M. Consequently, q is bounded outside the finite set E.

(3)⇒ (1) : Let E be a finite set in T . Since T is a bipotential space, there is a bipotential q in T generated by R̂K
1 .

Since q has finite biharmonic support E, by the assumption, q is bounded outside a finite set. Therefore T is tapered.
Theorem 6.9 In a bipotential tree T , the following are equivalent (1) T is tapered. (2) For any biharmonic function b

defined outside a finite set in T , and regular at infinity, there exists a harmonic function h in T such that b−h is bounded
outside a finite set.

Proof. (1)⇒ (2) : Let b be a biharmonic function regular at infinity. Then using Theorem 6.8, there is a biharmonic
function B in T such that b−B is regular at infinity and bounded outside a finite set. Since b and b−B are regular at
infinity, so is the biharmonic function B defined on T . This implies that B is harmonic. Set B = b to obtain (2).

(2)⇒ (1) : Let E be a finite set in T and (−∆)b = R̂E
1 in T . Then b is biharmonic in Ec and regular at infinity. Hence,

by the assumption, there exists a harmonic function h in T such that b−h is bounded outside a finite set.
Set s = b− h. Then s is a bounded function outside a finite set such that (−∆)s = R̂E

1 is a positive superharmonic.
Hence, s is superharmonic function with harmonic minorant outside a finite set and consequently is the sum of a potential
in T and a harmonic function. This means that in the equation (−∆)s = R̂E

1 , s can be taken as a potential.
Since the superharmonic function s is bounded outside a finite set (and since is always bounced on a finite set), s is

bounded on T . Hence its greatest harmonic minorant also is bounded on T , so that the potential part of s is bounded on
T .

Corollary 6.10 In a tapered tree T , let b be a function defined on n ≤ |x| ≤ N and biharmonic on n < |x|< N. Then
there exist a biharmonic function b2 in |x|< N and a biharmonic function b1 in |x|> n which is bounded outside a finite
set such that b = b1 −b2 in n < |x|< N.

Proof. We have proved this corollary in a general P-tree (Theorem 5.4), excepting that b1 is bounded outside a finite
set. But in that theorem, b1 was shown to be regular at infinity. Hence by the above theorem, there exists a harmonic
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function h in T such that b1 − h is bounded outside a finite set. Consequently, replacing b1 (respectively, b2) by b1 − h
(respectively, b2 −h) in the decomposition b = b1 −b2, we have proved the corollary.

Proposition 6.11 In a tapered tree T , every bounded biharmonic function in T is harmonic if and only if every
bounded biharmonic function outside a finite set is regular at infinity.

Proof. ⇒) Let b be a bounded biharmonic function outside a finite set. Since T is tapered, there exists a biharmonic
function B in T such that b−B is bounded outside a finite set, and b−B is regular at infinity.

This implies that B is bounded in T and hence by the assumption, B is harmonic. Since b−B is regular at infinity, b
is regular at infinity.

⇐) Let B be bounded biharmonic function in T . Then by the assumption, B is regular at infinity, that is |∆B| ≤ a
potential p outside a finite set. Since ∆B is harmonic in T , ∆B ≡ 0. Hence B is harmonic.

InRn, n≥ 5, sn (x) = |x|4−n is a bipotential tending to 0 at infinity. Hence these spaces are tapered and the biharmonic
extensions mentioned in Theorem 2.5 and Proposition 6.11 are valid here. But the spaces Rn, 2 ≤ n ≤ 4, are not tapered.
For, R2 is not hyperbolic; and R3 and R4 though hyperbolic, are not even bipotential spaces.

7. Conclusion
For an infinite tree T , suppose b is biharmonic function defined on a domain Bn = {x : |x| ≤ n}, n ≥ 1, there is always

a biharmonic function B on the whole tree T such that b = B. If b is a biharmonic function defined outside Bn, then there
is a biharmonic function B in T unique up to an additive harmonic function, such that (b−B) is regular at infinity, that
is |∆(b−B)| ≤ p outside a finite set where p is a potential on T . In Remark 5.6, we showed that (b−B) may not be
bounded outside a finite set and in Theorem 6.8, we give a necessary and sufficient conditions for boundness of (b−B).
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