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Abstract: A compendium of interesting identities involving the delta distribution in higher dimensional Euclidean space
is presented, ready to use as a reference work whenever modelling with the delta function is involved. The formulæ
are expressed as well in vector, as in Cartesian and spherical variables, the latter case being especially important since
distributions in spherical coordinates have to be treated with the utmost care. Special attention is paid to an alter ego of
the delta distribution, the so-called delta signumdistribution, acting on test functions showing a singularity at the origin,
which appears, mostly unnoticed, when radial functions and negative powers of the radial distance are used.
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1. Introduction
Without any doubt the delta function is a fundamental mathematical tool in a broad spectrum of theoretical physics

and engineering sciences. However it often happens that the pure mathematical background of distribution theory in
general and the delta distribution in particular, is circumvented, especially in three dimensional space, in favour of ad hoc
constructions involving volume integrals, limit processes, special functions, and the like. Moreover such an approach
sometimes leads to a disagreement about the correctness of one or another formula. Let us give an example.

Consider, in three dimensional Euclidean space R3, the Coulomb potential of a unit point charge, given, up to
constants, by

1
r
=

1√
x2

1 + x2
2 + x2

3

.

It is the fundamental solution of the Laplace operator
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∆3 =
∂ 2

∂x2
1
+

∂ 2

∂x2
2
+

∂ 2

∂x2
3

and its second order Cartesian derivatives with respect to the real variables (x1, x2, x3) are given by

∂xk ∂x j

1
r
= 3xk x j

1
r5 , j ̸= k, j, k = 1, 2, 3

∂ 2
x j

1
r
= 3x2

j
1
r5 − 4

3
πδ (x)− 1

r3 , j = 1, 2, 3

where δ (x) is the delta distribution, sometimes called the delta function, in R3. In [1] it is argued that, with respect to test
functions that are not smooth at the origin, the above formulæ should be replaced by the alternative formulæ

∂xk ∂x j

1
r
= 3xk x j

1
r5 −4π

x jxk

r2 δ (x), j ̸= k, j, k = 1, 2, 3

∂ 2
x j

1
r
= 3x2

j
1
r5 −4π

x2
j

r2 δ (x)− 1
r3 , j = 1, 2, 3.

Mathematically speaking it is not clear what in [1] is meant by “test functions that are not smooth at the origin”.
Nevertheless, taking into account that distributions in general and the delta distribution and its derivatives in particular are
only defined on spaces of differentiable test functions, it is readily observed that the above two sets of formulæ simply
coincide, since it may be proved that, in general dimension m,

x2
j

r2 δ (x) =
1
m

δ (x), j = 1, . . . , m

and

x j xk

r2 δ (x) = 0, j ̸= k, j, k = 1, . . . , m.

But there is more at stake than the correctness of certain formulæ. Let us introduce spherical coordinates (r, θ , ϕ)
in R3 by the transition formulæ

x1 = r sinθ cosϕ , x2 = r sinθ sinϕ , x3 = r cosθ

or

x1 = rω1, x2 = rω2, x3 = rω3
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where we have put

ω1 = sinθ cosϕ , ω2 = sinθ sinϕ , ω3 = cosθ

and

r =
√

x2
1 + x2

2 + x2
3.

In [2] a formula is proved for the expression

∂xi

(
ω j1 · · · ω jn

1
r2

)
, i, j1, j2, j3 = 1, 2, 3

the inverse square field
1
r2 =

1
x2

1 + x2
2 + x2

3
being at the heart of the discussion of idealised point sources in three dimensional

space. An elegant proof based on more general formulæ is given in [3]. We focus on the special case (n = 1)

∂xi

(
ω j

1
r2

)
= δi j

1
r3 −3ωi ω j

1
r3 +

4π
3

δi j δ (x) (1)

and note that if
1
r2 would be interpreted as a distribution, then, due to the non-differentiability of ω j at the origin, the

expression ω j
1
r2 becomes a signumdistribution, i.e. a continuous linear functional on a space of test functions showing a

singularity at the origin, the theory of which was studied in [4, 5] and which is discussed in Section 12. In order to validate
the proposed result (1), ω j

1
r2 should be a distribution whence

1
r2 has to be interpreted here as a signumdistribution, which

is far more than a subtlety. For some more examples in the same vein we refer to [6, Section 12].
So it occurred to us that a self-contained compendium of identities involving the delta distribution and numerous

differential operators acting on it, including their behaviour in the signumdistributional case, could be a very useful
reference work, which lead to the underlying paper.

2. Basic notions and notations
The setting for this paper is m-dimensional Euclidean space Rm with orthonormal basis (e1, . . . , em). The basis

vectors (e j, j = 1, . . . , m) are considered to be Clifford 1-vectors; they generate the Clifford algebra R0, m, where the
non-commutative geometric or Clifford product is governed by the rules

e2
j =−1, j = 1, . . . , m

ei e j =−e j ei, i ̸= j.

Contemporary Mathematics 5240 | Fred Brackx



The Clifford product splits into the commutative inner product, denoted by ·, and the anti-commutative outer product,

denoted by ∧. For the 1-vectors x =
m

∑
j=1

e j x j and y =
m

∑
j=1

e j y j, it holds that

xy = x · y+ x∧ y

and, in particular,

x2 = x · x =−|x|2.

Note that the inner product is the negative of the standard scalar product of geometric vectors:

x · y =− x⃗◦ y⃗ =−
m

∑
j=1

x j y j.

The derivatives with respect to Cartesian variables x j, j = 1, . . . , m are incorporated into the so-called Dirac operator
∂ , which may be seen, see e.g. [7], as a Stein-Weiss projection of the well known gradient operator ∇:

∂ =
m

∑
j=1

e j ∂x j .

The Dirac operator lies at the hart of the higher dimensional theory of monogenic functions (see e.g. [8]), also called
Clifford analysis. It is a direct and elegant generalization to higher dimension of the theory of holomorphic functions in
the complex plane. One of the important properties of the Dirac operator is that it linearizes the Laplace operator:

∂ 2 =−∆.

For more on Clifford algebras we refer to e.g. [9].
For the sake of completeness, we recall some basic notions from the theory of distributions. Distributions, also known

as generalized functions, generalize the traditional notion of a function. They act on test functions, which we consider
here to be infinitely differentiable and with compact support in Rm. This space of test functions is denoted by D(Rm),
and the action of a distribution T on a test function φ ∈ D(Rm) is denoted by

⟨ T, φ ⟩.

A distribution is a continuous linear functional on D(Rm) according to the following definition. Note that this is
only one of several possible equivalent definitions.

Definition 1A real distribution T inRm is a linear functional T : D(Rm)→R such that for every compact setK ⊂Rm,
for every multi-index α , and for every sequence of test functions (φ j)

∞
j=1 whose supports are contained in K, it holds that

whenever the sequence (∂ α φ j)
∞
j=1 converges to 0 uniformly on K, then the numerical sequence (⟨T, ∂ α φ j⟩)∞

j=1 converges
to 0.
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The space of distributions in Rm is denoted by D ′(Rm). A typical example of a distribution is the delta or Dirac
distribution δ (x), defined in Rm by

⟨ δ (x), φ(x) ⟩= φ(0), ∀φ ∈ D(Rm).

And any locally integrable function f (x) may be interpreted as a distribution Tf , called a regular distribution, by
putting

⟨ Tf , φ ⟩=
∫
Rm

f (x)φ(x)dx, ∀φ ∈ D(Rm).

A fundamental property of a distribution T ∈ D ′(Rm) is its infinitely differentiability, its partial derivatives with
respect to the Cartesian coordinates being given, for all test functions φ(x) ∈ D(Rm), by

⟨ ∂x j T, φ(x) ⟩=−⟨ T, ∂x j φ(x) ⟩, j = 1, . . . , m.

Another important operation on distributions is the multiplication of a distribution T by an analytic function α(x),
i.e. a function which in the neighbourhood of any point x∗ ∈Rm can be developed into a convergent multiple power series
in (x j − x∗j), j = 1, . . . , m. This multiplication is defined by

⟨ α(x)T, φ ⟩= ⟨ T, α(x)φ ⟩, ∀φ ∈ D(Rm).

We call an operator acting on distributions Cartesian if it involves partial derivation with respect to the Cartesian
coordinates, and multiplication and division by analytic functions. However, this last operation, although being well-
defined, is not uniquely determined, but results into an equivalence class of distributions involving (derivatives of) the
translated delta distribution δ (x− y), where y is a zero of the analytic function under consideration. More explicitly, if
the analytic function β (x) shows a zero at the single point y then

1
β (x)

T = S+T ∗

where S is any distribution for which β (x)S = T and T ∗ is a distribution with support at the point y, i.e. a finite linear
combination of distributional derivatives of the translated delta distribution δ (x− y):

T ∗ = ∑
α

cα ∂ α δ (x− y).

Two basic Cartesian operators on distributions are the multiplication operator x and the Dirac operator ∂ . Their
actions are, quite naturally, well-defined and uniquely determined as

⟨ xT, φ(x) ⟩= ⟨ T, xφ(x) ⟩
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and

⟨ ∂ T, φ(x) ⟩=−⟨ T, ∂ φ(x) ⟩.

Also their squares: the multiplication operator−x2 = |x|2 and the Laplace operator−∂ 2 = ∆, are Cartesian operators
with uniquely determined actions on distributions.

Division of a distribution by x may be approached in two ways. Either the function x is considered as a vector
polynomial of the first degree, whence a vector analytic function with a single zero at the origin, or, as

1
x
=− x

|x|2
, division

by x is seen as the composition of two operations: first division by r2 = |x|2 = x2
1 + . . .+ x2

m, followed by multiplication
by (−x). In [5] the following lemma was proven showing that both approaches are equivalent.

Lemma 1 For a scalar distribution T it holds that

1
x

T = S+δ (x)c

for any distribution S such that xS = T , c being a vectorial constant.

Henceforth we use the notation
[

1
x

T
]
for the equivalent class of distributions S such that xS = T .

The two fundamental formulæ in monogenic function theory, involving the (anti-)commutator of x and ∂ , viz.

{x, ∂}= x∂ +∂ x =−2E−m and [x, ∂ ] = x∂ −∂ x = m−2Γ

give rise to two other well known Cartesian operators: the scalar Euler operator

E=
m

∑
j=1

x j ∂x j

and the bivector (orbital) angular momentum operator

Γ =− ∑
j<k

e jek L jk =− ∑
j<k

e jek(x j∂xk − xk∂x j).

It follows that

x∂ =−E−Γ

or more precisely

x ·∂ =−E and x∧∂ =−Γ. (2)
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On the other hand it holds that

∂ x =−m−E+Γ

which splits into the scalar and bivector parts

∂ · x =−m−E and ∂ ∧ x = Γ.

In the sequel we will also use of a special subclass of distributions, viz. tempered distributions. A distribution T ,
initially defined on the spaceD(Rm) of compactly supported infinitely differentiable test functions, is said to be tempered
if it can be extended to a continuous linear functional on the Schwartz space S (Rm) of rapidly decreasing smooth test
functions. Rapidly decreasing means decaying to 0 for |x| → ∞ faster than the inverse of any polynomial. An example of
a rapidly decreasing function is |x|k exp(−|x|ℓ), for any natural numbers k and ℓ. More explicitly, rapidly decreasing test
functions are defined as follows.

Definition 2 A function ψ(x) is a rapidly decreasing test function in Rm if it is infinitely differentiable in Rm and,
together with all its derivatives, satisfies, for all multi-indices α and β ,

pα, β (ψ) = sup
Rm

|xα ∂ β ψ(x)|< ∞.

Here we have used the short hand notations xα = xα1
1 · · · xαm

m and ∂ β = ∂
x

β1
1
· · · ∂

xβm
m
. In a natural way, a tempered

distribution is now defined as follows.
Definition 3A real tempered distribution T inRm is a linear functional T : S (Rm)→R such that for every sequence

of rapidly decreasing test functions (ψ j)
∞
j=1 for which, for all multi-indices α and β ,

lim
j→∞

pα, β ψ j(x) = 0

the numerical sequence (⟨T, ψ j⟩)∞
j=1 converges to 0.

The space of tempered distributions in Rm is denoted by S ′(Rm), and it holds that

D(Rm)⊂ S (Rm) and S ′(Rm)⊂ D ′(Rm).

Tempered distributions are highly useful in practical applications, if only because the Fourier transform F , given by

F [ψ](y) =
∫
Rm

ψ(x)exp
(
−2πi⟨x, y⟩

)
dx, ψ ∈ S (Rm)

and

⟨ F [T ], ψ ⟩= ⟨ T, F [ψ] ⟩, ∀ψ ∈ S (Rm), T ∈ S ′(Rm)
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is an isomorphism of both spacesS (Rm) andS ′(Rm). Typical examples of tempered distributions are constant functions
and the delta distribution δ (x) defined by

⟨ δ (x), ψ(x) ⟩= ψ(0), ∀ψ ∈ S (Rm)

which are interrelated by the Fourier transform:

F [δ (x)] = 1y.

3. The one-dimensional delta distribution
The delta distribution δ (t) on the real line is defined, for all test functions φ(t) ∈ D(R), by

⟨ δ (t), φ(t) ⟩= φ(0).

It enjoys the following properties:
• it is pointly supported at the origin t = 0;
• it is an even distribution: δ (−t) = δ (t);

• it is homogeneous of order (−1): δ (at) =
1
|a|

δ (t);

• it is of finite order, more specifically of order zero, i.e. δ (t) is continuously extendable to C0(R).
As any other distribution it is infinitely differentiable and its kth order derivative, given by

⟨ δ (k)(t), φ(t) ⟩= (−1)k ⟨ δ (t), φ(k)(t) ⟩= (−1)k φ(k)(0),

is of finite order k.
Multiplication of δ (t) by natural powers of the variable t results into the following easily checked identities:

t δ (t) = 0

and

t δ ′(t) =−δ (t)

t2 δ ′(t) = 0

and also
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t δ ′′(t) =−2δ ′(t)

t2 δ ′′(t) = 2δ (t)

t3 δ ′′′(t) = 0

etc. It holds that

t j δ (k)(t) = (−1) j k(k−1) · · ·(k− j+1)δ (k− j)(t), j ≤ k

t j δ (k)(t) = 0, j > k

and in particular

tk δ (k)(t) = (−1)k k!δ (t).

Division of δ (t) by the variable t leads, a priori, to an equivalence class of distributions, since t shows a single zero
at the origin:

1
t

δ (t) =−δ ′(t)+ cδ (t),

but, as the left-hand side is a homogeneous distribution of order (−2), as is δ ′(t) at the right-hand side, the arbitrary
constant c must be zero, eventually leading to

1
t

δ (t) =−δ ′(t).

Along similar lines it is found that

1
t j δ (k− j)(t) = (−1) j 1

k(k−1) · · ·(k− j+1)
δ (k)(t)

and

1
tk δ (t) = (−1)k 1

k!
δ (k)(t)

and also
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1
t

δ (k−1)(t) =− 1
k

δ (k)(t).

4. The higher dimensional delta distribution: the basics
The delta distribution δ (x) ∈ D ′(Rm) is a scalar distribution defined, for all test functions φ ∈ D(Rm), by

⟨ δ (x), φ(x) ⟩= φ(0).

It is a distribution which is:
• pointly supported at the origin x = 0;
• rotation invariant: δ (Ax) = δ (x), ∀A ∈ SO(m), where SO(m) is the group of m × m orthogonal matrices of

determinant 1, called the special orthogonal group or rotation group;
• even: δ (−x) = δ (x);

• homogeneous of order (−m): δ (ax) =
1

|a|m
δ (x);

• of finite order zero.
Its Cartesian derivatives are given by

⟨ ∂ s
x j

δ (x), φ(x) ⟩= (−1)s⟨ δ (x), ∂ s
x j

φ(x) ⟩= (−1)s{∂ s
x j

φ(x)}|x=0, j = 1, . . . , m.

In particular the action of the Dirac operator ∂ results into the vector-valued distribution ∂δ (x) given by

⟨ ∂ δ (x), φ(x) ⟩=−⟨ δ (x), ∂ φ(x) ⟩=−{∂φ(x)}|x=0.

The action of the Euler operator E reveals its homogeneous character:

Eδ (x) = (−m)δ (x)

whereas the action of the angular momentum operator Γ =− ∑ j<k e jek(x j∂xk − xk∂x j) leads to

Γδ (x) = 0

which is in accordance with the rotation invariant or radial character of δ (x).

5. Multiplication by natural powers of the vector variable x_
A straightforward application of the definition of multiplication of a distribution by an analytic function, leads to

the following identities for multiplication of the delta distribution and its Dirac derivatives by the vector variable x and
natural powers thereof. It holds that
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xδ (x) = 0

and

x∂δ (x) = mδ (x)

x2 δ (x) = 0

and also

x∂ 2δ (x) = 2∂δ (x)

x2 ∂ 2δ (x) = 2mδ (x)

x3 ∂ 2δ (x) = 0

etc. More generally one has

x∂ 2ℓ+1δ (x) = (m+2ℓ)∂ 2ℓδ (x)

x∂ 2ℓδ (x) = (2ℓ)∂ 2ℓ−1δ (x).

By iteration we obtain the following identities involving natural powers of the vector variable x :

x2 ∂ 2ℓ+1δ (x) = (m+2ℓ)(2ℓ)∂ 2ℓ−1δ (x)

x3 ∂ 2ℓ+1δ (x) = (m+2ℓ)(2ℓ)(m+2ℓ−2)∂ 2ℓ−2δ (x)

x4 ∂ 2ℓ+1δ (x) = (m+2ℓ)(m+2ℓ−2)(2ℓ)(2ℓ−2)∂ 2ℓ−3δ (x)

...

x2ℓ+1 ∂ 2ℓ+1δ (x) =C(m, ℓ)δ (x)

where we have introduced the constant
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C(m, ℓ) = (m+2ℓ)(m+2ℓ−2) · · ·(m)(2ℓ)(2ℓ−2) · · ·(2)

= 2ℓ ℓ!m(m+2) · · ·(m+2ℓ)

= 22ℓ+1 ℓ!
Γ(m/2+ ℓ+1)

Γ(m/2)
.

Similarly we find

x2 ∂ 2ℓδ (x) = (m+2ℓ−2)(2ℓ)∂ 2ℓ−2δ (x)

x3 ∂ 2ℓδ (x) = (m+2ℓ−2)(2ℓ)(2ℓ−2)∂ 2ℓ−3δ (x)

x4 ∂ 2ℓδ (x) = (m+2ℓ−2)(m+2ℓ−4)(2ℓ)(2ℓ−2)∂ 2ℓ−4δ (x)

...

x2ℓ ∂ 2ℓδ (x) =
1

m+2ℓ
C(m, ℓ)δ (x).

More generally it holds that, for k ≤ ℓ,

x2k ∂ 2ℓδ (x) = (2ℓ)(2ℓ−2) · · · (2ℓ−2k+2)(m+2ℓ−2)(m+2ℓ−4) · · · (m+2ℓ−2k)∂ 2ℓ−2kδ (x)

x2k+1 ∂ 2ℓδ (x) = (2ℓ)(2ℓ−2) · · · (2ℓ−2k)(m+2ℓ−2)(m+2ℓ−4) · · · (m+2ℓ−2k)∂ 2ℓ−2k−1δ (x)

x2k ∂ 2ℓ+1δ (x) = (2ℓ)(2ℓ−2) · · · (2ℓ−2k+2)(m+2ℓ)(m+2ℓ−2) · · · (m+2ℓ−2k+2)∂ 2ℓ−2k+1δ (x)

x2k+1 ∂ 2ℓ+1δ (x) = (2ℓ)(2ℓ−2) · · · (2ℓ−2k+2)(m+2ℓ)(m+2ℓ−2) · · · (m+2ℓ−2k)∂ 2ℓ−2kδ (x).

6. Multiplication by natural powers of the Cartesian variables xj, j = 1, ..., m
In this section we will establish formulæ for products of partial derivatives of the delta distribution δ (x) by Cartesian

variables involving expressions of the form

x j1x j2 · · · x jp ∂k1∂k2 · · · ∂kq δ (x)

Volume 5 Issue 4|2024| 5249 Contemporary Mathematics



where ∂k is shorthand for ∂xk , k = 1, . . . , m, more explicitly: ∂k δ (x) denotes the partial derivative of the delta distribution
δ (x)with respect to the Cartesian variable xk, k = 1, . . . , m. Such an expression can always been written in the alternative
form

xα1
1 xα2

2 · · · xαm
m ∂ β1

1 ∂ β2
2 · · · ∂ βm

m δ (x)

with |α|= α1 + · · ·+αm = p and |β |= β1 + · · ·+βm = q.
We proceed stepwise via a sequence of lemmata. Note that, since the delta distribution δ (x) is tempered, see Section

2, the test functions under consideration can be taken either in D(Rm) or in S (Rm).
Lemma 2 For all j = 1, . . . , m it holds that

x j δ (x) = 0 ,

the zero distribution.
Proof. For all test functions φ(x), and any j = 1, . . . , m it holds that

⟨ x j δ (x), φ(x) ⟩= ⟨ δ (x), x j φ(x) ⟩= {x j φ(x)}x=0 = 0.

Lemma 3 For all j, k = 1, . . . , m it holds that the commutator of the operators x j and ∂ j is given by

{x j, ∂ j}=−1

whereas for j ̸= k

{x j, ∂k}= 0.

Proof. For each distribution T it holds that

∂ j (x j T ) = T + x j ∂ j T

and thus

(x j ∂ j −∂ j x j)T =−T.

For j ̸= k it holds trivially that
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∂k (x j T ) = x j ∂k T.

Note that the above result can be written as

{x j, ∂k}=−δ jk

where δ jk is the Kronecker delta.
Corollary 1 For the delta distribution δ (x) it holds that, for every j = 1, . . . , m,

x j ∂ j δ (x) =−δ (x).

Lemma 4 For the delta distribution δ (x) it holds that, for every j = 1, . . . , m and every n ∈ N,

xn
j ∂ n

j δ (x) = (−1)n n!δ (x).

Proof. The proof is by induction on n.
(i) Corollary 1 shows the result is true for n = 1.
(ii) We assume the result to be valid for n:

xn
j ∂ n

j δ (x) = (−1)n n!δ (x)

and prove it to be true for (n+1). We have consecutively, making use of the results in Lemma 3:

xn+1
j ∂ n+1

j δ (x) = xn
j ∂ j x j ∂ n

j δ (x)− xn
j ∂ n δ (x)

= xn−1
j ∂ j x2

j ∂ n
j δ (x)−2xn

j ∂ n δ (x)

= xn−2
j ∂ j x3

j ∂ n
j δ (x)−3xn

j ∂ n δ (x)

= . . .

= x j ∂ j xn
j ∂ n

j δ (x)−nxn
j ∂ n δ (x)

= x j ∂ j ((−1)n n!δ (x))+(−1)n+1 nn!δ (x)
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= (−1)n+1 n!δ (x)+(−1)n+1 nn!δ (x)

= (−1)n+1 (n+1)!δ (x).

Proposition 1 For the delta distribution δ (x) it holds that the distribution

xα1
1 xα2

2 · · · xαm
m ∂ β1

1 ∂ β2
2 · · · ∂ βm

m δ (x)

is the zero distribution whenever at least one of the exponents, say α j, is greater than the corresponding order of derivation
β j.

Proof. Assuming α j > β j we put α j − β j = s j > 0. Taking into account that the operators x j and ∂k commute
whenever j ̸= k (see Lemma 3), the given distribution can be rewritten as:

xα1
1 xα2

2 · · · [x
α j
j ] · · · xαm

m ∂ β1
1 · · · [∂ β j

j ] · · · ∂ βm
m δ (x)xs

j x
β j
j ∂ β j

j δ (x)

or, in view of Lemma 4,

xα1
1 xα2

2 · · · [x
α j
j ] · · · xαm

m ∂ β1
1 · · · [∂ β j

j ] · · · ∂ βm
m δ (x)xs

j (−1)β j β j!δ (x)

which clearly is the zero distribution seen the fact that x j δ (x) = 0.
Proposition 2 For the delta distribution δ (x) it holds that, for all multi-indices (α1, . . . , αm),

xα1
1 xα2

2 · · · xαm
m ∂ α1

1 ∂ α2
2 · · · ∂ αm

m δ (x) = (−1)α1 α1! · · · (−1)αm αm!δ (x) = (−1)|α| α!δ (x).

Proof. Again taking into account that the operators x j and ∂k commute whenever j ̸= k, the given distribution may
be rewritten as:

(xα1
1 ∂ α1

1 ) · · · (xαm
m ∂ αm

m )δ (x)

which, invoking the result in Lemma 4, equals

(−1)α1 α1! · · · (−1)αm αm!δ (x) = (−1)|α| α!δ (x).

Proposition 3 If p < q, with p+ s = q, then for the delta distribution δ (x) it holds that
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x j1x j2 · · · x jp ∂k1∂k2 · · · ∂kq δ (x)

= (−1)p ∑
(kp+1kp+2 ... kp+s)

 ∑
π( j1 j2 ... jp)

δ j1k1δ j2k2 · · · δ jpkp

 ∂kp+1∂kp+2 · · · ∂kp+sδ (x)

(3)

where the first summation runs over all possible combinations (kp+1kp+2 . . . kp+s) out of {k1, k2, . . . , kq} and the second
summation runs over all possible permutations of ( j1 . . . jp) repetitions being allowed.

Proof. The proof is by induction on p and q.
First we compute directly a particular case for p and q, say p = 2 and q = 4 en we find:

x j xk ∂a ∂b ∂c ∂d δ (x) = (δ jc δkd +δ jd δkc)∂a ∂b δ (x)

+(δ jb δkd +δ jd δkb)∂a ∂c δ (x)

+(δ jb δkc +δ jc δkb)∂a ∂d δ (x)

+(δ ja δkd +δ jd δka)∂b ∂c δ (x)

+(δ ja δkc +δ jc δka)∂b ∂d δ (x)

+(δ ja δkb +δ jb δka)∂c ∂d δ (x)

which is in agreement with formula (3).
Next we increase p by 1 by multiplying the left-hand side of (3) by a Cartesian variable, say x j0 . Doing so, we expect

the order of derivation of δ (x) at the right-hand side of (3) to diminish by 1. We find, using the commutating relations of
the operators x j and ∂ j, consecutively:

x j0 ∂kp+1∂kp+2 . . . ∂kp+sδ (x) = ∂kp+1 x j0 ∂kp+2 . . .∂kp+sδ (x)−δ j0, kp+1 ∂kp+2 . . .∂kp+s δ (x)

= ∂kp+1

(
∂kp+2 x j0 . . .∂kp+s δ (x)−δ j0, kp+2 ∂kp+3 . . .∂kp+s δ (x)

)

−δ j0, kp+1 ∂kp+2 . . .∂kp+s δ (x)

= ∂kp+1 ∂kp+2 ∂kp+3 x j0 ∂kp+4 . . .∂kp+s δ (x)−δ j0, kp+1 ∂kp+2 . . .∂kp+s δ (x)

−δ j0, kp+2 ∂kp+1 ∂kp+3 . . .∂kp+s δ (x)− δ j0, kp+3 ∂kp+1 ∂kp+2 . . .∂kp+s δ (x)
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= . . .

= − δ j0, kp+1 ∂kp+2 . . .∂kp+s δ (x)

− δ j0, kp+2 ∂kp+1 ∂kp+3 . . .∂kp+s δ (x)

− . . .

− δ j0, kp+s ∂kp+1 ∂kp+2 . . .∂kp+s−1 δ (x)

which leads to

x j0 x j1x j2 · · · x jp ∂k1∂k2 · · · ∂kq δ (x)

= (−1)p ∑
(kp+1kp+2 ...kp+s)

 ∑
π( j1 j2 ... jp)

δ j1k1δ j2k2 · · · δ jpkp

 x j0 ∂kp+1∂kp+2 . . . ∂kp+sδ (x)

where now the right-hand side takes the form

(−1)p ∑
(kp+1kp+2 ...kp+s)

 ∑
π( j1 j2 ... jp)

δ j1k1δ j2k2 · · · δ jpkp



×
(
−δ j0, kp+1 ∂kp+2 . . . ∂kp+s δ (x)− δ j0, kp+2 ∂kp+1 ∂kp+3 . . . ∂kp+s δ (x)− . . .− δ j0,kp+s ∂kp+1 ∂kp+2 . . . ∂kp+s−1 δ (x)

)
which indeed equals

(−1)p+1 ∑
(kp+2 ...kp+s)

 ∑
π( j0 j1 j2 ... jp)

δ j1k1δ j2k2 · · · δ jpkpδ j0kp+1

 ∂kp+2 . . . ∂kp+sδ (x).

To prove the induction on q we increase q by 1 by acting with the operator ∂kq+1 on both sides of equation (3). The
action on the right-hand side is simply

(−1)p ∑
(kp+1kp+2 ...kq)

 ∑
π( j1 j2 ... jp)

δ j1k1δ j2k2 · · · δ jpkp

 ∂kp+1∂kp+2 . . . ∂kq∂kq+1δ (x)
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The action of ∂kq+1 on the left-hand side yields

x j1 · · · x jp ∂kq+1 ∂k1∂k2 · · · ∂kq δ (x)+V

where the distribution V is given by

δkq+1, j1 x j2 . . . x jp ∂k1∂k2 · · · ∂kq δ (x)+δkq+1, j2 x j1 x j3 . . . x jp ∂k1∂k2 · · · ∂kq δ (x)

+ · · ·+δkq+1, jp x j1 x j2 . . . x jp−1 ∂k1∂k2 · · · ∂kq δ (x).

On each of the terms of V , formula (3) can be applied, yielding the following expression for V :

δkq+1, j1 (−1)p−1 ∑
(k1kp+1kp+2 ...kq)

 ∑
π( j2 ... jp)

δ j2k2 · · · δ jpkp

 ∂k1∂kp+1∂kp+2 . . . ∂kq δ (x)+

· · ·

+ δkq+1, j1 (−1)p−1 ∑
(kpkp+1kp+2 ...kq)

 ∑
π( j1 ... jp−1)

δ j1k1 · · · δ jp−1kp−1

 ∂kp∂kp+1∂kp+2 . . . ∂kq δ (x).

This leads to

x j1 · · · x jp ∂k1∂k2 · · · ∂kq ∂kq+1 δ (x)

= (−1)p ∑
(kp+1kp+2 ...kq)

 ∑
π( j1 j2 ... jp)

δ j1k1δ j2k2 · · · δ jpkp

 ∂kp+1∂kp+2 . . . ∂kq∂kq+1δ (x)−V

which, by substituting the above obtained expression for V , takes the desired form

x j1 · · · x jp ∂k1∂k2 · · · ∂kq ∂kq+1 δ (x)

= (−1)p ∑
(kp+1kp+2 ...kq+1)

 ∑
π( j1 j2 ... jp)

δ j1k1δ j2k2 · · ·δ jpkp

 ∂kp+1∂kp+2 . . . ∂kq∂kq+1δ (x).
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Nowwe illustrate the results of the Propositions 1, 2 and 3 by some straightforward examples, meanwhile recovering
former formulæ.

Example 1 For all j = 1, . . . , m, one has x j δ (x) = 0, whence xδ (x) = 0. Similarly it holds that x jxk ∂aδ (x) = 0,
whence x2 ∂ δ (x) = 0, etc.

Example 2 For all j = 1, . . . , m, one has

x j ∂ jδ (x) =−δ (x)

and also

x j ∂k δ (x) = 0, j ̸= k.

It follows at once that

Eδ (x) =
m

∑
j=1

x j ∂ j δ (x) = (−m)δ (x),

that

Γδ (x) =− ∑
j<k

e jek(x j∂k − xk∂ j)δ (x) = 0,

and

x∂ δ (x) = ∑
j

∑
k

e jek x j ∂k δ (x) =− ∑
j

x j ∂ j δ (x) = mδ (x).

It also holds that

x j ∂δ (x) =−e j δ (x)

and

x∂ jδ (x) =−e j δ (x).

Example 3 For j ̸= k one has

x j ∂ 2
k δ (x) = 0
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whereas

x j ∂ 2
j δ (x) =−2∂ j δ (x)

whence

x j ∂ 2 δ (x) =−x j

m

∑
k=1

∂ 2
k δ (x) = 2∂ j δ (x)

and

x∂ 2 δ (x) = 2∂ δ (x).

Example 4 For j ̸= k one has

x j xk ∂ 2
a δ (x) =

(
∑

π( jk)
δ ja δka

)
δ (x) = 0

whence

x j xk ∂ 2 δ (x) = 0.

For j ̸= a one has

x2
j ∂ 2

a δ (x) =

(
∑

π( j j)
δ ja δ ja

)
δ (x) = 0

whereas

x2
j ∂ 2

j δ (x) =

(
∑

π( j j)
δ j j δ j j

)
δ (x) = 2δ (x)

whence

x2
j ∂ 2 δ (x) =−2δ (x)

and
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x2 ∂ 2 δ (x) =−
m

∑
j=1

x2
j ∂ 2 δ (x) = 2m δ (x).

Example 5 For j ̸= k one has

x j ∂k ∂ 2
a δ (x) =−2δ ja ∂k ∂a δ (x)

whence

x j ∂k ∂ 2
a δ (x) = 0, j ̸= a

and

x j ∂k ∂ 2
j δ (x) =−2∂k ∂ j δ (x)

yielding

x j ∂k ∂ 2 δ (x) = 2∂ j ∂k δ (x).

On the other hand one has

x j ∂ j ∂ 2
a δ (x) =−2δ ja ∂ j ∂a δ (x)− ∂ 2

a δ (x)

whence

x j ∂ j ∂ 2
a δ (x) =−∂ 2

a δ (x), j ̸= a

and

x j ∂ j ∂ 2
j δ (x) =−3∂ j ∂ j δ (x)

yielding

x j ∂ j ∂ 2 δ (x) =−∂ 2 δ (x)+2∂ 2
j δ (x).

It follows that
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x∂ 3 δ (x) = ∑
j

∑
k

e jek x j ∂k ∂ 2 δ (x)

=− ∑
j

x j ∂ j ∂ 2 δ (x)+ ∑
j ̸=k

e jek x j ∂k ∂ 2 δ (x)

= m∂ 2 δ (x)+ 2∂ 2 δ (x)+ ∑
j ̸=k

e jek 2∂ j ∂k δ (x)

= (m+2)∂ 2 δ (x)

and also

E∂ 2 δ (x) = ∑
j

x j ∂ j ∂ 2 δ (x) = ∑
j
(−∂ 2 δ (x)+2∂ 2

j δ (x)) =−(m+2)∂ 2 δ (x)

and

Γ∂ 2 δ (x) =− ∑
j<k

e jek (x j∂k − xk∂ j)∂ 2 δ (x) = 0.

In the same order of ideas the following results may be proven. Note however that a proof by induction is much
simpler.

Proposition 4 For j = 1, . . . , m one has

x j ∂ 2ℓ+1 δ (x) =−e j ∂ 2ℓ δ (x)+(2ℓ)∂ j ∂ 2ℓ−1 δ (x)

x j ∂ 2ℓ δ (x) = (2ℓ)∂ j ∂ 2ℓ−2 δ (x).

Proposition 5 For j, k = 1, . . . , m one has

x j ∂k ∂ 2ℓ δ (x) = (2ℓ)∂ j ∂k ∂ 2ℓ−2 δ (x), j ̸= k

x j ∂ j ∂ 2ℓ δ (x) =−∂ 2ℓ δ (x)+(2ℓ)∂ 2
j ∂ 2ℓ−2 δ (x)

x j ∂k ∂ 2ℓ+1 δ (x) =−e j ∂k ∂ 2ℓ δ (x)+(2ℓ)∂ j ∂k ∂ 2ℓ−1 δ (x), j ̸= k

x j ∂ j ∂ 2ℓ+1 δ (x) =−∂ 2ℓ+1 δ (x)− e j ∂ j ∂ 2ℓ δ (x)+(2ℓ)∂ 2
j ∂ 2ℓ−1 δ (x).
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Making use of the results in Propositions 4 and 5 the following well known formulæ, may be proven straightforwardly.
Corollary 2 One has
(i) E∂ 2ℓ δ (x) =−(m+2ℓ)∂ 2ℓ δ (x);
(ii) E∂ 2ℓ+1 δ (x) =−(m+2ℓ+1)∂ 2ℓ+1 δ (x);
(iii) Γ∂ 2ℓ δ (x) = 0;
(iv) Γ∂ 2ℓ+1 δ (x) = (m−1)∂ 2ℓ+1 δ (x).

7. Division by natural powers of the vector variable x_
Division of a distribution by the vector variable x is a Cartesian operation, whence always defined, albeit, in general,

not uniquely determined. However, from [5] we know that division of a distribution by x is uniquely determined when this
distribution is either radial or homogeneous with homogeneity degree different from (−m+1), where m is the dimension
of the Euclidean space considered. It follows that the division of the delta distribution and its Dirac derivatives by natural
powers of the vector variable x will always be uniquely determined. Let us illustrate this as follows.

According to the general theory we would have

1
x

δ (x) =
1
m

∂ δ (x)+δ (x)c0

with c0 an arbitrary vector constant, since x∂ δ (x) = mδ (x), xδ (x) = 0 and x shows a simple zero at the origin. But the
left-hand side is a homogeneous distribution of order (−m−1) whence the right-hand side should also be homogeneous
of order (−m−1), forcing the arbitrary constant c0 to be zero, eventually leading to

1
x

δ (x) =
1
m

∂ δ (x).

Similarly, based on the results of Section 5, we find:

1
x

∂δ (x) =
1
2

∂ 2δ (x)

1
x

∂ 2δ (x) =
1

m+2
∂ 3δ (x)

1
x

∂ 3δ (x) =
1
4

∂ 4δ (x)

1
x

∂ 4δ (x) =
1

m+4
∂ 5δ (x)

etc. More generally, one has
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1
x

∂ 2ℓδ (x) =
1

m+2ℓ
∂ 2ℓ+1δ (x)

1
x

∂ 2ℓ+1δ (x) =
1

2ℓ+2
∂ 2ℓ+2δ (x).

By iteration we find

1
x2 δ (x) =

1
2m

∂ 2δ (x)

1
x2 ∂δ (x) =

1
2(m+2)

∂ 3δ (x)

1
x2 ∂ 2δ (x) =

1
4(m+2)

∂ 4δ (x)

1
x2 ∂ 3δ (x) =

1
4(m+4)

∂ 5δ (x)

etc. More generally, one has

1
x2 ∂ 2ℓδ (x) =

1
(m+2ℓ)(2ℓ+2)

∂ 2ℓ+2δ (x)

1
x2 ∂ 2ℓ+1δ (x) =

1
(2ℓ+2)(m+2ℓ+2)

∂ 2ℓ+3δ (x).

Still more generally, it holds that

1
x2k ∂ 2ℓδ (x) =

1
2k (ℓ+1)(ℓ+2) · · ·(l + k)(m+2ℓ)(m+2ℓ+2) · · ·(m+2ℓ+2k−2)

∂ 2ℓ+2kδ (x)

1
x2k+1 ∂ 2ℓδ (x) =

1
2k (ℓ+1)(ℓ+2) · · ·(l + k)(m+2ℓ)(m+2ℓ+2) · · ·(m+2ℓ+2k)

∂ 2ℓ+2k+1δ (x)

1
x2k ∂ 2ℓ+1δ (x) =

1
2k (ℓ+1)(ℓ+2) · · ·(l + k)(m+2ℓ+2)(m+2ℓ+4) · · ·(m+2ℓ+2k)

∂ 2ℓ+2k+1δ (x)

1
x2k+1 ∂ 2ℓ+1δ (x) =

1
2k+1 (ℓ+1)(ℓ+2) · · ·(l + k+1)(m+2ℓ+2)(m+2ℓ+4) · · ·(m+2ℓ+2k)

∂ 2ℓ+2k+2δ (x).
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8. Spherical coordinates

We introduce in Euclidean space Rm spherical coordinates x = rω, r = |x|, ω =
m

∑
j=1

e j ω j ∈ Sm−1. Note that in

physics texts ω is usually denoted by e⃗r or r̂.
The Dirac operator takes the form

∂ = ∂ rad +∂ ang

with

∂ rad = ω ∂r and ∂ ang =
1
r

∂ω .

We have indeed

∂ =
m

∑
j=1

e j

(
∂r ω j +

m

∑
k=1

∂ωk

1
r

δ jk

)

=
m

∑
j=1

e j ω j ∂r + e j ∂ω j

1
r

= ω ∂r +
1
r

∂ω

where we have put

∂ω =
m

∑
j=1

e j ∂ω j .

This angular differential operator ∂ω may be seen as the Clifford vector version of the so-called spherical gradient
∇⃗0 for which it holds that

∇⃗ =
1
r

∇⃗0 + e⃗r ∂r.

To illustrate the meaning of this spherical Dirac operator ∂ω we consider the traditional cases of low dimension:
m = 2 and m = 3.

In dimension m = 2, where x1 = r cosθ , x2 = r sinθ and ω1 = cosθ , ω2 = sinθ , it holds that
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 ∂r
1
r

∂θ

= A2

[
∂x1

∂x2

]

where the SO(2)-matrix A2 is given by

A2 =

[
cosθ sinθ
−sinθ cosθ

]
.

It follows that

∂ = e1

(
cosθ ∂r −

1
r

sinθ ∂θ

)
+ e2

(
sinθ ∂r +

1
r

cosθ ∂θ

)

whence

∂ω = eθ ∂θ

with eθ =−e1 sinθ + e2 cosθ a unit vector tangent to the unit circle. Note that

∂ω1 =− sinθ ∂θ and ∂ω2 = cosθ ∂θ .

In dimension m = 3, where x1 = r sinθ cosϕ , x2 = r sinθ sinϕ , x3 = r cosθ and ω1 = sinθ cosϕ , ω2 = sinθ sinϕ ,
ω3 = cosθ , it holds that


∂r

1
r

∂θ

1
r

1
sinθ

∂ϕ

= A3


∂x1

∂x2

∂x3



where the SO(3)-matrix A3 is given by

A3 =

sinθ cosϕ sinθ sinϕ cosθ
cosθ cosϕ cosθ sinϕ −sinθ
− sinϕ cosϕ 0

 .

It follows that
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∂ =
[
e1 e2 e3

]
×


∂x1

∂x2

∂x3

=
[
e1 e2 e3

]
×A−1

3 ×


∂r

1
r

∂θ

1
r

1
sinθ

∂ϕ



whence

∂ω = eθ ∂θ + eφ
1

sinθ
∂φ

with eθ = e1 cosθ cosϕ +e2 cosθ sinϕ −e3 sinθ and eϕ =−e1 sinϕ +e2 cosϕ two orthogonal unit vectors tangent to the
unit sphere. Note that

∂ω1 = cosθ cosϕ ∂θ − sinϕ
1

sinθ
∂φ

∂ω2 = cosθ sinϕ ∂θ + cosϕ
1

sinθ
∂φ

∂ω3 =−sinθ ∂θ .

The angular operators ∂ω j , j = 1, . . . , m should be manipulated with great care, moreover taking into account that
the ω j, j = 1, . . . , m are not independent since ∑

j
ω2

j = 1. Note the following formulæ:

• ∂ωi [ωi] = 1−ω2
i ,

• ∂ωi [ω j] = ∂ω j [ωi] =−ωiω j, i ̸= j,
• ∂ω j [ω] = ∂ω [ω j] = e j −ω j ω ,
• ∂ω [ω] = 1−m.
Taking into account that ∂ω is orthogonal to ω , the Euler operator takes the well known form

E=−x ·∂ =−rω ·∂ rad =−rω ·ω ∂r = r ∂r

whereas the angular momentum operator Γ takes the form

Γ =−x∧∂ =−rω ∧∂ ang =−rω ∧ 1
r

∂ω =−ω ∧∂ω =−ω ∂ω =− ∑
j<k

e jek(ω j∂ωk −ωk∂ω j).

In dimension m = 2 the operator Γ is given by

Γ =−e1 e2 ∂θ
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whereas in dimension m = 3 it holds that

Γ = e2 e3 (sinϕ ∂θ + cotθ cosϕ ∂ϕ )+ e3 e1 (cotθ sinϕ ∂ϕ − cosϕ ∂θ )+ e1 e2 (−∂ϕ ).

There is still an interesting observation to be made about the angular momentum operators and the spherical Dirac
operator. Introducing in each (x j, xk)-plane (with j < k) polar coordinates:

x j = r jk cosθ jk, xk = r jk sinθ jk

with x2
j + x2

k = r2
jk, it is easily shown that

L jk = ∂θ jk

whence

Γ =− ∑
j<k

e j ek ∂θ jk .

For the spherical Dirac operator we then obtain

∂ω = ω ·Γ

=−
m

∑
i=1

∑
j<k

ωi ei · e j ek L jk

= ∑
j<k

ω j ek L jk −ωk e j L jk

=
m

∑
j=1

m

∑
k=1

ω j ek L jk

and also, componentwise,

∂ωk =
m

∑
j=1

ω j L jk =
m

∑
j=1

ω j ∂θ jk .

The question now is how to define, if possible, the separate action of the operators ∂ rad and ∂ ang on a distribution.
To that end both operators should first be shown to be Cartesian, which is achieved by putting
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∂ rad = ω ∂r =− 1
x
E and ∂ ang =

1
r

∂ω =− 1
x

Γ.

Due to the division by the vector variable x, see Lemma 1, the result by the action of ∂ rad and ∂ ang on a distribution
clearly will be an equivalence class of distributions modulo a multiple of the delta distribution. This leads to the following
definition.

Definition 4 Let T (x) ∈ D ′(Rm) be a distribution. Then we put

∂ rad T (x) = (ω ∂r)T (rω) =−
[

1
x
ET (x)

]
(4)

and

∂ ang T (x) =
(

1
r

∂ω

)
T (rω) =−

[
1
x

ΓT (x)
]
. (5)

So it becomes clear that the actions of ∂ rad and ∂ ang on the distribution T (x) are well-defined but not uniquely
determined. However, if S1 and S2 are distributions arbitrarily chosen in the equivalent classes (4) and (5) respectively,
i.e.

xS1 =−ET (x) and xS2 =−ΓT (x),

then

∂ rad T (x) = S1 + c1 δ (x)

∂ ang T (x) = S2 + c2 δ (x)

and it must hold that

S1 + c1 δ (x)+S2 + c2 δ (x) = ∂ rad T (x)+∂ ang T (x) = ∂ T (x) (6)

where the distribution at the utmost right-hand side is, quite naturally, a known distribution once the distribution T is given.
One could say that the differential operators ∂ rad and ∂ ang are entangled in the sense that the results of their actions on a
distribution are subject to (6) which becomes a condition on the arbitrary vector constants c1 and c2. Henceforth we call
(6) the entanglement condition for the operators ∂ rad and ∂ ang.

It is a very well known fact that the Dirac operator linearizes the Laplace operator:

−∂ 2 = ∆ =−|∂ |2.
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In terms of spherical coordinates we obtain, in view of

∂ rad ∂ rad =−∂ 2
r

∂ rad ∂ ang =− 1
r2 ω ∂ω +

1
r

ω ∂ω ∂r

∂ ang ∂ rad =−(m−1)
1
r

∂r −
1
r

∂r ω ∂ω

∂ ang ∂ ang =
1
r2 ∂ 2

ω

that

∆ = ∂ 2
r +(m−1)

1
r

∂r +
1
r2 ∆∗

where ∆∗ = ω ∂ω −∂ 2
ω is the so-called Laplace-Beltrami operator. In view of the orthogonality of ω and ∂ω we have

∆∗ = ω ∧∂ω −∂ω ·∂ω −∂ω ∧∂ω

which, as ∆∗ is a scalar operator, implies that

∆∗ =−∂ω ·∂ω = |∂ω |2

and

ω ∧∂ω = ∂ω ∧∂ω =−Γ.

So, whereas the Laplace operator ∆ is the normsquared of the Dirac operator, the spherical Laplace operator or
Laplace-Beltrami operator is the normsquared of the spherical Dirac operator.

Contrary to its appearance, the Laplace-Beltrami operator ∆∗ is a Cartesian operator, and so is the operator ∂ 2
ω . The

following result indeed holds.
Proposition 6 [10] The angular differential operators ∂ 2

ω and ∆∗ may be written in terms of Cartesian derivatives as

∂ 2
ω = Γ2 − (m−1)Γ

and
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∆∗ = (m−2)Γ−Γ2.

The actions of the Laplace operator and the Laplace-Beltrami operator on a distribution being well-defined and
uniquely determined, the question arises how to define the separate actions on a distribution of the three parts of the
Laplace operator expressed in spherical coordinates. It turns out that these operators are Cartesian, their actions on a
distribution being well-defined, though not uniquely determined, through equivalent classes of distributions.

Proposition 7 The operators ∂ 2
r ,

1
r
, ∂r and

1
r2 ∆∗ are Cartesian, and it holds, for a distribution T , that

∂ 2
r T =

[
1
r2 E(E−1)T

]

1
r

∂r T =

[
1
r2 ET

]

1
r2 ∆∗ T =

[
1
r2 ((m−2)Γ−Γ2)T

]

leading to
(i) ∂ 2

r T = S2 +δ (x)c2 −∑m
j=1 c1, j ∂x j δ (x) for arbitrary constants c2 and c1, j, j = 1, . . . , m and any distribution S2

such that xS2 = ES1 with xS1 =−ET ;

(ii)
1
r

∂r T = S3+
1
m

∑m
j=1 c1, j ∂x j δ (x)+c3 δ (x) for arbitrarily constant c3 and any distribution S3 such that xS3 = S1;

(iii)
1
r2 ∆∗ T = S4+c4 δ (x)+∑m

j=1 c5, j ∂x j δ (x) for arbitrary constants c4 and c5, j, j = 1, . . . , m and any distribution
S4 such that r2 S4 = ∆∗ T .

Proof. (i) A direct computation shows that r2 ∂ 2
r = E(E−1), whence

∂ 2
r =

1
r2 E(E−1).

Further we have

(ω ∂r)T =−
[

1
x
ET
]
= S1 +δ (x)c1

with xS1 =−ET . It follows that
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∂ 2
r T =−(ω ∂r)

2 T

=−(ω ∂r)(S1 +δ (x)c1)

=

[
1
x
ES1

]
−∂δ (x)c1

= S2 +δ (x)c2 −∂δ (x)c1

with xS2 = ES1.

(ii) As r ∂r = E, it follows that
1
r

∂r =
1
r2E and also

1
r

∂r T =
1
x
(ω ∂r)T

=
1
x
(S1 +δ (x)c1)

= S3 +
1
x

δ (x)c1

= S3 +
1
m

∂ δ (x)c1 +δ (x)c3

with xS3 = S1.
(iii) The distribution ∆∗ T being uniquely well-defined and r2 being an analytic function with a second order zero at

the origin, the result follows immediately.
Remark 1 The operators ∂ 2

r ,
1
r

∂r and
1
r2 ∆∗ are entangled in the sense that, given a distribution T and having chosen

appropriately the distributions S1, S2, S3 and S4, all arbitrary constants appearing in the expressions of Proposition 7 should
satisfy the entanglement condition generated by

∂ 2
r T +(m−1)

1
r

∂r T +
1
r2 ∆∗ T = ∆T

the distribution at the right-hand side being uniquely determined.

9. The action of the operators ω_ ∂r, ∂r
2 and 1

r
We already mentioned in Section 4 that the delta distribution δ (x) is spherically symmetric or rotation invariant or

radial for short; we may think of δ (x) as being only depending on the radial distance r, but we will keep the notation δ (x

∂r on the delta distribution

)
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to avoid confusion with the one-dimensional delta distribution δ (r). Due to this radial character the actions of the Dirac,
Euler, Gamma and Laplace operators take a simpler form.

Recall that Euler operator E = r ∂r is a purely radial operator and its action on δ (x) results, quite naturally, into a
radial distribution, viz. the delta distribution itself, up to the homogeneity factor (−m):

Eδ (x) = r ∂r δ (x) =−mδ (x).

Also recall that angular momentum operator Γ = −ω ∂ω = −ω ∧ ∂ω is a purely angular operator which, quite
naturally, annihilates the radial delta distribution:

Γδ (x) =−ω ∂ω δ (x) = 0.

For the same reason, when acting with Dirac operator ∂ = ω ∂r +
1
r

∂ω on the delta distribution only the radial part
∂ rad = ω ∂r will play an active role, which leads to the following specific result about the delta distribution.

Proposition 8 The actions of the radial and angular parts of the Dirac operator on the delta distribution are uniquely
determined and it holds that

∂ rad δ (x) = ω ∂r δ (x) = ∂δ (x) and ∂ ang δ (x) =
1
r

∂ω δ (x) = 0.

Proof. By Definition 4 one has

(ω ∂r)δ (x) =− 1
x
Eδ (x) = m

1
x

δ (x) = ∂δ (x)

and

(
1
r

∂ω

)
δ (x) =− 1

x
Γδ (x) = 0.

As the Laplace-Beltrami operator is a purely angular operator, which implies that ∆∗ δ (x) = 0, the action of the
Laplace operator on the delta distribution takes the form

∆δ (x) = ∂ 2
r δ (x)+(m−1)

1
r

∂r δ (x).

We will now show that the two operator parts of the Laplace operator, viz. (∂ 2
r ) and

(
1
r

∂r

)
have well-determined

actions on the delta distribution. Note that the latter operator is, up to a constant factor, nothing else but the derivative

with respect to r2 since it holds indeed that
(

1
r

∂r

)
= 2∂r2 .
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Proposition 9 The actions of operators (∂ 2
r ) and

(
1
r

∂r

)
on delta distribution δ (x) are uniquely determined, and it

holds that

(∂ 2
r )δ (x) =

1
2
(m+1)∆δ (x) and

(
1
r

∂r

)
δ (x) =− 1

2
∆δ (x).

Proof. By Proposition 7 we find:

∂ 2
r δ (x) =

1
r2 E(E−1)δ (x) = m(m+1)

1
r2 δ (x) =

1
2
(m+1)∆δ (x)

and

1
r

∂r δ (x) =
1
r2 Eδ (x) = (−m)

1
r2 δ (x) =− 1

2
∆δ (x).

Remark 2 Note that the results of Proposition 9 are consistent with the action of the Laplace operator since

(∂ 2
r )δ (x)+(m−1)

(
1
r

∂r

)
δ (x) =

1
2
(m+1)∆δ (x)+(m−1)

(
− 1

2

)
∆δ (x) = ∆δ (x).

Combining the results concerning the actions on the delta distribution of the operators ω ∂r and ∂ 2
r =−(ω ∂r)

2, the
following identities are obtained.

Corollary 3 For all k ∈ N one has

(ω ∂r)
2k δ (x) = (−1)k ∂ 2k

r δ (x) =
1

2kk!
(m+1)(m+3) · · ·(m+2k−1)∂ 2k δ (x)

(ω ∂r)
2k+1 δ (x) = (−1)k ω ∂ 2k+1

r δ (x) =
1

2kk!
(m+1)(m+3) · · ·(m+2k−1)∂ 2k+1 δ (x)

(ω ∂r)∂ 2ℓ δ (x) = ∂ 2ℓ+1 δ (x) = ∂ 2ℓ (ω ∂r)δ (x)

(ω ∂r)∂ 2ℓ+1 δ (x) =
m+2ℓ+1

2(ℓ+1)
∂ 2ℓ+2 δ (x) =

m+2ℓ+1
2(ℓ+1)

∂ 2ℓ+1 (ω ∂r)δ (x).

Iteration of the action on the delta distribution of the operator
(

1
r

∂r

)
leads to the following result.

Corollary 4 For all k ∈ N one has

(
1
r

∂r

)k

δ (x) =
1

2kk!
∂ 2k δ (x) = (−1)k 1

2kk!
∆k δ (x).
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The formulæ obtained in Corollary 3 may be generalized by considering products of :
(i) natural powers of the radial distance squared: r2 =−x2;
(ii) natural powers of the radial derivative squared: ∂ 2

r =−(ω ∂r)
2;

(iii) the vector variable x = r ω , to obtain the following identities.
Proposition 10 One has, with k ≥ ℓ,
(i)

r2ℓ ∂ 2k
r δ (x) = (−1)k+ℓ 1

2k−ℓ(k− ℓ)!
(m+1)(m+3) · · ·(m+2k−1)(m+2k−2)

× (m+2k−4) · · ·(m+2k−2ℓ)∂ 2k−2ℓδ (x) ;

(ii)

ω r2ℓ+1 ∂ 2k
r δ (x) = (−1)k+ℓ 1

2k−ℓ−1(k− ℓ−1)!
(m+1)(m+3) · · ·(m+2k−1)(m+2k−2)

× (m+2k−4) · · ·(m+2k−2ℓ)∂ 2k−2ℓ−1δ (x) ;

(iii)

ω r2ℓ ∂ 2k+1
r δ (x) = (−1)k+ℓ 1

2k−ℓ(k− ℓ)!
(m+1)(m+3) · · ·(m+2k−1)(m+2k)

× (m+2k−2) · · ·(m+2k−2ℓ+2)∂ 2k−2ℓ+1δ (x) ;

(iv)

r2ℓ+1 ∂ 2k+1
r δ (x) = (−1)k+ℓ+1 1

2k−ℓ(k− ℓ)!
(m+1)(m+3) · · ·(m+2k−1)(m+2k)

× (m+2k−2) · · ·(m+2k−2ℓ)∂ 2k−2ℓδ (x).

Proposition 11 One has
(i)

(ω ∂r)
2k ∂ 2ℓ δ (x) =

1
2k

(m+2ℓ+1)(m+2ℓ+3) · · ·(m+2ℓ+2k−1)
(ℓ+1)(ℓ+2) · · ·(ℓ+ k)

∂ 2ℓ+2k δ (x);
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(ii)

(ω ∂r)
2k ∂ 2ℓ+1 δ (x) =

1
2k

(m+2ℓ+1)(m+2ℓ+3) · · ·(m+2ℓ+2k−1)
(ℓ+1)(ℓ+2) · · ·(ℓ+ k)

∂ 2ℓ+2k+1 δ (x);

(iii)

(ω ∂r)
2k+1 ∂ 2ℓ δ (x) =

1
2k

(m+2ℓ+1)(m+2ℓ+3) · · ·(m+2ℓ+2k−1)
(ℓ+1)(ℓ+2) · · ·(ℓ+ k)

∂ 2ℓ+2k+1 δ (x);

(iv)

(ω ∂r)
2k+1 ∂ 2ℓ+1 δ (x) =

1
2k+1

(m+2ℓ+1)(m+2ℓ+3) · · ·(m+2ℓ+2k+1)
(ℓ+1)(ℓ+2) · · ·(ℓ+ k+1)

∂ 2ℓ+2k+2 δ (x).

10. The action of the operator 1
r

ω∂ _ on the delta distribution

Because the delta distribution δ (x) and its Dirac-derivatives of even order ∂ 2ℓ δ (x) are radial distributions, the action

of the operator
1
r

∂ω annihilates them all:

(
1
r

∂ω

)
∂ 2ℓ δ (x) = 0, ℓ= 0, 1, 2, . . . .

For the Dirac-derivatives of odd order we have e.g.
•

(
1
r

∂ω

)
∂ δ (x) =

(
1
r

∂ω

)
(ω ∂r)δ (x)

= (1−m)

(
1
r

∂r

)
δ (x)

=− 1
2
(m−1)∂ 2 δ (x) ;

Volume 5 Issue 4|2024| 5273 Contemporary Mathematics



•

(
1
r

∂ω

)
∂ 3 δ (x) =

(
1
r

∂ω

)
(ω ∂r)∂ 2 δ (x)

= (1−m)

(
1
r

∂r

)
∂ 2 δ (x)

=−2(m−1)
(

1
r

∂r

)2

δ (x)

=− 1
4
(m−1)∂ 4 δ (x) .

More generally, it holds that

(
1
r

∂ω

)
∂ 2ℓ+1 δ (x) =− 1

2ℓ+2
(m−1)∂ 2ℓ+2 δ (x) .

Indeed, we have consecutively

(
1
r

∂ω

)
∂ 2ℓ+1 δ (x) =

(
1
r

∂ω

)
(ω ∂r)∂ 2ℓ δ (x)

= (1−m)

(
1
r

∂r

)
∂ 2ℓ δ (x)

=−2ℓ ℓ!(m−1)
(

1
r

∂r

)ℓ+1

δ (x)

=− 1
2ℓ+2

(m−1)∂ 2ℓ+2 δ (x) .

11. The delta distribution in spherical coordinates
In physics texts one often encounters the following expression for the delta distribution in spherical coordinates:

δ (x) =
1

am

δ (r)
rm−1 (7)

where am =
2πm/2

Γ(m/2)
is the area of the unit sphere Sm−1 in Rm, and δ (r) is the one dimensional delta distribution on the

r-axis.
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Apparently this can be mathematically explained in the following way. Write the action of the delta distribution as
an integral:

φ(0) = ⟨ δ (x), φ(x) ⟩

=
∫
Rm

δ (x)φ(x)dV (x)

=
∫ ∞

0
rm−1δ (x)dr

∫
Sm−1

φ(r ω)dSω

= am

∫ ∞

0
rm−1 δ (x)Σ0[φ](r)dr

using the so-called spherical mean (see e.g. [11]) of the test function φ given by

Σ0[φ](r) =
1

am

∫
Sm−1

φ(r ω)dSω .

As it is easily seen that Σ0[φ](0) = φ(0), it follows that

am

∫ ∞

0
rm−1 δ (x)Σ0[φ](r)dr = ⟨ δ (r), Σ0[φ](r) ⟩=

∫ ∞

0
δ (r)Σ0[φ](r)dr

which explains (7). However we prefer to interpret this expression as

φ(0) = ⟨ δ (x), φ(x) ⟩= ⟨ δ (r), Σ0[φ](r) ⟩= Σ0[φ](0) (8)

which can be generalized to higher even order Dirac-derivatives of the delta distribution:

{∂ 2ℓφ(x)}|x=0 = ⟨ ∂ 2ℓ δ (x), φ(x) ⟩

= (−1)ℓ
C(m, ℓ)

(2ℓ)!(m+2ℓ)
⟨ ∂ 2ℓ

r δ (r), Σ0[φ](r) ⟩

= (−1)ℓ
C(m, ℓ)

(2ℓ)!(m+2ℓ)
{∂ 2ℓ

r Σ0[φ](r)}|r=0 .

Recall that the constant C(m, ℓ) is given by

C(m, ℓ) = 2ℓ ℓ!m(m+2) · · ·(m+2ℓ) .
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In physics language of integrals this formula would be written as

∫ +∞

0
rm−1 ∂ 2ℓδ (x)dr

∫
Sm−1

φ(rω) dSω = (−1)ℓ
C(m, ℓ)

(2ℓ)!(m+2ℓ)

∫ +∞

0
δ (2ℓ)(r)dr

1
am

∫
Sm−1

φ(rω)dSω

leading to

∂ 2ℓδ (x) = (−1)ℓ
C(m, ℓ)

(2ℓ)!(m+2ℓ)
1

am

δ (2ℓ)(r)
rm−1 (9)

or, by means of the results of Corollary 3,

∂ 2ℓ
r δ (x) =

1
(2ℓ)!

(m)(m+1) · · ·(m+2ℓ−1)
1

am

δ (2ℓ)(r)
rm−1 .

Note that the spherical mean Σ0[φ](r) is an even function of r, tacitly assuming that Σ0[φ](r) is extended to the whole
of the real r-axis. Moreover its odd order derivatives vanish at the origin:

⟨ −∂ 2ℓ+1
r δ (r), Σ0[φ](r) ⟩= {∂ 2ℓ+1

r Σ0[φ](r)}|r=0 = 0 .

For expressing, in a similar way, the higher odd order Dirac-derivatives of the delta distribution, we have to invoke
the so-called spherical mean of the second kind Σ1[φ], which was introduced in [11]:

Σ1[φ](r) =
1

am

∫
Sm−1

ω φ(r ω)dSω .

The spherical mean of the second kind Σ1[φ](r) is a vector-valued odd function of r, whose even order derivatives
vanish at the origin:

⟨ ∂ 2ℓ
r δ (r), Σ1[φ](r) ⟩= {∂ 2ℓ

r Σ1[φ](r)}|r=0 = 0 .

It holds that

⟨ ∂ 2ℓ+1 δ (x), φ(x) ⟩= (−1)ℓ
C(m, ℓ)

(2ℓ+1)!
⟨ ∂ 2ℓ+1

r δ (r), Σ1[φ](r) ⟩ (10)

or

{∂ 2ℓ+1φ(x)}|x=0 = (−1)ℓ
C(m, ℓ)

(2ℓ+1)!
{∂ 2ℓ+1

r Σ1[φ](r)}|r=0
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which in physics language would then be written as

∂ 2ℓ+1 δ (x) = (−1)ℓ
C(m, ℓ)

(2ℓ+1)!
1

am

δ (2ℓ+1)(r)
rm−1 ω

or, by means of the results of Corollary 3,

ω ∂ 2ℓ+1
r δ (x) =

1
(2ℓ+1)!

(m)(m+1) · · ·(m+2ℓ)
1

am

δ (2ℓ+1)(r)
rm−1 ω (11)

and, in particular for ℓ= 0,

∂ δ (x) = (ω ∂r)δ (x) =
1

am
mω

δ ′(r)
rm−1 .

However the mathematics interpretation of (11) is not straightforward; the best we can think of is to see the right-hand
side as a continuous linear functional on the space of test functions D(R)×D(Sm−1). Moreover, if one would give in to
temptation to multiply both members of (11) by ω , which is not allowed since ω is not differentiable in the whole of Rm,
thus obtaining

∂ 2ℓ+1
r δ (x) =

1
(2ℓ+1)!

(m)(m+1) · · ·(m+2ℓ)
1

am

δ (2ℓ+1)(r)
rm−1

one would have to give meaning to the radial derivative of a distribution, which is far from trivial as was already observed
by Schwartz in his famous and seminal book [12], where he writes on page 51: Using coordinate systems other than the
Cartesian ones should be done with the utmost care [our translation]. Derivation with respect to the spherical coordinates
of a distribution, and of the delta distribution in particular, will be treated in detail in Section 13.

Nevertheless, expression (7) may be used when computing the action of some operators. Let us illustrate this
phenomenon by obtaining, via this alternative way, already known results.

•

(ω ∂r)δ (x) = (ω ∂r)

(
1

am

δ (r)
rm−1

)

=
1

am
ω
(

δ ′(r)
rm−1 − (m−1)

δ (r)
rm

)

= m
1

am
ω

δ ′(r)
rm−1

= ∂ δ (x)
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•

(
1
r

∂ω

)
δ (x) =

(
1
r

∂ω

) (
1

am

δ (r)
rm−1

)
= 0

•

Eδ (x) = (r ∂r)

(
1

am

δ (r)
rm−1

)

=
1

am

(
r δ ′(r)
rm−1 − (m−1)

δ (r)
rm−1

)

=− 1
am

m
δ (r)
rm−1

= (−m)δ (x)

•

Γδ (x) =−ω ∂ω

(
1

am

δ (r)
rm−1

)
= 0

•

∂ 2
r δ (x) = ∂ 2

r

(
1

am

δ (r)
rm−1

)

=
1

am

(
δ ′′(r)
rm−1 −2(m−1)

δ ′(r)
rm +m(m−1)

δ (r)
rm+1

)

=
1

am

(
δ ′′(r)
rm−1 +(m−1)

δ ′′(r)
rm−1 +

1
2

m(m−1)
δ ′′(r)
rm−1

)

=
1

am

1
2

m(m+1)
δ ′′(r)
rm−1

=
1
2
(m+1)∆δ (x)
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•

1
r

∂r δ (x) =
1

am

(
δ ′(r)

rm − (m−1)
δ (r)
rm+1

)

=
1

am

(
− 1

2
δ ′′(r)
rm−1 − 1

2
(m−1)

δ ′′(r)
rm−1

)

=− 1
am

1
2

m
δ ′′(r)
rm−1

=− 1
2

∆δ (x)

•

x∂ 2ℓ+1 δ (x) = r ω (−1)ℓ
C(m, ℓ)

(2ℓ+1)!
1

am

δ (2ℓ+1)(r)
rm−1

= (−1)ℓ+1 C(m, ℓ)

(2ℓ+1)!
1

am
(−1)(2ℓ+1)

δ 2ℓ(r)
rm−1

= (m+2ℓ)∂ 2ℓ δ (x)

•

x∂ 2ℓ δ (x) = r ω (−1)ℓ
C(m, ℓ)

(2ℓ)!(m+2ℓ)
1

am

δ (2ℓ)(r)
rm−1

= ω (−1)ℓ−1 C(m, ℓ−1)
(2ℓ−1)!

1
am

(2ℓ)
δ (2ℓ−1)(r)

rm−1

= (2ℓ)∂ 2ℓ−1 δ (x)

Volume 5 Issue 4|2024| 5279 Contemporary Mathematics



•

x2k ∂ 2ℓ δ (x) = (−1)ℓ
C(m, ℓ)

(2ℓ)!(m+2ℓ)
1

am
(−1)k r2k δ (2ℓ)(r)

rm−1

= (−1)ℓ+k C(m, ℓ)

(2ℓ)!(m+2ℓ)
(2ℓ)(2ℓ−1) · · ·(2ℓ−2k+1)

1
am

δ (2ℓ−2k)(r)
rm−1

= (−1)ℓ+k C(m, ℓ)

(2ℓ−2k)!(m+2ℓ)
(−1)ℓ−k (2ℓ−2k)!(m+2ℓ−2k)

C(m, ℓ− k)
∂ 2ℓ−2k δ (x)

= 2k (ℓ)(ℓ−1) · · ·(ℓ− k+1)(m+2ℓ−2)(m+2ℓ−4) · · ·(m+2ℓ−2k)∂ 2ℓ−2k δ (x)

and similarly for the other general multiplication formulæ of Section 5.
•

1
x

∂ 2ℓ+1 δ (x) =− 1
r

ω (−1)ℓ
C(m, ℓ)

(2ℓ+1)!
1

am

δ (2ℓ+1)(r)
rm−1 ω

= (−1)ℓ+1 C(m, ℓ+1)
(2ℓ+1)!(m+2ℓ+2)(2ℓ+2)

1
am

δ 2ℓ+2(r)
rm−1

1
2ℓ+2

=
1

2ℓ+2
∂ 2ℓ+2 δ (x)

•

1
x

∂ 2ℓ δ (x) =− 1
r

ω (−1)ℓ
C(m, ℓ)

(2ℓ)!(m+2ℓ)
1

am

δ (2ℓ)(r)
rm−1

= (−1)ℓ ω
C(m, ℓ)

(2ℓ)!(m+2ℓ)
1

am

δ 2ℓ+1(r)
rm−1

1
2ℓ+1

=
1

m+2ℓ
∂ 2ℓ+1 δ (x)
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•

1
x2k ∂ 2ℓ δ (x) = (−1)ℓ

C(m, ℓ)

(2ℓ)!(m+2ℓ)
1

am
(−1)k 1

r2k
δ (2ℓ)(r)

rm−1

= (−1)ℓ+k C(m, ℓ)

(2ℓ)!(m+2ℓ)
1

(2ℓ+2k)(2ℓ+2k−1) · · ·(2ℓ+1)
1

am

δ (2ℓ+2k)(r)
rm−1

=
C(m, ℓ)

(m+2ℓ)
(m+2ℓ+2k)
C(m, ℓ+ k)

∂ 2ℓ+2k δ (x)

=
1

2k (ℓ+1)(ℓ+2) · · ·(ℓ+ k)(m+2ℓ)(m+2ℓ+2) · · ·(m+2ℓ+2k−2)
∂ 2ℓ+2k δ (x)

and similarly for the other general division formulæ of Section 7.
More generally it can be proved by induction that

(ω ∂r)
2k δ (x) = (−1)k 1

(2k)!
m(m+1) · · ·(m+2k−1)

1
am

δ (2k)(r)
rm−1

(ω ∂r)
2k+1 δ (x) = (−1)k 1

(2k+1)!
m(m+1) · · ·(m+2k)

1
am

δ (2k+1)(r)
rm−1 ω .

12. Signumdistributions
In [4] it was shown that derivation of the delta distribution with respect to spherical coordinates necessitates the

introduction of a new concept: signumdistribution. The general theory of signumdistributions was developed in [5] and
applied, in [6], on two specific families of distributions appearing in harmonic and Clifford analysis. Here we confine
ourselves to a concise introduction of the concept of a signumdistribution.

We consider two spaces of test functions: traditional space D(Rm) of compactly supported infinitely differentiable
functions φ(x) and space Ω(Rm; Rm) = {ω φ(x) : φ(x)∈D(Rm)}. Clearly the test functions in Ω(Rm; Rm) are no longer
differentiable in the whole of Rm, since they are not defined at the origin, due to the function ω =

x
|x|

which can be seen

as the higher-dimensional counterpart of the one-dimensional signum function sign(t) =
t
|t|
, t ∈ R. Obviously there is a

one-to-one correspondence between spaces D(Rm) and Ω(Rm; Rm). The continuous linear functionals on those spaces
of test functions, both equipped with an appropriate topology, are the standard distributions and the signumdistributions
respectively.

Given a standard distribution T (x) ∈D ′(Rm), signumdistribution T∨(x) ∈ Ω′(Rm; Rm) is defined in such a way that
for all test functions ω φ ∈ Ω(Rm; Rm) it holds that

⟨ T∨(x), ω φ(x) ⟩=−⟨ T (x), φ(x) ⟩ . (12)
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Then T∨(x) is called the signumdistribution associated to T (x). In [5] it was proven that this associated
signumdistribution is unique.

Conversely, for a given signumdistribution sU ∈ Ω′(Rm; Rm), we define the associated distribution sU∧ by

⟨ sU∧(x), φ(x) ⟩=−⟨ sU(x), ω φ(x) ⟩ ∀φ(x) ∈ D(Rm) .

Clearly it holds that

T∨∧ = T and sU∧∨ = sU .

With each well-defined operator P acting between distributions, there corresponds an operator

P∨ = ω P(−ω)

acting between signumdistributions according to the following commutative diagram :

P

T −→ PT

−ω ↑ |
| ↓ω

T∨ = ω T −→ P∨ T∨ = ω PT
P∨

in this way giving rise to a pair of operators P and P∨ which we call a signum-pair of operators. If the action result of
the operator P is uniquely determined, then the action result of P∨ is also uniquely determined, in which case we use the
notation (P, P∨) for this signum-pair of operators. If, on the contrary, the action result of P is an equivalence class of
distributions, then the action result of P∨ will be an equivalence class of signumdistributions, in which case we use the
notation [P, P∨]. In Table 1 a number of signum-pairs of operators are listed.

The above commutative diagram induces two more operators: the operator Q mapping a distribution to a
signumdistribution, and the corresponding operator Qc = (−ω)Q(−ω) = ω Qω mapping a signumdistribution to a
distribution according to the following commutative diagram :

P
sU∧ =−ω sU −→ Qc sU

−ω Qc −ω↑ ⧹↗ ↑
| ⧸↘ |Q

sU −→ Q(−ω) sU
P∨
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Clearly the operators Q and Qc cannot be Cartesian since they map distributions to signumdistributions and vice
versa. We call the pair of operators Q and Qc a cross-pair of operators denoted by either (Q, Qc) or [Q, Qc] depending on
the nature of their action result, similarly as in the case of a signum-pair of operators. In Table 2 a number of cross-pairs
of operators are listed.

Table 1. Signum-pairs of operators

Signum-pairs of operators

(x, x)

(r2, r2)

(E, E)

(Γ, −∂ω ω) (−∂ω ω, Γ)

(Γ2, Γ2 −2(m−1)Γ+(m−1)2) (Γ2 −2(m−1)Γ+(m−1)2, Γ2)

(∂ , D) [D, ∂ ]

[ω∂r, ω∂r][
1
r

∂ω , −
1
r

∂ω +(m−1)
1
r

ω
] [

1
r

∂ω +(m−1)
1
r

ω,
1
r

∂ω

]
(∂ 2

ω , ∂ 2
ω )

(∆∗, Z∗) (Z∗, ∆∗)

(∆, Z) [Z, ∆]

[∂ 2
r , ∂ 2

r ][
1
x
,

1
x

]
[

1
r

∂r,
1
r

∂r

]
[

1
r2 ,

1
r2

]
(∂x j , d j) [d j, ∂x j ]

Table 2. Cross-pairs of operators

Cross-pairs of operators

(ω, ω)

(r, −r) (−r, r)

[∂r, −∂r] [−∂r, ∂r]

(∂ω , ω∂ω ω) (ω∂ω ω, ∂ω )[
1
r
, −1

r

] [
−1

r
,

1
r

]
[

1
r

∂ω ω,
1
r

ω∂ω

] [
−1

r
∂ω ω,

1
r

ω∂ω

]
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13. Spherical operators
An operator involving spherical coordinates is said to be spherical when it is not Cartesian. Clearly multiplication

operators r and ω are spherical operators, as are differential operators ∂r and ∂ω . The concepts of signumdistribution,
signum-pair of operators and cross-pair of operators, introduced in Section 12, allow for a definition of the action of
spherical operators on (signum)distributions.

Definition 5 The product of a scalar distribution T by the function ω is the signumdistribution T∨ associated to T ,
and it holds for all test functions ω φ ∈ Ω(Rm; Rm) that

⟨ ω T, ω φ ⟩= ⟨ T∨, ω φ ⟩=−⟨ T, φ ⟩ .

Similarly the product of the signumdistribution sU by the function (−ω) is its associated distribution sU∧.
Definition 6 The product of a scalar distribution T scal by the function ω j, j = 1, . . . , m is the signumdistribution

ω j T scal given by the uniquely determined expression

ω j T scal = {ω T scal} j .

Similarly the product of the scalar signumdistribution sU scal by the function ω j is the distribution ω j
sU scal given by

ω j
sU scal = {ω sU scal} j .

Remark 3 For a general Clifford algebra valued distribution or signumdistribution, the action of the multiplicative
operator ω j is defined through linearity with respect to the scalar components.

Definition 7 The product of a scalar distribution T by the function r is the signumdistribution r T = (−x T )∨ given
for all test functions ω φ ∈ Ω(Rm; Rm) by

⟨ r T, ω φ ⟩= ⟨ xT, φ ⟩= ⟨ T, xφ ⟩ .

according to (the boldface part of) the commutative diagram

−x

T −→ −xT

−ω −r −ω↑ ⧹↗ ↑
↓ ⧸↘ ↓ω r ω

T∨ = ω T −→ rT
−x

involving the signum-pair of operators (x, x), which induces the product of the signum-distributionω T by x to be x(ω T )=
−r T .

Definition 8 The derivative with respect to the radial distance r of a scalar distribution T is the equivalent class of
signumdistributions
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[∂r T ] = [−ω ∂r T ]∨ =

[
1
x
ET
]∨

= (S+ cδ (x))∨ = ω S+ω δ (x)c

for any vector distribution S satisfying xS = ET , according to (the boldface part of) the commutative diagram

−ω∂r

T −→
[

1
x
ET
]

−ω −∂r −ω↑ ⧹↗ ↑
↓ ⧸↘ ↓ω ∂r ω

T∨ = ω T −→ [∂rT]
−ω∂r

involving the signum-pair of operators [ω ∂r, ω ∂r], which induces the action of (ω ∂r) on the signumdistribution ω T to
be be (ω ∂r)(ω T ) = [−∂r T ].

Definition 9 The angular ∂ω -derivative of a scalar distribution T is the unique signumdistribution ∂ω T = (ΓT )∨

given for all test functions ω φ ∈ Ω(Rm; Rm) by

⟨ ω φ, ∂ω T ⟩= ⟨ φ, ω ∂ω T ⟩= ⟨ φ, −ΓT ⟩

according to (the boldface part of) the commutative diagram

−ω∂ω

T −→ ΓT

−ω ω∂ω ω −ω↑ ⧹↗ ↑
↓ ⧸↘ ↓ω ∂ω ω

T∨ = ω T −→ ∂ω T
−∂ω ω

involving the signumpair of operators (ω∂ω , ∂ω ω ) or (Γ, −∂ω ω) = (Γ, (m−1)1− Γ), which induces the action of the
operator ∂ω ω on the signumdistribution ω T to be ∂ω ω (ω T ) =−∂ω T .

Example 6 Because the delta distribution is radial, it holds, trivially, that

∂ω δ (x) = 0 .

Definition 10The quotient of a scalar distribution T by the radial distance r is the equivalence class of signumdistribu-
tions
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[
1
r

T
]
= ω

[
1
x

T
]
= ω (S+δ (x)c) = ω S+ω δ (x)c = S∨+δ (x)∨ c

for any vector-valued distribution S for which xS = T , according to (the boldface part of) the commutative diagram

1
x

T −→
[

1
x

T
]

−ω − 1
r

−ω
↑ ⧹↗ ↑
↓ ⧸↘ ↓

ω 1
r ω

T∨ = ω T −→
[

1
r

T
]

1
x

involving the signum-pair of operators
[

1
x
,

1
x

]
, which induces the quotient of the signumdistribution ω T by x to be

1
x
(ω T ) =

[
1
r

T
]
.

Definition 11 The angular ∂ω j -derivative of a scalar distribution T scal is the unique signumdistribution given by

∂ω j T
scal = {∂ω T scal} j, j = 1, . . . , m .

Remark 4 (i) An alternative expression for ∂ω j T
scal is:

∂ω j T
scal = r ∂x j T scal −ω j ET scal .

Indeed, it follows from

−ΓT scal = x∂ T scal +ET scal

that

−∂ω T scal =−ω x∂ T scal +ω ET scal =−r∂ T scal +ω ET scal

whence the desired formula for each of the components.
(ii) For a general Clifford algebra valued distribution, the action of the spherical derivative operator ∂ω j is defined

through linearity with respect to the scalar components.
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Remark 5 Once the action of the spherical derivative operators ∂ω j , j = 1, . . . , m is defined, see Definition 11, we
are able to define the action of the corresponding Cartesian operators −ω ∂ω j , j = 1, . . . , m, through the commutative
diagram

−ω ∂ω j

T −→ −ω ∂ω j T

−ω ω ∂ω j ω −ω
↑ ⧹↗ ↑
↓ ⧸↘ ↓

ω ∂ω j ω

ω T −→ ∂ω j T
−∂ω j ω

In particular, for a scalar distribution T scal it holds that

−ω ∂ω j T scal =−x∂x j T scal +ω j ω ET scal , j = 1, . . . , m .

Example 7 Because δ (x) is a radial distribution we expect ∂ω j δ (x), and thus also −ω ∂ω j δ (x), to be zero. And
indeed it holds that

∂ω j δ (x) = r ∂x j δ (x)−ω j Eδ (x)

= r ∂x j δ (x)+mω j δ (x)

= {r ∂ δ (x)+mω δ (x)} j

= {ω Eδ (x)+mω δ (x)} j

= 0 .

14. Signum-partners of Cartesian operators
In Section 8 we saw that Laplace-Beltrami operator∆∗ and the square of angular derivative ∂ 2

ω are Cartesian operators.
Their signum-partners are straightforwardly computed to be

(∂ 2
ω)

∨ = ω ∂ 2
ω (−ω) = ∂ 2

ω

and

∆∗∨ =−Γ2 +mΓ− (m−1)1 .
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Clearly also operator ∆∗∨ is Cartesian. Introducing the notation Z∗ = ∆∗∨, the signum-pairs of operators (∂ 2
ω , ∂ 2

ω),
(∆∗, Z∗) and (Z∗, ∆∗) follow, inducing the definition of the actions of operators ∂ 2

ω , Z∗ and ∆∗ on a signumdistribution.
For signum-partner D of Dirac operator ∂ we obtain the following expressions:

D = ω ∂ (−ω) = ω
(

ω ∂r +
1
r

∂ω

)
(−ω)

= ω ∂r +
1
r

ω ∂ω (−ω)

= ω ∂r −
1
r

∂ω +(m−1)
1
r

ω

= ∂ −2
1
r

∂ω +(m−1)
1
r

ω

=−∂ +2ω ∂r +(m−1)
1
r

ω

giving rise to the signum-pairs of operators (∂ , D) and
[

1
r

∂ω , −
1
r

∂ω +(m−1)
1
r

ω
]
, which induce the actions of the

operators D and −1
r

∂ω +(m−1)
1
r

ω on a signumdistribution.
Note that whereas the actions of the operator ∂ on distributions and of its signum-partnerD on signumdistributions are

uniquely determined, the action results of the operator
1
r

∂ω on distributions and of its signum-partner−1
r

∂ω +(m−1)
1
r

ω
on signumdistributions are, in general, equivalent classes of (signum)distributions.

Operator D is called the signum-Dirac operator. At first sight it is not clear if D is Cartesian. But this is indeed the
case, and we have the following result.

Proposition 12 The operators D and −1
r

∂ω +(m−1)
1
r

ω are Cartesian operators.
Proof. In view of Definition 4 it holds that

−1
r

∂ω +(m−1)
1
r

ω =
1
ux

(Γ− (m−1)1)

and also

D =
1
x
(−E+Γ− (m−1)1)

= ∂ +
1
x
(2Γ− (m−1)1)

=−∂ +
1
x
(−2E− (m−1)1) .
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This leads to the signum-pair of operators [D, ∂ ], which induces the action of the Dirac operator ∂ on a
signumdistribution. However, due to division by x, the latter action results into an equivalence class of signumdistributions.

It is interesting to note that, in the same way as the Dirac operator factorizes the Laplace operator: ∂ 2 =−∆, signum-
Dirac operator D factorizes the signum-Laplace operator, i.e. the signum-partner of the Laplace operator:

D2 = (ω ∂ (−ω))2 = ω ∂ 2 (−ω) =−ω ∆(−ω) =−∆∨ .

Introducing the notation Z = ∆∨, it follows that (∆, Z) is a signum-pair of operators, with

Z =−D2

= ∂ 2
r +(m−1)

1
r

∂r +
1
r2 Z∗ .

Clearly also the operator Z is Cartesian; the signum-pair of operators [Z, ∆] follows, inducing the action of Laplace
operator ∆ on a signumdistribution.

Also from Section 8 we know that operators ∂ 2
r ,

1
r

∂r and
1
r2 ∆∗, which are the constituents of Laplace operator ∆, are

Cartesian operators. Their signum-partners are easily seen to be

(∂ 2
r )

∨ = ∂ 2
r

(
1
r

∂r

)∨
=

1
r

∂r

(
1
r2 ∆∗

)∨
=

1
r2 Z∗

and the signum-pairs of operators
[
∂ 2

r , ∂ 2
r
]
,
[

1
r

∂r,
1
r

∂r

]
,
[

1
r2 ∆∗ ,

1
r2 Z∗

]
and

[
1
r2 Z∗,

1
r2 ∆∗

]
follow, inducing the action

of the operators ∂ 2
r ,

1
r

∂r,
1
r2 Z∗ and

1
r2 ∆∗ on a signumdistribution.

15. Action uniqueness of some operators
In the preceding sections we encountered operators acting on (signum)distributions with a uniquely determined

result and other ones whose actions are not uniquely determined but lead to equivalence classes of (signum)distributions
instead. Nevertheless in [10] sufficient conditions were found guaranteeing the uniqueness of the latter operators’ actions,
involving homogeneous, radial and signum-radial (signum)distributions.

Definition 12 (i) A distribution T or a signumdistibution sU respectively, is said to be radial if it is SO(m)-invariant
and so only depends on r = |x|: T (x) = T (r) or sU(x) = sU(r) respectively.

(ii) A distribution, signumdistribution respectively, is said to be signum-radial if its associated signumdistribution,
distribution respectively, is radial.

Let us state these sufficient conditions obtained in [10].
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(i) If the distribution T rad is radial, then the following actions are uniquely determined:

(ω ∂r)T rad
(
− 1

r
∂ω +(m−1)

1
r

ω
)

T rad 1
x

T rad DT rad ∂r T rad 1
r

T rad

and the actions of the corresponding signum-partner operators on the signum-radial signumdistribution sU srad , viz.

(ω ∂r)
sU srad

(
1
r

∂ω

)
sU srad 1

x
sU srad ∂ sU srad ∂r

sU srad 1
r

sU srad

are also uniquely determined.
(ii) If the distribution T (k) is homogeneous with homogeneity degree k ̸= −m+ 1, then the following actions are

uniquely determined:

(ω ∂r)T (k)
(

1
r

∂ω

)
T (k)

(
− 1

r
∂ω +(m−1)

1
r

ω
)

T (k) 1
x

T (k) DT (k) ∂r T (k) 1
r

T (k)

and the actions of the corresponding signum-partner operators on the homogeneous signumdistribution sU (k), viz.

(ω ∂r)
sU (k)

(
− 1

r
∂ω +(m−1)

1
r

ω
)

sU (k)
(

1
r

∂ω

)
sU (k) 1

x
sU (k) ∂ sU (k) ∂r

sU (k) 1
r

sU (k)

are also uniquely determined.
(iii) If the distribution T (k) is homogeneous with homogeneity degree k ̸=−m+1, −m+2, then the following actions

are uniquely determined:

∂ 2
r T (k) 1

r
∂r T (k) 1

r2 ∆∗ T (k) 1
r2 Z∗ T (k) ZT (k) 1

r2 T (k)

and the actions of the corresponding signum-partner operators on the homogeneous signumdistribution sU (k), viz.

∂ 2
r

sU (k) 1
r

∂r
sU (k) 1

r2 Z∗ sU (k) 1
r2 ∆∗ sU (k) ∆ sU (k) 1

r2
sU (k)

are also uniquely determined.
(iv) The conclusions contained in (iii) remain valid if the distribution, signumdistribution respectively, under

consideration is both radial, signum-radial respectively, and homogeneous with homogeneity degree k ̸=−m+2.
(v) The conclusions contained in (iii) remain valid if the distribution, signumdistribution respectively, under

consideration is both signum-radial, radial respectively, and homogeneous with homogeneity degree k ̸=−m+1.

Contemporary Mathematics 5290 | Fred Brackx



16. Signumdistributions associated to the delta distribution
Recall that to each distribution T there may be associated a signumdistribution T∨ = ω T which acts on test functions

showing a point-wise singularity at the origin of Rm. In this section we recall the definitions of signumdistributions
associated to the deltadistribution δ (x), viz. ω δ (x), ∂r δ (x) and r δ (x), which were stated with great detail in [4].
We will also define signumdistributions associated to Dirac-derivatives of δ (x). The basic definition is that of the
signumdistribution δ (x)∨ = ω δ (x).

Definition 13 The signumdistribution δ (x)∨ = ω δ (x), associated to the delta distribution δ (x), is defined by

⟨ ω δ (x), ω φ(x) ⟩=−⟨ δ (x), φ(x) ⟩=−φ(0) (13)

for all test functions ω φ(x) ∈ Ω(Rm; R).
Consider the distribution (ω ∂r)δ (x) = ∂ δ (x) (see Proposition 8). Its associated signumdistribution is now defined

in terms of the radial derivative of δ (x).
Definition 14 The signumdistribution ((ω ∂r)δ (x))∨, associated to (ω ∂r)δ (x), is defined to be −∂r δ (x). It thus

holds, for all test functions ω φ(x) ∈ Ω(Rm; R), that

⟨ ∂r δ (x), ω φ(x) ⟩= ⟨ (ω ∂r)δ (x), φ(x) ⟩= ⟨ ∂δ (x), φ(x) ⟩=−∂φ(0) (14)

according to the commutative diagram

−ω∂r

δ (x) −→ −∂δ (x)

−ω −∂r −ω↑ ⧹↗ ↑
↓ ⧸↘ ↓ω ∂r ω

δ (x)∨ = ω δ (x) −→ ∂r δ (x)
−ω∂r

Note that, as a corollary to the commutative diagram in the above definition, we have obtained the following action
for signumdistributions:

(ω ∂r)(ω δ (x)) =−∂r δ (x) .

Moreover the signum-partner of ∂δ (x) turns out to be, up to a minus sign, the radial derivative of δ (x):

ω ∂δ (x) =−∂r δ (x) .

More generally the following commutative diagram holds:
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−ω∂r

ω ∂ 2k+1
r δ (x) −→ ∂ 2k+2

r δ (x)

−ω −∂r −ω↑ ⧹↗ ↑
↓ ⧸↘ ↓ω ∂r ω

−∂ 2k+1
r δ (x) −→ ω ∂ 2k+2

r δ (x)
−ω∂r

Taking into account that xδ (x) = 0, the following definition is obvious.
Definition 15 The signumdistribution r δ (x) is defined to be the zero signumdistribution, according to the commuta-

tive diagram

−x

δ (x) −→ 0

−ω −r −ω↑ ⧹↗ ↑
↓ ⧸↘ ↓ω r ω

ω δ (x) −→ 0
−x

Note that, at the same time, we have obtained that, such as δ (x) itself, its associated signumdistribution ω δ (x) is
annihilated by multiplication by the vector variable x:

x(ω δ (x)) = 0 .

Now consider the distribution ∂ δ (x) = (ω ∂r)δ (x). As x∂ δ (x) = mδ (x), we first define the signumdistribution
r ∂ δ (x) by

⟨r ∂ δ (x), ω φ(x) ⟩= m⟨δ (x), φ(x) ⟩

In view of (13) we obtain the following identity of signumdistributions:

r (ω ∂r)δ (x) = (−m)ω δ (x) (15)

which is in accordance with the commutative diagram
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−x

(ω ∂r)δ (x) = ∂δ (x) −→ −mδ (x)

−ω −r −ω↑ ⧹↗ ↑
↓ ⧸↘ ↓ω r ω

−∂r δ (x) −→ (−m)ω δ (x)
−x

More generally, the distribution

x∂ 2k+1 δ (x) = (m+2k)∂ 2k δ (x)

allows for the definition of the signumdistribution r ∂ 2k+1 δ (x).
Definition 16 Multiplication by the radial distance r of an odd power of the Dirac operator acting on the delta

distribution δ (x) results into the signumdistribution r ∂ 2k+1 δ (x) given by

⟨ r ∂ 2k+1 δ (x), ω φ(x) ⟩= (m+2k)⟨ ∂ 2k δ (x), φ(x) ⟩ .

Invoking the formulæ obtained in Corollary 3, this action can be rewritten as:

⟨ r (ω ∂ 2k+1
r )δ (x), ω φ(x) ⟩= (m+2k)⟨ ∂ 2k

r δ (x), φ(x) ⟩

which implies the following identity of signumdistributions :

r ω ∂ 2k+1
r δ (x) =−(m+2k)ω ∂ 2k

r δ (x) .

In a similar way we find

∂r ∂δ (x) = ω ∂ 2
r δ (x) =

1
2
(m+1)ω ∆δ (x)

and more generally

∂r ∂ 2k+1 δ (x) = (−1)k 1
2

1
k+1

(m+2k+1)ω ∆k+1 δ (x) .

Next we consider distribution ∆δ (x) =−∂ 2δ (x). We know that multiplication by the radial distance r results into a
signumdistribution, which we now define bearing in mind that x∆δ (x) =−2∂ δ (x).

Definition 17 The signumdistribution r ∆δ (x) is defined by
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⟨ r ∆δ (x), ω φ(x) ⟩=−2⟨ ∂δ (x), φ(x) ⟩ .

Clearly it holds that

r ∆δ (x) =−2∂r δ (x)

from which it also follows, invoking the results in Proposition 9, that

r
(

1
r

∂r

)
δ (x) = ∂r δ (x)

and that

r (∂ 2
r )δ (x) =−(m+1)∂r δ (x) .

More generally, the formula x∂ 2k δ (x) = (2k)∂ 2k−1 δ (x) allows for the definition of the signumdistribution
r ∂ 2k δ (x).

Definition 18Themultiplication by the radial distance r of the distribution ∂ 2k δ (x) results into the signumdistribution
given by

⟨ r ∂ 2k δ (x), ω φ(x) ⟩= (2k)⟨ ∂ 2k−1 δ (x), φ(x) ⟩ .

Note that this action can be rephrased as:

r ∂ 2k δ (x) =−(2k)ω ∂ 2k−1 δ (x) .

Again invoking the formulæ obtained in Corollary 3, it follows that

⟨ r ∂ 2k
r δ (x), ω φ(x) ⟩=−(m+2k−1)⟨ (ω ∂ 2k−1

r )δ (x), φ(x) ⟩

or

r ∂ 2k
r δ (x) =−(m+2k−1)∂ 2k−1

r δ (x) .

Also the multiplication of a distribution by the singular vector variable ω results into a signumdistribution. We are
now ready to define the signumdistribution ω ∂ 2kδ (x).

Definition 19 The signumdistribution ω ∂ 2kδ (x) associated to the distribution ∂ 2kδ (x) is given by
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⟨ ω ∂ 2kδ (x), ω φ(x) ⟩=−⟨ ∂ 2kδ (x), φ(x) ⟩ .

Note that this action can be rewritten as:

1
2k k!

(m+1)(m+3) · · ·(m+2k−1)ω ∂ 2k δ (x) = (−1)k ω ∂ 2k
r δ (x)

and, in particular, for k = 1:

ω ∂ 2 δ (x) =− 2
m+1

ω ∂ 2
r δ (x) .

Finally we consider the radial derivative of the distribution ∂ 2kδ (x), which is, as expected, a signumdistribution. It
is defined as follows.

Definition 20 The signumdistribution ∂r ∂ 2kδ (x) is defined by

⟨ ∂r ∂ 2kδ (x), ω φ(x) ⟩= ⟨ (ω ∂r)∂ 2kδ (x), φ(x) ⟩ .

This leads to the following expression for the signum-partner of ∂ 2k+1 δ (x) :

∂r ∂ 2k δ (x) =−ω ∂ 2k+1 δ (x) = (−1)k 2k k!
(m+1)(m+3) · · ·(m+2k−1)

∂ 2k+1
r δ (x)

and, in particular, for k = 1,

∂r ∂ 2 δ (x) =−ω ∂ 3 δ (x) =− 2
m+1

∂ 3
r δ (x) .

The above results can be summarized in the following commutative diagram:

−ω∂r

∂ 2kδ (x) −→ −∂ 2k+1δ (x) = (−1)k+1 2k k!
(m+1)(m+3) · · ·(m+2k−1)

ω ∂ 2k+1
r δ (x)

−ω −∂r −ω↑ ⧹↗ ↑
↓ ⧸↘ ↓ω ∂r ω

ω ∂ 2kδ (x) −→ −ω ∂ 2k+1δ (x) = (−1)k 2k k!
(m+1)(m+3) · · ·(m+2k−1)

∂ 2k+1
r δ (x)

−ω∂r

We also find, as could be expected, that
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∂r ∂ 2k
r δ (x) = ∂ 2k+1

r δ (x) .

Remark 6 For k = 0 we obtain that rδ (x) is the zero signumdistribution. In fact, this product is also defined within
the framework of standard distributions since the delta distribution is of finite order zero and the function r is continuous
in Rm.

17. Action of signum-operators on the delta distribution
In Section 14 we encountered the signumpartners D and Z of operators ∂ and ∆ respectively, leading to the

commutative diagrams

∂
T −→ ∂T

−ω ∂r −ω↑ ⧹↗ ↑
↓ ⧸↘ ↓ω −∂r ω

ω T −→ ω ∂T
D

and

∆
T −→ ∆T

−ω −ω↑ ↑
↓ ↓ω ω

ω T −→ ω ∆T
Z

In particular for the delta distribution, more precisely for its signum-partner ω δ (x), we obtain

D(ω δ (x)) = ω ∂ δ (x)

and

Z(ω δ (x)) = ω ∆δ (x) .

Because operators D and Z =−D2 are Cartesian operators, also the signum-pairs [D, ∂ ] and [Z, ∆] hold. However,
because the delta distribution is radial and homogeneous of degree (−m), the actions of operators D and Z on δ (x) will
be uniquely determined, leading to the commutative diagrams
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D

δ (x) −→ Dδ (x)

−ω −ω↑ ↑
↓ ↓ω ω

ω δ (x) −→ ∂ (ω δ (x))
∂

with

Dδ (x) =
1
m

∂ δ (x) and ∂ (ω δ (x)) =
1
m

ω ∂ δ (x) =− 1
m

∂r δ (x)

and

Z
δ (x) −→ Zδ (x)

−ω −ω↑ ↑
↓ ↓ω ω

ω δ (x) −→ ∆(ω δ (x))
∆

with

Zδ (x) =
m+1

2m
∆δ (x) and ∆(ω δ (x)) =

m+1
2m

ω ∆δ (x) .

In [10] we introduced the vector operator

F = D+
1
r

∂ω = ω ∂r +(m−1)
1
r

ω

which is, as a matter of speaking, intermediate between ∂ and D. It holds that

∂ +D−F = ω ∂r .

The operator F is signum-invariant:

−ω F ω = F
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and Cartesian:

F =−
[

1
x
(E+(m−1))

]
.

Moreover it holds that
(i) if the distribution T rad is radial, then F T rad = DT rad ;
(ii) if the distribution T srad is signum-radial, then F T srad = ∂ T srad .
In particular we have the commutative diagram

F

δ (x) −→ Dδ (x)

−ω −ω↑ ↑
↓ ↓ω ω

ω δ (x) −→ ∂ (ω δ (x))
F

with

F δ (x) = Dδ (x) =
1
m

∂δ (x)

and

F (ω δ (x)) = ∂ (ω δ (x)) =
1
m

ω ∂ δ (x) =− 1
m

∂r δ (x) .

The square of the F-operator is a purely radial operator:

−F2 = ∂ 2
r +2(m−1)

1
r

∂r +(m−1)(m−2)
1
r2

and it holds that:

−F2 δ (x) =− 1
m

∂ 2 δ (x) =
1
m

∆δ (x)

and

−F2 (ω δ (x)) =− 1
m

ω ∂ 2 δ (x) =
1
m

ω ∆δ (x) .

Recalling that
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∂ 2
r δ (x) =

1
2
(m+1)∆δ (x)

1
r

∂r δ (x) =− 1
2

∆δ (x)

1
r2 ∆∗ δ (x) = 0

1
r2 Z∗ δ (x) =− m−1

2m
∆δ (x)

1
r2 δ (x) =

1
2

1
m

∆δ (x)

it is straightforwardly verified that indeed

Zδ (x) =
m+1

2m
∆δ (x)

and

−F2 δ (x) =
1
m

∆δ (x) .

18. Division by natural powers of the radial distance r
Because the division of the delta distribution and its Dirac derivatives by natural powers of the vector variable x is

uniquely determined, see Section 7, this will also be the case for the corresponding cross operation of division by the
radial distance r. Based on the result of Section 7:

1
x

δ (x) =
1
m

∂ δ (x)

we can define the signumdistribution
1
r

δ (x).

Definition 21 The signumdistribution 1
r

δ (x) is defined by

⟨ 1
r

δ (x), ω φ(x) ⟩= ⟨ − 1
x

δ (x), φ(x) ⟩= ⟨ − 1
m

∂ δ (x), φ(x) ⟩, ∀ω φ(x) ∈ Ω(Rm) .

In view of
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⟨ ∂r δ (x), ω φ(x) ⟩= ⟨ ∂ δ (x), φ(x) ⟩

we obtain the signumdistributional identity

1
x
(ω δ (x)) =

1
r

δ (x) =− 1
m

∂r δ (x) .

More generally, we have the following definition.
Definition 22 The signumdistribution

1
r2k+1 δ (x) is defined by

⟨ 1
r2k+1 δ (x), ω φ(x)⟩= ⟨ (−1)k+1 1

x2k+1 δ (x), φ(x) ⟩

= (−1)k+1 ⟨ 1
2kk!(m+2k)(m+2k−2) · · ·(m)

∂ 2k+1δ (x), φ(x) ⟩, ∀ω φ(x) ∈ Ω(Rm) .

Through the commutative diagram

(−1)k 1
x2k+1

δ (x) −→ (−1)k 1
x2k+1 δ (x) =

(−1)k

2kk!(m+2k)(m+2k−2) · · ·(m)
∂ 2k+1δ (x)

−ω −ω↑ ↑
↓ ↓ω ω

ω δ (x) −→ (−1)k 1
x2k+1 (ω δ (x)) =

(−1)k

2kk!(m+2k)(m+2k−2) · · ·(m)
ω ∂ 2k+1δ (x)

(−1)k 1
x2k+1

it becomes apparent that

(−1)k 1
x2k+1 (ω δ (x)) =

1
r2k+1 δ (x) =− (m−1)!

(m+2k)!
∂ 2k+1

r δ (x) .

Note that division by an even natural power of r is a Cartesian operation. So
1

r2k δ (x) has to be a distribution; its
definition runs as follows.

Definition 23 The distribution 1
r2k δ (x) is defined by
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1
r2k δ (x) = (−1)k 1

x2k δ (x)

= (−1)k 1
2k k!m(m+2) · · ·(m+2k−2)

∂ 2k δ (x)

=
(m−1)!

(m+2k−1)!
∂ 2k

r δ (x) .

On the contrary,
1

r2k (ω δ (x)) has to be a signumdistribution; its definition runs as follows.
Definition 24

1
r2k (ω δ (x)) = (−1)k 1

x2k (ω δ (x))

= (−1)k 1
2k k!m(m+2) · · ·(m+2k−2)

ω ∂ 2k δ (x)

=
(m−1)!

(m+2k−1)!
ω ∂ 2k

r δ (x) .

Similarly, based upon the following formulæ for division by x:

1
x

∂ 2k+1δ (x) =
1

2k+2
∂ 2k+2δ (x)

1
x

∂ 2kδ (x) =
1

m+2k
∂ 2k+1δ (x)

we may establish the commutative diagrams

1
x

∂ 2k δ (x) −→ 1
m+2k

∂ 2k+1 δ (x) =
1

m+2k
(−1)k 2k k!

(m+1)(m+3) · · ·(m+2k−1)
ω ∂ 2k+1

r δ (x)

−ω − 1
r

−ω
↑ ⧹↗ ↑
↓ ⧸↘ ↓

ω 1
r ω

ω ∂ 2k δ (x) −→ 1
m+2k

ω ∂ 2k+1 δ (x) =
1

m+2k
(−1)k+1 2k k!

(m+1)(m+3) · · ·(m+2k−1)
∂ 2k+1

r δ (x)
1
x
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and

1
x

∂ 2k+1 δ (x) −→ 1
2k+2

∂ 2k+2 δ (x) =
(−1)k+1 2k k!

(m+1)(m+3) · · ·(m+2k+1)
∂ 2k+2

r δ (x)

−ω − 1
r

−ω
↑ ⧹↗ ↑
↓ ⧸↘ ↓

ω 1
r ω

ω ∂ 2k+1 δ (x) −→ 1
2k+2

ω ∂ 2k+2 δ (x) =
(−1)k+1 2k k!

(m+1)(m+3) · · ·(m+2k+1)
ω ∂ 2k+2

r δ (x)
1
x

showing that

1
r

∂ 2k δ (x) =
1

m+2k
ω ∂ 2k+1 δ (x) and

1
r

∂ 2k
r δ (x) =− 1

m+2k
∂ 2k+1

r δ (x)

and

1
r

∂ 2k+1 δ (x) =
1

2k+2
ω ∂ 2k+2 δ (x) and

1
r
(ω ∂ 2k+1

r )δ (x) =− 1
m+2k+1

ω ∂ 2k+2
r δ (x) .

More generally, based on the formulæ obtained in Section 5, one has the following formulæ:
(i)

1
r2k+1 ∂ 2ℓ δ (x) = (−1)k 1

2k (ℓ+1)(ℓ+2) · · ·(ℓ+ k)(m+2ℓ)(m+2ℓ+2) · · ·(m+2ℓ+2k)
ω ∂ 2ℓ+2k+1 δ (x)

1
r2k+1 ∂ 2ℓ

r δ (x) =− (m+2ℓ−1)!
(m+2ℓ+2k)!

∂ 2ℓ+2k+1
r δ (x)

(ii)

1
r2k ∂ 2ℓ δ (x) = (−1)k 1

2k (ℓ+1)(ℓ+2) · · ·(ℓ+ k)(m+2ℓ)(m+2ℓ+2) · · ·(m+2ℓ+2k−2)
∂ 2ℓ+2k δ (x)

1
r2k ∂ 2ℓ

r δ (x) =
(m+2ℓ−1)!

(m+2ℓ+2k−1)!
∂ 2ℓ+2k

r δ (x)
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(iii)

1
r2k+1 ∂ 2ℓ+1 δ (x) = (−1)k 1

2k+1 (ℓ+1)(ℓ+2) · · ·(ℓ+ k+1)(m+2ℓ+2)(m+2ℓ+4) · · ·(m+2ℓ+2k)
ω ∂ 2ℓ+2k+2 δ (x)

1
r2k+1 ∂ 2ℓ+1

r δ (x) =− (m+2ℓ)!
(m+2ℓ+2k+1)!

∂ 2ℓ+2k+2
r δ (x)

(iv)

1
r2k ∂ 2ℓ+1 δ (x) = (−1)k 1

2k (ℓ+1)(ℓ+2) · · ·(ℓ+ k)(m+2ℓ+2)(m+2ℓ+4) · · ·(m+2ℓ+2k)
∂ 2ℓ+2k+1 δ (x)

1
r2k ∂ 2ℓ+1

r δ (x) =
(m+2ℓ)!

(m+2ℓ+2k)!
∂ 2ℓ+2k+1

r δ (x)

19. Two fundamental sequences of (signum)distributions
There is a fundamental sequence of derivatives of the delta distribution, which are alternatively scalar and vector

valued, and which is generated by the action of the operator (ω ∂r):

δ → (ω ∂r)δ → ∂ 2
r δ → . . .→ (ω ∂ 2k−1

r )δ → ∂ 2k
r δ → (ω ∂ 2k+1

r )δ → . . . .

For each of the distributions in this sequence we defined, in the examples of the foregoing section, through the action
of ω , a specific associated signumdistribution, yielding in this way a parallel sequence of signumdistributions:

ω δ → ∂r δ → (ω ∂ 2
r )δ → . . .→ ∂ 2k−1

r δ → (ω ∂ 2k
r )δ → ∂ 2k+1

r δ → . . . .

Let us recall these definitions. The initial definition is the following.
Definition 25

⟨ ω ∂ 2k
r δ (x), ω φ(x) ⟩= ⟨ −∂ 2k

r δ (x), φ(x) ⟩ (16)

⟨ ω (ω ∂ 2k−1
r δ (x)), ω φ(x) ⟩= ⟨ −(ω ∂ 2k−1

r )δ (x), φ(x) ⟩ . (17)

Whereupon we introduce the signumdistribution ∂ 2k−1
r δ (x) by

Definition 26

∂ 2k−1
r δ (x) =−ω (ω ∂ 2k−1

r δ (x))
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such that Definition 17 may be rephrased as

⟨ ∂ 2k−1
r δ (x), ω φ(x) ⟩= ⟨ (ω ∂ 2k−1

r )δ (x), φ(x) ⟩ . (18)

There are two other actions on each of the distributions of the first sequence, yielding a signumdistribution of the
second sequence, viz. the actions by r and by ∂r. Indeed, by an appropriate combination of the above definitions, we
obtain the following calculus rules.

Property 1 One has

r (ω ∂ 2k+1
r )δ (x) =−(m+2k)ω ∂ 2k

r δ (x)

r ∂ 2k
r δ (x) =−(m+2k−1)∂ 2k−1

r δ (x)

∂r (ω ∂ 2k+1
r )δ (x) = ω ∂ 2k+2

r δ (x)

∂r ∂ 2k
r δ (x) = ∂ 2k+1

r δ (x) .

One may wonder if there are actions transforming the signumdistributions from the second sequence back into
distributions from the first sequence and the answer is positive. Indeed, the same actions apply on the signumdistributions
from the second sequence. The basic action is again through the operator ω , which yields the following definitions.

Definition 27

⟨ ω (ω ∂ 2k
r )δ (x), φ(x) ⟩= ⟨ ω ∂ 2k

r δ (x), ω φ(x) ⟩ (19)

⟨ ω (∂ 2k−1
r δ (x)), φ(x) ⟩⟨ ∂ 2k−1

r δ (x), ω φ(x) ⟩ . (20)

Comparing Definitions 19 and 16, it is clear that the distribution ω (ω ∂ 2k
r )δ (x) is nothing else but the distribution

−∂ 2k
r δ (x), whereas comparing Definitions 20 and 18 shows that the distribution ω (∂ 2k−1

r δ (x)) is indeed the distribution
(ω ∂ 2k−1

r )δ (x).
For the actions of operators r and ∂r on signumdistributions, which are defined in a similar way as the actions of r

and ∂r on distributions, we obtain the following computation rules.
Property 2 One has the following formulæ:
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r ∂ 2k+1
r δ (x) =−(m+2k)∂ 2k

r δ (x)

r (ω ∂ 2k
r )δ (x) =−(m+2k−1)(ω ∂ 2k−1

r )δ (x)

r
(

1
r

∂ 2k
r δ (x)

)
= ∂ 2k

r δ (x)

r
(

1
r

ω ∂ 2k+1
r δ (x)

)
= ω ∂ 2k+1

r δ (x)

∂r (∂ 2k+1
r )δ (x) = ∂ 2k+2

r δ (x)

∂r (ω ∂ 2k
r )δ (x) = (ω ∂ 2k+1

r )δ (x) .

From those fomulæthe following completely symmetric picture can be deduced:

. . . −→ (ω ∂ 2k−1
r )δ −→ ∂ 2k

r δ −→ (ω ∂ 2k+1
r )δ −→ . . .

ω r ∂r ω r ∂r ω↑ ↖↗ ↑ ↖↗ ↑
↓ ↙↘ ↓ ↙↘ ↓ω r ∂r ω r ∂r ω

. . . −→ ∂ 2k−1
r δ −→ (ω ∂ 2k

r )δ −→ ∂ 2k+1
r δ −→ . . .

20. Composition of spherical operators
When composing two operators out of the set of operators: r, ∂r and ω , six operators originate: r2, r ∂r, r ω , ∂ 2

r , ω ∂r

and ω2, which are traditional operators whose actions on distributions are well-defined. This means that the consecutive
action by any two of the operators r, ∂r and ω should lead to a known result, which is a serious test for all calculus rules
established above. We now prove that this is indeed the case.

(i) By the calculus rules we have

r2(ω ∂ 2k+1
r δ ) =−(m+2k)r(ω ∂ 2k

r δ ) = (m+2k−1)(m+2k)(ω ∂ 2k−1
r )δ

and

r2(∂ 2k
r δ ) =−(m+2k−1)r(∂ 2k−1

r δ ) = (m+2k−2)(m+2k−1)∂ 2k−2
r δ .

On the other hand, invoking the identities
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x2∂ 2k+1 δ (x) = (m+2k)(2k)∂ 2k−1 δ (x) (21)

x2∂ 2k δ (x) = (m+2k−2)(2k)∂ 2k−2 δ (x) (22)

and the formulæ of Corollary 3, we have

r2(ω ∂ 2k+1
r δ ) =− (−1)k

2kk!
(m+1)(m+3) · · ·(m+2k−1)x2∂ 2k+1 δ

= (m+2k−1)(m+2k)(ω ∂ 2k−1
r )δ

and

r2(∂ 2k
r δ ) =− (−1)k

2kk!
(m+1)(m+3) · · ·(m+2k−1)x2∂ 2k δ

= (m+2k−2)(m+2k−1)(ω ∂ 2k−2
r )δ .

(ii) The Euler operator measures the degree of homogeneity and thus

r ∂r (ω ∂ 2k+1
r δ ) =−(m+2k+1)ω ∂ 2k+1

r δ

r ∂r (∂ 2k
r δ ) =−(m+2k)∂ 2k

r δ

whereas the calculus rules lead to

r ∂r (ω ∂ 2k+1
r δ ) = r(ω ∂ 2k+2

r δ ) =−(m+2k+1)ω ∂ 2k+1
r δ

r ∂r (∂ 2k
r δ ) = r(∂ 2k+1

r δ ) =−(m+2k)∂ 2k
r δ .

(iii) By the calculus rules we obtain

r ω (ω ∂ 2k+1
r δ ) =−r ∂ 2k+1

r δ = (m+2k)∂ 2k
r δ

r ω (∂ 2k
r δ ) =−(m+2k−1)ω ∂ 2k−1

r δ

whereas invoking identities (21) and (22) respectively, leads to
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r ω (ω ∂ 2k+1
r δ ) =

(−1)k

2kk!
(m+1)(m+3) · · ·(m+2k−1)x∂ 2k+1 δ

= (m+2k)∂ 2k
r δ

and

r ω (∂ 2k
r δ ) =

(−1)k

2kk!
(m+1)(m+3) · · ·(m+2k−1)x∂ 2k δ

=−(m+2k−1)ω ∂ 2k−1
r δ .

(iv) The calculus rules lead to

∂ 2
r (ω ∂ 2k+1

r δ ) = ω ∂ 2k+3
r δ

∂ 2
r (∂ 2k

r δ ) = ∂ 2k+2
r δ .

On the other hand we can make use of the identities

(ω ∂r)∂ 2k δ (x) = ∂ 2k+1 δ (x)

(ω ∂r)∂ 2k+1 δ (x) =
m+2k+1

2(k+1)
∂ 2k+2 δ (x)

to obtain

∂ 2
r (ω ∂ 2k+1

r δ ) =
(−1)k

2kk!
(m+1)(m+3) · · ·(m+2k−1)(−1)

m+2k+1
2(k+1)

∂ 2k+3 δ

=
(−1)k+1

2k+1(k+1)!
(m+1)(m+3) · · ·(m+2k−1)(m+2k+1)∂ 2k+3 δ = ω ∂ 2k+3

r δ

and
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∂ 2
r (∂ 2k

r δ ) =
(−1)k

2kk!
(m+1)(m+3) · · ·(m+2k−1)(−1)

m+2k+1
2(k+1)

∂ 2k+2 δ

=
(−1)k+1

2k+1(k+1)!
(m+1)(m+3) · · ·(m+2k−1)(m+2k+1)∂ 2k+2 δ = ∂ 2k+2

r δ .

(v) On the one hand we have by the calculus rules

ω ∂r (ω ∂ 2k+1
r δ ) = ω (ω ∂ 2k+2

r δ ) =−∂ 2k+2
r δ

ω ∂r (∂ 2k
r δ ) = ω (∂ 2k+1

r δ ) = ω ∂ 2k+1
r δ

and on the other

ω ∂r (ω ∂ 2k+1
r δ ) = ω ∂r (−1)k(ω ∂r)

2k+1 δ = (−1)k(ω ∂r)
2k+2 δ =−∂ 2k+2

r δ

ω ∂r (∂ 2k
r δ ) = ω ∂r (−1)k(ω ∂r)

2k δ = (−1)k(ω ∂r)
2k+1 δ = ω ∂ 2k+1

r δ .

(vi) The action by ω2 =−1 is trivial.

21. Two families of specific distributions
In a series of papers, see [11, 13] and the references therein, several specific families of distributions in Euclidean

space Rm were thoroughly studied. Of particular importance are distribution families Tλ and Uλ , λ being a complex
parameter, appearing in harmonic analysis. They are defined as follows, using spherical coordinates x = r ω, r = |x|,
ω ∈ Sm−1, Sm−1 being the unit sphere in Rm.

Definition 28 For all λ ∈ C and for all test functions φ(x) ∈ D(Rm) the distributions Tλ and Uλ are defined by

⟨ Tλ , φ(x) ⟩ := am ⟨ Fprλ+m−1
+ , Σ0[φ](r) ⟩r

and

⟨ Uλ , φ(x) ⟩ := am ⟨ Fprλ+m−1
+ , Σ1[φ](r) ⟩r

where, recall, the spherical means Σ0 and Σ1 are given by

Σ0[φ](r) =
1

am

∫
Sm−1

φ(rω)dS(ω)
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and

Σ1[φ](r) =
1

am

∫
Sm−1

ω φ(rω)dS(ω)

with am =
2πm/2

Γ(m/2)
the area of the unit sphere Sm−1, and where Fprµ

+ stands for the Finite Part distribution on the one-

dimensional r-axis.
An alternative, and handy, notation could be Tλ = Fprλ and Uλ = ω Fprλ . For the sake of completeness we give

the definition of the one-dimensional Finite Part distribution.
Definition 29 The distribution Fpxµ

+ is defined for the complex parameter µ such that −n−1 < ℜ µ < −n and all
n ∈ N, by

⟨ Fpxµ
+ , ϕ(x) ⟩=

∫ +∞

0
xµ

(
ϕ(x)−ϕ(0)− ϕ ′(0)

1!
x−·· ·− ϕ (n−1)(0)

(n−1)!
xn−1

)
dx

= lim
ε→0+

(∫ +∞

ε
xµ ϕ(x)dx+ϕ(0)

εµ+1

µ +1
+ · · ·+ ϕ (n−1)(0)

(n−1)!
εµ+n

µ +n

)
.

(23)

Let us comment on the Definition 28; for more details we refer to the above mentioned series of papers.
A priori, distributions Tλ and Uλ are not defined at the simple poles of the one-dimensional distribution Fp rλ+m−1

+

on the r-axis, viz., λ =−m−n+1, n ∈N. To cope with these singularities, the distributions Fp r−n
+ , n ∈N are interpreted

as the so-called monomial pseudofunctions, see [11].
Distributions Tλ are standard scalar distributions well known in harmonic analysis. They are radial and homogeneous

of degree λ . As meromorphic functions of λ ∈C they show genuine simple poles at λ =−m, −m−2, −m−4, . . .. This
is due to the fact that the singular points λ = −m− 2ℓ− 1, ℓ = 0, 1, 2, . . . are removable, since spherical mean Σ(0)[ϕ ]
has its odd order derivatives vanishing at r = 0. So we can define

⟨T−m−2ℓ−1, ϕ⟩= lim
µ→−2ℓ−2

am⟨Fp rµ
+, Σ(0)[ϕ ]⟩

but, remarkably, this limit is precisely am⟨Fp r−2ℓ−2
+ , Σ(0)[ϕ ]⟩, with Fp r−2ℓ−2

+ the monomial pseudofunction. The most

important distribution is this family is T−m+2 =
1

rm−2 , which is, up to a constant, the fundamental solution of Laplace
operator ∆. Also note the special cases T0 = 1, T2ℓ = r2ℓ = (−1)ℓ x2ℓ, and T2ℓ+1 = r2ℓ+1, ℓ= 0, 1, 2, . . ..

Distributions Uλ are typical Clifford analysis constructs. They are homogeneous of degree λ . As vector-valued
meromorphic functions of λ ∈ C they show genuine simple poles at λ = −m− 1, −m− 3, −m− 5, . . .. This is due to
the fact that the singular points λ = −m− 2ℓ, ℓ = 0, 1, 2, . . . are removable, since spherical mean Σ(1)[ϕ ] has its even
order derivatives vanishing at r = 0. So we can define

⟨U−m−2ℓ, ϕ⟩= lim
µ→−2ℓ−1

am⟨Fp rµ
+, Σ(1)[ϕ ]⟩
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but this limit is precisely am⟨Fp r−2ℓ−1
+ , Σ(1)[ϕ ]⟩, with Fp r−2ℓ−1

+ the monomial pseudofunction. The most important
distribution in this family is U−m+1 =

ω
rm−1 =

x
rm , which is, up to a constant, the fundamental solution of Dirac operator

∂ . Also note the special cases U0 = ω , U2ℓ = ω r2ℓ and U2ℓ+1 = ω r2ℓ+1 = (−1)ℓ x2ℓ+1, ℓ= 0, 1, 2, . . ..
It is important to note that, although distributions Tλ and Uλ are also defined in their respective singularities, these

exceptional values do not turn these distributions into entire functions of the parameter λ ∈ C.
When restricted to the half-plane Reλ > −m, distributions Tλ and Uλ are regular, i.e. they are locally integrable

functions. From [4] we know that a locally integrable function can be seen as a signumdistribution as well. This inspires
the definition of the following two families of signumdistributions:

⟨ sTλ , ω φ(x) ⟩ := am ⟨ Fprλ+m−1
+ , Σ1[φ](r) ⟩r ;

⟨ sUλ , ω φ(x) ⟩ :=−am ⟨ Fprλ+m−1
+ , Σ0[φ](r) ⟩r .

It is clear that

T ∨
λ = sUλ ,

sU∧
λ = Tλ

and

U ∨
λ =−sTλ ,

sT∧
λ =−Uλ .

In this way sTλ inherits the simple poles of Uλ , viz., λ = −m− 1, −m− 3, −m− 5, . . ., whereas sUλ inherits the
simple poles of Tλ , viz., λ =−m, −m−2, −m−4, . . ..

Because distributions Tλ are radial, by Definition 12, signumdistributions sUλ are signum-radial. Because
signumdistributions sTλ are radial, by the same definition, distributions Uλ are signum-radial.

Now we will systematically compute the actions on Tλ ,Uλ , sTλ and sUλ of all operators introduced in the preceding
sections, paying attention to the uniqueness of the expressions obtained.

Multiplication operator x is a Cartesian operator whose actions are uniquely determined, quite naturally. It holds for
all λ ∈ C that

xTλ =Uλ+1, xUλ =−Tλ+1 . (24)

Based on the commutative diagram

−x

Tλ −→ −Uλ+1

−ω −r −ω↑ ⧹↗ ↑
↓ ⧸↘ ↓ω r ω

sUλ −→ sTλ+1
−x
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we find the additional formulæ

r Tλ = sTλ+1 and r sUλ =Uλ+1, λ ∈ C

and

x sUλ =− sTλ+1, λ ∈ C .

In a similar way, based on the commutative diagram

x

−Uλ −→ Tλ+1

−ω r −ω↑ ⧹↗ ↑
↓ ⧸↘ ↓ω −r ω

sTλ −→ sUλ+1
x

we obtain the additional formulæ

r sTλ = Tλ+1 and rUλ = sUλ+1, λ ∈ C

and also

x sTλ = sUλ+1, λ ∈ C .

Iterated action of multiplication operator x results into

r2 Tλ = Tλ+2, r2 Uλ =Uλ+2, λ ∈ C

and

r2 sTλ = sTλ+2, r2 sUλ = sUλ+2, λ ∈ C .

As is the case for multiplication operator x, also Dirac operator ∂ intertwines the Tλ and Uλ distribution families. It
clearly is a Cartesian operator whose action is uniquely determined. It holds that

∂ Tλ = λ Uλ−1, λ ̸=−m, −m−2, −m−4, . . . (25)
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and

∂ Uλ =−(λ +m−1)Tλ−1, λ ̸=−m+1, −m−1, −m−3, . . . (26)

whereas for ℓ= 0, 1, 2, . . .

∂ T−m−2ℓ =−(m+2ℓ)U−m−2ℓ−1 +(−1)ℓ+1 1
C(m, ℓ)

am ∂ 2ℓ+1 δ (x) (27)

and

∂ U−m−2ℓ+1 = (2ℓ)T−m−2ℓ+(−1)ℓ−1 m+2ℓ
C(m, ℓ)

am ∂ 2ℓ δ (x) (28)

with

C(m, ℓ) = 22ℓ+1 ℓ!
Γ
(m

2
+ ℓ+1

)
Γ
(m

2

) = 2ℓ ℓ!m(m+2)(m+4) · · ·(m+2ℓ) .

In particular, for ℓ= 0, it holds that

∂ T−m = (−m)U−m−1 −
1
m

am ∂δ (x) ; (29)

∂ U−m+1 =−am δ (x) . (30)

Formula (30) expresses the well known fact that − 1
m

U−m+1 is indeed the fundamental solution of Dirac operator ∂ .
Through the signum-pair of operators (∂ , D), the corresponding formulæfor signumdistributions sTλ and sUλ are

readily obtained:

D sUλ =−λ sTλ−1, λ ̸=−m, −m−2, −m−4, . . .

and

D sTλ = (λ +m−1) sUλ−1, λ ̸=−m+1, −m−1, −m−3, . . .

whereas for ℓ= 0, 1, 2, . . .
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D sU−m−2ℓ = (m+2ℓ) sT−m−2ℓ−1 +(−1)ℓ+1 1
C(m, ℓ)

am ω ∂ 2ℓ+1 δ (x)

and

D sT−m−2ℓ+1 =−(2ℓ) sU−m−2ℓ+(−1)ℓ
m+2ℓ

C(m, ℓ)
am ω ∂ 2ℓ δ (x)

and in particular, for ℓ= 0,

D sU−m = m sT−m−1 −
1
m

am ω ∂δ (x)

D sT−m+1 = am ω δ (x) .

Iterated action of Dirac operator ∂ results into formulæ for the action of the Laplace operator on distributions. It
holds that

∆Tλ = λ (λ +m−2)Tλ−2, λ ̸=−m+2, −m, −m−2, . . . (31)

∆Uλ = (λ −1)(λ +m−1)Uλ−2, λ ̸=−m+1, −m−1, . . . (32)

and

∆T−m−2ℓ = (m+2ℓ)(2ℓ+2)T−m−2ℓ−2 +(−1)ℓ am
(m+4ℓ+2)(m+2ℓ+2)

C(m, ℓ+1)
∂ 2ℓ+2 δ (x) (33)

∆U−m−2ℓ+1 = (m+2ℓ)(2ℓ)U−m−2ℓ−1 +(−1)ℓ am
m+4ℓ

C(m, ℓ)
∂ 2ℓ+1 δ (x) (34)

and, in particular, for ℓ= 0

∆T−m = 2mT−m−2 +
m+2

2m
am ∂ 2 δ (x) (35)

∆U−m+1 = am ∂δ (x) (36)

and also
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∆T−m+2 =−(m−2)am δ (x) (37)

this last formula expressing the fact that − 1
m−2

1
am

T−m+2 is, as expected, the fundamental solution of the Laplace
operator.

Continuing the iterated action by Dirac operator ∂ leads to the fundamental solutions of the natural powers of ∂ . We
find

∂ 2ℓ E2ℓ = δ (x)

with

E2ℓ =
1

2ℓ−1 (ℓ−1)!(m−2)(m−4) · · ·(m−2ℓ)
1

am
T−m+2ℓ =

1
22ℓ

1
(ℓ−1)!

Γ
(m

2
− ℓ
)

πm/2 T−m+2ℓ (38)

and

∂ 2ℓ+1 E2ℓ+1 = δ (x)

with

E2ℓ+1 =− 1
2ℓ (ℓ)!(m−2)(m−4) · · ·(m−2ℓ)

1
am

U−m+2ℓ+1 =− 1
22ℓ+1

1
ℓ!

Γ
(m

2
− ℓ
)

πm/2 U−m+2ℓ+1 . (39)

If dimension m is odd, then the above formulæ are valid for all natural values of ℓ. However if dimension m is even,
then these expressions are only valid for ℓ < m/2; this already becomes clear from the fundamental solution Em of the
operator ∂ m which is logarithmic in nature:

∂ m Em = ∂ m
(
− 1

2m−1 πm/2 Γ(m/2)
lnr
)
= δ (x), m even .

More generally, it holds for all k ∈ N and still for m even, that, see [13],

Em+2k−1 = (p2k−1 lnr+q2k−1)
π m

2 +k

Γ
(m

2
+ k
)U2k−1 (40)

Em+2k = (p2k lnr+q2k)
π m

2 +k

Γ
(m

2
+ k
) T2k (41)
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the constants (p2k−1, q2k−1) and (p2k, q2k) satisfying the recurrence relations


p2k =

1
2k

p2k−1

q2k =
1
2k

(
q2k−1 −

1
2k

p2k−1

)

and


p2k+1 =− 1

2π
p2k

q2k+1 =− 1
2π

(
q2k −

1
m+2k

p2k

)

with initial values

p0 =− 1
2m−1 πm , q0 = 0 .

Through the signum-pair of operators (∆, Z) or, equivalently, by iterated action of operator D, we obtain the
corresponding formulæ for the operator Z acting between signum-distributions:

Z sUλ = λ (λ +m−2) sUλ−2, λ ̸=−m+2, −m, −m−2, . . . (42)

Z sTλ = (λ −1)(λ +m−1) sTλ−2, λ ̸=−m+1, −m−1, . . . (43)

and

Z sU−m−2ℓ = (m+2ℓ)(2ℓ+2) sU−m−2ℓ−2 +(−1)ℓ am
(m+4ℓ+2)(m+2ℓ+2)

C(m, ℓ+1)
ω ∂ 2ℓ+2 δ (x) (44)

Z sT−m−2ℓ+1 = (m+2ℓ)(2ℓ) sT−m−2ℓ−1 +(−1)ℓ+1 am
m+4ℓ

C(m, ℓ)
ω ∂ 2ℓ+1 δ (x) (45)

and, in particular, for ℓ= 0

Z sU−m = 2m sU−m−2 +am
m+2

2m
ω ∂ 2 δ (x) (46)

Z sT−m+1 = am ∂r δ (x) (47)
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and also

Z sU−m+2 =−(m−2)am ω δ (x) . (48)

22. Negative integer powers of the Dirac operator
Firstly let us concentrate on operator ∂−1. Consider test function φ(x) ∈D(Rm); it is a well known result in Clifford

analysis that the so-called T -operator, given by

T (φ)(x) =
∫
Rm

E1(x− y)φ(y)dy

with

E1(x) =− 1
am

x
rm =− 1

am
U−m+1

the fundamental solution to the Dirac operator, see (30), is an inverse operator to Dirac operator ∂ . We could as well have
written:

∂−1 φ(x) = E1 ⋆φ (x)

from which it easily follows that indeed

∂
(

∂−1 φ(x)
)
= ∂ E1 ⋆φ (x) = δ ⋆φ (x) = φ (x) .

Quite naturally ∂−1 δ (x) is not uniquely determined, since Ker ∂ ̸= {0}, but, instead, consists of all entire monogenic
functions in Rm, which compels us to make a choice. Whence the following definition of ∂−1 δ (x).

Definition 30 For all test functions φ(x) ∈ D(Rm) one defines

⟨ ∂−1 δ (x), φ(x) ⟩=−⟨ δ (x), E1 ⋆φ (x) ⟩ .

It follows at once that
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⟨ ∂−1 δ (x), φ(x) ⟩=−⟨ δ (x), E1 ⋆φ (x) ⟩

=−
∫
Rm

E1(−y)φ(y)dy

=
∫
Rm

E1(y)φ(y)dy

= ⟨E1(x), φ(x) ⟩

in other words: ∂−1 δ (x) is defined to be the regular distribution E1(x). This inspires the following definition.
Definition 31 For each n ∈N, distribution ∂−nδ (x) is the regular distribution En, En being the fundamental solution

of the operator ∂ n.
In Section 21 we have established the explicit formulæ (38), (39), (40) and (41) for those fundamental solutions En.

Note that, for each n ∈ N, it indeed holds that:

∂ n (∂−nδ (x)
)
= ∂ n En(x) = δ (x) .

Now recall the signum-partner D to the Dirac operator:

D = ω ∂ (−ω) = ω ∂r −
1
r

∂ω +(m−1)
1
r

ω .

It was shown in [6] that

D sT−m+1 = am ω δ (x)

whence the following definition.
Definition 32 Signumdistribution D−1 (ω δ (x)) is the regular signumdistribution ω E1(x) =

1
am

sT−m+1. More

generally, for each n ∈ N, signumdistribution D−n(δ (x)) is the regular signumdistribution ω En(x).
Definitions 31 and 32 correspond to each other through the following commutative diagram:

∂−n

δ (x) −→ En(x)

−ω −r −ω↑ ⧹↗ ↑
↓ ⧸↘ ↓ω r ω

ω δ (x) −→ ω En(x)
D−n
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with

D−n = ω ∂−n (−ω)

Let us open a parenthesis here and wonder if it is possible to define negative entire powers of the Dirac operator acting
on a more general distribution. Because, for each test function φ(x) ∈ D(Rm), it holds that ∂−1 φ = E1 ⋆φ /∈ D(Rm), it
is clear at once that this will not be the case for the most general distribution. We propose the following definition.

Definition 33 For Dirac operator ∂ one defines its inverse ∂−1 to be the convolution operator given by

∂−1 T = E1 ⋆T

for all distributions T for which this convolution is meaningful.
Note that it holds indeed that

∂ (∂−1 T ) = ∂ E1 ⋆T = δ (x)⋆T = T.

Note also that Definition 33 applies to all tempered distributions T ∈ S ′(Rm).
More generally, we have the following definition.
Definition 34 For Dirac operator ∂ one defines the inverse operators ∂−n, n ∈ N to be the convolution operators

given by

∂−n T = En ⋆T

for all distributions T for which this convolution is meaningful .
The following commutative diagram holds:

∂−n

T −→ En ⋆T

−ω −r −ω↑ ⧹↗ ↑
↓ ⧸↘ ↓ω r ω

ω T −→ ω En ⋆T
D−n

with

∂ n En = δ (x)

and
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Dn (ω En) = ω δ (x) .

Note that, when ∂−n T is defined, we indeed have

∂ n (∂−n T ) = ∂ n (En ⋆T ) = (∂ n En)⋆T = δ (x)⋆T = T.

Note also that

∂−n (∂ n δ (x)) = En ⋆ (∂ n δ (x)) = (En ∂ n)⋆δ (x) = δ (x)

which means that, if we drop the local integrability condition, we may qualify E−n = ∂ n δ (x) as the fundamental solution
of the operator ∂−n, where the notation E−n is introduced for symmetry reasons. In this way we obtain the following three
sequences:

• the operators

. . . , ∂−n, . . . , ∂−1, 1, ∂ , . . . , ∂ n, . . .

• their action on the delta distribution

. . . , En, . . . , E1, E0, E−1, . . . , E−n, . . .

• and their fundamental solutions

. . . , E−n, . . . , E−1, E0, E1, . . . , En, . . .

and so, in words: the action of the operator ∂ k, k ∈ Z, on the delta distribution δ (x), equals the fundamental solution of
the inverse operator ∂−k.

23. Regularization of the distributions Tλ and Uλ

In Section 21 we saw that, when considered as functions of the complex parameter λ , distributions Tλ show simple
poles at λ =−m, −m−2, −m−4, . . ., whereas distributionsUλ show simple poles at λ =−m−1, −m−3, −m−5, . . ..
In these singular points the distributions Tλ and Uλ were defined through monomial pseudofunctions.

There is, however, a second option to cope with these singularities: removing the singularities by dividing
distributions Tλ and Uλ by an appropriate Gamma-function, which gives rise to the so-called normalized distributions
T ∗

λ and U∗
λ . Their definition runs as follows.

The normalized distributions T ∗
λ are defined by
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

T ∗
λ = π

λ+m
2

Tλ

Γ
(

λ +m
2

) , λ ̸=−m−2l

T ∗
−m−2l =

π m
2 −l

22lΓ
(m

2
+ l
) (−∆)lδ (x), l ∈ N0

and we call Riesz potential of the first kind Pγ
T , γ ∈ C, the scalar valued convolution operator given by

Pγ
T [ f ] = T ∗

γ−m ∗ f , f ∈ S .

For γ ̸=−2l, l ∈ N0, we have more explicitly:

Pγ
T [ f ] =

π
γ
2

Γ
(γ

2

) F p
∫
Rm

|x− y|γ−m f (y)dy (49)

whereas for γ =−2l, l ∈ N0 we have

P−2l
T [ f ] =

π m
2 −l

22l Γ
(m

2
+ l
) (−∆)l f =

π m
2 −l

22l Γ
(m

2
+ l
) ∂ 2l f .

So

Pγ
T [ f ] =

2γ π
γ+m

2

Γ
(

m− γ
2

) Iγ [ f ] , γ ̸= m+2k, k ∈ N0,

where Iγ [ f ] is the traditional Riesz potential.
Note that Pγ

T [ f ] is an entire function of γ , whereas Iγ [ f ] shows simple poles at γ = m+2k, k ∈ N0.
The normalized distributions U∗

λ are defined by



U∗
λ = π

λ+m+1
2

Uλ

Γ
(

λ +m+1
2

) , λ ̸=−m−2l −1

U∗
−m−2l−1 =− π m

2 −l

22l+1 Γ
(m

2
+ l +1

) ∂ 2l+1δ (x), l ∈ N0

and we call Riesz potential of the second kind Pγ
U , γ ∈ C, the Clifford-vector valued convolution operator
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Pγ
U [ f ] =U∗

γ−m ∗ f , f ∈ S .

For γ ̸=−2l −1, l = 0, 1, 2, . . ., we have more explicitly:

Pγ
U [ f ] = π

γ+1
2

Uγ−m

Γ
(

γ +1
2

) ∗ f

=
π

γ+1
2

Γ
(

γ +1
2

) F p
∫
Rm

|x− y|γ−m(ω −ξ ) f (y)dy

whereas for γ =−2l −1, l = 0, 1, 2, . . ., we have

P−2l−1
U [ f ] =U∗

−m−2l−1 ∗ f =− π m
2 −l

22l+1 Γ
(m

2
+ l +1

) ∂ 2l+1 f .

We also put

Pγ
U [ f ] =− 2γ π

γ+m+1
2

Γ
(

m− γ +1
2

) Jγ [ f ] , γ ̸= m+2k+1, k ∈ N0.

Note that Pγ
U [ f ] is an entire function of γ , whereas Jγ [ f ] shows simple poles at γ = m+2k+1, k ∈ N0.

Normalized distributions T ∗
λ and U∗

λ are holomorphic mappings from λ ∈ C to the space S ′(Rm) of tempered
distributions. They are intertwined by the actions of multiplication operator x and of the Dirac operator, according to
the following formulæ: for all λ ∈ C one has

(i) x T ∗
λ =

λ +m
2π

U∗
λ+1; x U∗

λ =U∗
λ x =−T ∗

λ+1 ;
(ii) ∂ T ∗

λ = λ U∗
λ−1; ∂ U∗

λ =U∗
λ ∂ =−2π T ∗

λ−1 ;
(iii) ∆T ∗

λ = 2πλT ∗
λ−2 ; ∆U∗

λ = 2π(λ −1)U∗
λ−2 ;

(iv) F
[
T ∗

λ
]
= T ∗

−λ−m ; F
[
U∗

λ
]
=−i U∗

−λ−m .
For property (iv) recall from Section 2 the following definition of the Fourier transformation:

F [ f (x)](y) =
∫
Rm

f (x)exp
(
−2πi⟨x, y⟩

)
dx .

24. Complex powers of the Dirac operator
In [8], complex powers ∂ µ , µ ∈ C, of the Dirac operator were defined as convolution operators acting on tempered

distributions in the following way:
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∂ µ f =
1+ exp(iπµ)

2
2µ

Γ
(

m+µ
2

)
π

m−µ
2

T ∗
−m−µ ⋆ f − 1− exp(iπµ)

2
2µ

Γ
(

m+µ +1
2

)
π

m−µ+1
2

U∗
−m−µ ⋆ f , f ∈ S ′(Rm)

where T ∗
λ and U∗

λ are normalized versions of distributions Tλ and Uλ respectively, introduced in Section 23.
In particular for delta distribution δ (x) it thus holds that

∂ µ δ (x) =
1+ exp(iπµ)

2
2µ

Γ
(

m+µ
2

)
π

m−µ
2

T ∗
−m−µ − 1− exp(iπµ)

2
2µ

Γ
(

m+µ +1
2

)
π

m−µ+1
2

U∗
−m−µ . (50)

Clearly expression (50) is valid for most complex values of the parameter µ , but not for all. Firstly, let us verify that
for natural values of µ we indeed recover the natural powers of ∂ acting on δ (x).

For µ = 2ℓ+1, ℓ= 0, 1, 2, . . . the right-hand side of expression (50) takes the form

−22ℓ+1
Γ
(

m+2ℓ+2
2

)
π m−2ℓ

2
U∗
−m−2ℓ−1

which indeed reduces to ∂ 2ℓ+1 δ (x) = E−2ℓ−1.
For µ = 2ℓ, ℓ= 0, 1, 2, . . . the right-hand side of expression (50) takes the form

22ℓ
Γ
(

m+2ℓ
2

)
π m−2ℓ

2
T ∗
−m−2ℓ

which reduces to (−∆)ℓ δ (x) = ∂ 2ℓ δ (x) = E−2ℓ.
Now we focus on the negative entire values of the parameter µ .
For µ =−2ℓ−1 expression (50) takes the form

∂−2ℓ−1 δ (x) =−2−2ℓ−1
Γ
(

m−2ℓ
2

)
π m+2ℓ+1

2
U∗
−m+2ℓ+1

=− 1
2ℓ ℓ!(m−2) · · ·(m−2ℓ)

1
am

U−m+2ℓ+1

in which we recognize fundamental solution E2ℓ+1 of operator ∂ 2ℓ+1.
For µ =−2ℓ−2 expression (50) takes the form
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∂−2ℓ−2 δ (x) = 2−2ℓ−2
Γ
(

m−2ℓ−2
2

)
π m+2ℓ+2

2
T ∗
−m+2ℓ+2

=
1

2ℓ ℓ!(m−2) · · ·(m−2ℓ−2)
1

am
T−m+2ℓ+2

in which we recognize fundamental solution E2ℓ+2 of operator ∂ 2ℓ+2.
At least these are correct statements for all natural values of ℓ as long as dimension m is odd; if dimension m is even,

then the above statements are correct as long as ℓ < m/2.
Because the right-hand side of expression (50) is well-defined for all complex, non-integer values of parameter µ , it

follows that the complex powers ∂ µ of the Dirac operator acting on delta distribution δ (x) are well-defined by (50) either
(i) for all µ ∈ C when dimension m is odd, or
(ii) for all µ ∈ C\{−m, −m−1, −m−2, . . .} when dimension m is even.
We complete the definition of ∂ µ δ (x) by putting

∂−m−k δ (x) = Em+k, m even, k = 0, 1, 2, . . .

where Em+k is the fundamental solution to operator ∂ m+k given by (40) and (41).
Now we prove that ∂−µ δ (x) is the fundamental solution of operator ∂ µ . In fact this was already proven in Section

22 for all integer values of µ . So we may restrict ourselves now to the case where µ ∈ C\Z. We find, making use of the
convolution formulæ established in [13],

∂ µ (∂−µ δ (x)) =
1+ exp(iπµ)

2
2µ

Γ
(

m+µ
2

)
π

m−µ
2

T ∗
−m−µ ⋆

1+ exp(−iπµ)
2

2−µ
Γ
(

m−µ
2

)
π

m+µ
2

T ∗
−m+µ

+
1− exp(iπµ)

2
2µ

Γ
(

m+µ +1
2

)
π

m−µ+1
2

U∗
−m−µ ⋆

1− exp(−iπµ)
2

2−µ
Γ
(

m−µ +1
2

)
π

m+µ+1
2

U∗
−m+µ

− 1+ exp(iπµ)
2

2µ
Γ
(

m+µ
2

)
π

m−µ
2

T ∗
−m−µ ⋆

1− exp(−iπµ)
2

2−µ
Γ
(

m−µ +1
2

)
π

m+µ+1
2

U∗
−m+µ

− 1− exp(iπµ)
2

2µ
Γ
(

m+µ +1
2

)
π

m−µ+1
2

U∗
−m−µ ⋆

1+ exp(−iπµ)
2

2−µ

Γ

(
m−µ

2

)
π

m+µ
2

T ∗
−m+µ

or
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∂ µ (∂−µ δ (x)) =
1+ exp(iπµ)

2
2µ

Γ
(

m+µ
2

)
π

m−µ
2

1+ exp(−iπµ)
2

2−µ
Γ
(

m−µ
2

)
π

m+µ
2

πm/2
Γ
(m

2

)
Γ
(

m+µ
2

)
Γ
(

m−µ
2

) T ∗
−m

+
1− exp(iπµ)

2
2µ

Γ
(

m+µ +1
2

)
π

m−µ+1
2

1− exp(−iπµ)
2

2−µ
Γ
(

m−µ +1
2

)
π

m+µ+1
2

2π
m

πm/2
Γ
(m

2
+1
)

Γ
(

m+µ +1
2

)
Γ
(

m−µ +1
2

) T ∗
−m

− 1+ exp(iπµ)
2

2µ
Γ
(

m+µ
2

)
π

m−µ
2

1− exp(−iπµ)
2

2−µ
Γ
(

m−µ +1
2

)
π

m+µ+1
2

πm/2
Γ
(m

2

)
Γ
(

m−µ +1
2

)
Γ
(

m+µ
2

)U∗
−m

− 1− exp(iπµ)
2

2µ
Γ
(

m+µ +1
2

)
π

m−µ+1
2

1+ exp(−iπµ)
2

2−µ
Γ
(

m−µ
2

)
π

m+µ
2

πm/2
Γ
(m

2

)
Γ
(

m+µ +1
2

)
Γ
(

m−µ
2

)U∗
−m

or still

∂ µ (∂−µ δ (x)) =
Γ
(m

2

)
πm/2 T ∗

−m

or finally

∂ µ (∂−µ δ (x)) = δ (x) .
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Appendix: Spherical means
Let ϕ(x) be a scalar test function in Rm. Introduce spherical coordinates x = r ω , r = |x|, ω ∈ Sm−1 and denote by

am the area of the unit sphere Sm−1.
Definition 35 Spherical means Σ(0)[ϕ ] and Σ(1)[ϕ ] are defined by

Σ(0)[ϕ ](r) =
1

am

∫
Sm−1

ϕ(r ω)dSω

and

Σ(1)[ϕ ](r) =
1

am

∫
Sm−1

ω ϕ(r ω)dSω .

Spherical mean Σ(0)[ϕ ] is a classical concept. It is a scalar function of radial distance r for which

Σ(0)[ϕ ](0) = ϕ(0) .

It can be defined for r < 0 through an even extension.
Spherical mean Σ(1)[ϕ ] is a Clifford vector valued function for which

Σ(1)[ϕ ](0) = 0 .

It can be defined for r < 0 through an odd extension.
Further properties of the spherical means are listed in the following sequence of lemmata, see also [11].
Lemma 5 One has

Σ(0)[ω ϕ ] = Σ(1)[ϕ ]

and

Σ(1)[ω ϕ ] =−Σ(0)[ϕ ] .

Lemma 6 One has

Σ(0)[∂ω ϕ ] = (m−1)Σ(1)[ϕ ]

and
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Σ(1)[∂ω ϕ ] = 0 .

Lemma 7 One has

Σ(0)[∂ ϕ ] =
(

∂r +(m−1)
1
r

)
Σ(1)[ϕ ]

and

Σ(1)[∂ ϕ ] =−∂r Σ(0)[ϕ ] .

Lemma 8 One has

{∂ 2ℓ
r Σ0[φ](r)}|r=0 = (−1)ℓ

(2ℓ)!(m+2ℓ)
C(m, ℓ)

{∂ 2ℓφ(x)}|x=0

{∂ 2ℓ+1
r Σ0[φ](r)}|r=0 = 0

with

C(m, ℓ) = 2ℓ ℓ!m(m+2) · · ·(m+2ℓ) .

Lemma 9 One has

{∂ 2ℓ
r Σ1[φ](r)}|r=0 = 0

{∂ 2ℓ+1
r Σ1[φ](r)}|r=0 = (−1)ℓ

(2ℓ+1)!
C(m, ℓ)

{∂ 2ℓ+1φ(x)}|x=0 .
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