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1. Introduction
Applying the Hausdorff-Pompeiu metric, Nadler [1] established a multivalued version of the well-known Banach

Contraction Principle (BCP) [2]. Due to this valuable contribution to the metric fixed point theory, several useful
generalizations appeared in the literature, see [3–5] and references therein. On the other hand, without using the Hausdorff-
Pompeiu metric, the existence part have been studied by several researchers of the area, see [6–8] and others.

In [9], Kada et al. introduced a notion of w-distance on metric spaces and improved several results replacing the
involved metric by a generalized distance. While, Suzuki and Takahashi [10] introduced notions of single-valued and
multivalued weakly contractive mappings via w-distance and proved fixed point results for such mappings without using
the Hausdorff-Pompeiu metric. Consequently, they improved the Banach contraction principle and the Nadler fixed point
theorem. Much work has been done in this direction, see; [11–13] and others. On the other hand, Alhomidan et al.
[14] introduced a notion of Q-function on quasi metric spaces, which is a generalization of the w-distance and then they
improved a number of known fixed point results via Q-function.

In this paper, first we present some useful notions and facts followed by existing related fixed point results for
multivalued mappings. In section 2, we establish some new fixed point results for contractive type multivalued mappings
viaQ-function in the framework of quasi-metric spaces. In support of ourmain results, an example is also provided. Finally,
we conclude that our results either improve or generalize many known fixed point results including the corresponding
results due to Latif and Abdou [12, 13], Pathak and Shahzad [15], Ćirić [16] and Klim and Wardowski [17].

We start with some related notions, facts and results.
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Let S be a metric space with metric d. Let 2S be a collection of nonempty subsets of S,Cl(S) a collection of nonempty
closed subsets of S,CB(S) a collection of nonempty closed bounded subsets of S and R+ = [0, +∞). An element s ∈ S is
called a fixed point of a multivalued mapping Γ : S → 2S if s ∈ Γ(s). We denote Fix(Γ) = {s ∈ S : s ∈ Γ(s)}. A sequence
{sn} in S is called an orbit of Γ at s0 ∈ S if sn ∈ Γ(sn−1) for all n ≥ 1. A real-valued function β on S is called lower
semicontinuous if for any sequence {sn} ⊂ S with sn → s ∈ S one has that β (s)≤ liminf

n→∞
β (sn).

In the sequel till Theorem 6, we consider (S, d) a complete metric space.
In [1], Nadler established a multivalued case of the (BCP) as follows.
Theorem 1 [1] Let Γ : S → CB(S) be a multivalued mapping such that for a fixed constant h ∈ (0, 1) and for any

s1, s2 ∈ S,

H(Γ(s1), Γ(s2))≤ h d(s1, s2), (1)

where H is the Hausdorff-Pompeiu metric on CB(S). Then, Fix(Γ) ̸= /0.
In [5], Mizoguchi and Takahashi generalized Theorem 1 as follows.
Theorem 2 [5] Let Γ : S →CB(S) be a multivalued mapping such that for any s1, s2 ∈ S,

H(Γ(s1), Γ(s2))≤ χ(d(s1, s2))d(s1, s2), (2)

where χ is a function from R+ to [0, 1) with limsup
r→t+

χ(r)< 1, for all t ∈ R+. Then, Fix(Γ) ̸= /0.

Excluding the Hausdorff-Pompeiu metric, Feng and Liu [8] proved the following result, which also extends Theorem
1.

Theorem 3 [8] Let Γ : S → Cl(S) with a lower semicontinuous function β on S given by β (s) = d(s, Γ(s)). Then,
Fix(Γ) is non-empty. If with provided are constants c, h ∈ (0, 1), c > h, and for any s1 ∈ S, there is s2 ∈ Is1

c with

d(s2, Γ(s2))≤ hd(s1, s2), (3)

where Is1
c = {s2 ∈ Γ(s1) : cd(s1, s2)≤ d(s1, Γ(s1))}.

Later, Theorem 3 generalized in [17] as under.
Theorem 4 [17] Let Γ : S →Cl(S) with a lower semicontinuous function β on S given by β (s) = d(s, Γ(s)). Then,

Fix(Γ) is non-empty, provided there is some c ∈ (0, 1) such that for any s1 ∈ S, there is s2 ∈ Γ(s1) satisfying

cd(s1, s2)≤ d(s1, Γ(s1)),

d(s2, Γ(s2))≤ χ(d(s1, s2))d(s1, s2), (4)

where χ is a function from R+ to [0, c) with limsup
r→t+

χ(r)< c, for all t ∈ R+.

Kada et al. [9] introduced a concept of w-distance on metric spaces as follows.
Let (S, d) be a metric space. A function w : S×S →R+ is called w-distance on S if it satisfies, for any s1, s2, s3 ∈ S,

the following.
(i) w(s1, s3)≤ w(s1, s2)+w(s2, s3);
(ii) for any s ∈ S, a function w(s, ·) : S → R+ is lowersemicontinuous;
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(iii) for any ε > 0, there is δ > 0 with w(s3, s1)≤ δ and w(s3, s2)≤ imply d(s1, s2)≤ ε .
Using w-distance, they proved several results via w-distance. It is obvious that for any s1, s2 ∈ S, w(s1, s2) ̸=

w(s2, s1), and not either of the implications w(s1, s2) = 0 if and only if s1 = s2 necessarily hold. Clearly, the metric d
is a w-distance on S. Examples and properties of the w-distance (see [9, 10]). Without using the Hausdorff-Pompeiu
metric, Suzuki and Takahashi [10] established some metric fixed point results for contractive type mappings with respect
to w-distance. They generalized Theorem 1 as follows.

Theorem 5 [10] Let Γ : S → Cl(S) be a multivalued mapping. If there exists a w-distance w on S and a constant
λ ∈ (0, 1) such that for any s1, s2 ∈ S and u ∈ Γ(s1), there is v ∈ Γ(s2) satisfying

w(u, v)≤ λw(s1, s2). (5)

Then, there exists s0 ∈ S such that s0 ∈ Γ(s0) and w(s0,s0) = 0.
While, Latif and Abdou [13] generalized Theorem 4 as follows.
Theorem 6 [13] Let Γ : S → Cl(S) be a multivalued mapping. If there exists a w-distance w on S such that a real-

valued function β on S with β (s) = w(s, Γ(s)) is lower semicontinuous. Then, Fix(Γ) ̸= /0 provided there exists c ∈ (0, 1)
such that for any s1 ∈ S there is s2 ∈ Γ(s1) satisfying

cw(s1, s2)≤ w(s1, Γ(s1)),

w(s2, Γ(s2))≤ χ(w(s1, s2))w(s1, s2), (6)

where χ is a function from R+ to [0, c) with limsup
r→t+

χ(r)< c, for all t ∈ R+.

Now, let us recall the well-known generalization of the standard metric, known as quasi-metric, see [18] and others.
A quasi-metric on a nonempty set S is a function Λ : S×S → R+ if it satisfies, for any s1, s2, s3 ∈ S, the following.
(i) Λ(s1, s2) = 0 if and only if s1 = s2,
(ii) Λ(s1, s2)⩽ Λ(s1, s3)+Λ(s3, s2).
The pair (S, Λ) is called a quasi-metric space.
Note that every metric space is a quasi-metric space. For more examples of quasi-metric spaces and related fixed

point results, see; [19–26]. The concepts of Cauchy sequences, convergent sequences, and completeness in the frame
work of quasi-metric spaces can be defined in the same manner as in the setting of metric spaces, see; [14]. That is; here
we follow the technique of the paper [14] rather the usual technique of left/right Cauchy (convergent) sequences.

Al-Homidan et al. [14] introduced a concept of Q-function on quasi-metric spaces as follows.
A Q-function on a quasi-metric space (S, Λ) is a function q : S× S → R+ if it satisfies, for any s1, s2, s3 ∈ S, the

following:
(i) q(s1, s2)⩽ q(s1, s3)+q(s3, s2),
(ii) If {sn} is a sequence in S such that sn → s ∈ S and q(s1, sn)⩽ M for some M = M(s1)> 0, then q(s1, s)⩽ M;
(iii) for any ε > 0, there exists δ > 0 such that q(s3, s1)⩽ δ and q(s3, s2)⩽ δ imply Λ(s1, s2)⩽ ε .
In the setting of metric space, if we replace (q2) with the condition of lower semi-continuity of the map q(s, .) :

S → R+, then the Q-function reduces to w-distance. It has been observed that every w-distance is a Q-function, but the
converse may not be true, see; [14]. It is also worth to mention that the concepts of a Q-function and a quasi-metric are not
comparable, see; [14, Example 3.1 and Example 3.2]. Each discrete metric on quasi-metric space (S, Λ) is a Q-function.
For other examples of Q-functions, see; [24]. In [14], Al-Homidan et al. studied a number of important fixed point results
via Q-function.

Using the technique as in [27], the following result is obvious.
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Lemma 1 Let N be a closed subset of a quasi-metric space (S, Λ) and q be a Q-function on S. Suppose that there
exists s1 ∈ S such that q(s1, s1) = 0. Then, q(s1, N) = 0 if and only if s1 ∈ N, where q(s1, N) = inf{q(s1, s2) : s2 ∈ N}.

The following result is an analog of the Lemma [9, Lemma 2.6], stated and used in [14, 28].
Lemma 2 [14, 28] Let (S, Λ) be a quasi-metric space and q be a Q-function on S. Let {sn} and {s

′
n} be sequences

in S, let {αn} and {γn} be sequences in R+ converging to zero. Then, for any s1, s2, s3 ∈ S, the following hold.
(i) if q(sn, s2)≤ αn and q(sn, s3)≤ βn for any n ∈ N, then s2 = s3. In particular, if q(s1, s2) = 0 and q(s1, s3) = 0,

then s2 = s3;
(ii) if q(sn, s

′
n)≤ αn and q(sn, s3)≤ γn for any n ∈ N, then Λ(s′n, s3)→ 0;

(iii) if q(sn, sm)≤ αn for any n, m ∈ N with m > n, then {sn} is a Cauchy sequence;
(iv) if q(s2, sn)≤ αn for any n ∈ N, then {sn} is a Cauchy sequence.
In [14], Al-Homidan et al. generalized Theorem 1 with respect to Q-function.
Theorem 7 [14] Let Γ : S →Cl(S), where (S, Λ) is a complete quasi-metric space. If there exists a Q-function q on

S and a constant λ ∈ (0, 1), such that for any s1, s2 ∈ S and u ∈ Γ(s1), there is v ∈ Γ(s2) satisfying

q(u, v)≤ λ q(s1, s2). (7)

Then, there exists s0 ∈ S such that s0 ∈ Γ(s0) and q(s0, s0) = 0.
To see further results in this area, we refer [19, 20, 24] and references therein.
Let F ∈ (0, +∞]. Let ξ : [0, F)→ R satisfy that
(i) ξ (0) = 0 and ξ (t)> 0 for all t ∈ (0, F);
(ii) ξ is non-decreasing on [0, F);
(iii) ξ is sub-additive; that is, ξ (t1 + t2)≤ ξ (t1)+ξ (t2), for allt1, t2 ∈ (0, F).

We consider Ω[0, F) = {ξ : ξ satisfies (i)-(iii) above}.
Note that for any Q-function q, ξ ◦q is also a Q-function [14, Remark 2.2].
(i) It follows from property (ii) of ξ , for each t1, t2 ∈ (0, F);

ξ (t1)< ξ (t2) imply t1 < t2. (8)

(ii) If ξ ∈ Ω[0, F) and ξ is continuous at 0, then ξ is continuous at each point of [0, F), see [12, 29].
(iii) If ξ ∈ Ω[0, F) and {αn} in [0, F) is any sequence with lim

n→∞
ξ (αn) = 0, then lim

n→∞
αn = 0.

For a quasi-metric space (S, D), we denote the diameter of S by

δ (S) = sup{D(s1, s2) : s1, s2 ∈ S}.

From now on we denote F = δ (S) if δ (S) = +∞, while F > δ (S) if δ (S)<+∞.
Zhang [30] obtained some results for single-valued mappings involving some contractive type condition with the

function ξ . For multivalued mappings, using the function ξ , Theorem 4 generalized in [15] and while Latif and Abdou
[12] extended Theorem 6. Here, We establish some general fixed point results for contractive type multivalued mappings
including ξ ◦q, where ξ ∈ Ω[0, F) with the Q-function q. In fact, new results either improve or extend several results of
the metric fixed point theory.
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2. Results
In this section, we consider (S, Λ) is a quasi-metric space with Q-function q. Before establishing our main results,

we present the key result.
Lemma 3 Let Γ : S → 2S be a multivalued mapping. Suppose that
(i) there exists b ∈ (0, 1) and χ : R+ → [0, b) satisfying for all t ∈ R+

b > limsup
r→t+

χ(r), (9)

(ii) there is ξ ∈ Ω[0, F) such that for s1 ∈ S, we have s2 ∈ Γ(s1) satisfying

bξ (q(s1, s2))≤ ξ (q(s1, Γ(s1))),

ξ (q(s2, Γ(s2)))≤ χ(q(s1, s2))ξ (q(s1, s2)). (10)

Then, there is an orbit {sn} of Γ in S which turns out as a Cauchy sequence such that the sequences of reals
{q(sn, sn+1)} and {q(sn, Γ(sn))} are convergent.

Proof. For any s0 ∈ S there is s1 ∈ Γ(s0) with

bξ (q(s0, s1))≤ ξ (q(s0, Γ(s0))), (11)

ξ (q(s1, Γ(s1)))≤ χ(q(s0, s1))ξ (q(s0, s1)), χ(q(s0, s1))< b. (12)

From (11) and (12), we get

ξ (q(s0, Γ(s0)))−ξ (q(s1, Γ(s1)))≥ bξ (q(s0, s1))−χ(q(s0, s1))ξ (q(s0, s1))

= [b−χ(q(s0, s1))]ξ (q(s0, s1))> 0.

Finally, we have an orbit {sn} of Γ in S at s0 such that

bξ (q(sn, sn+1))≤ ξ (q(sn, Γ(sn))),

ξ (q(xn+1, Γ(sn+1)))≤ χ(q(sn, sn+1))ξ (q(sn, sn+1)), χ(q(sn,sn+1))< b. (13)

From (13), we get

ξ (q(sn, Γ(sn)))−ξ (q(sn+1, Γ(sn+1)))≥ [b−χ(q(sn, sn+1))]ξ (q(sn, sn+1)). (14)
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For any n,

ξ (q(sn+1, Γ(sn+1)))≤ ξ (q(sn, Γ(sn))),

ξ (q(sn, sn+1))≤ ξ (q(sn−1, sn)). (15)

Thus, the sequence of nonnegative real numbers {ξ (q(sn, Γ(sn)))} and {ξ (q(sn, sn+1))} are decreasing and hence
we deduce that the sequences {q(sn, Γ(sn))} and {q(sn, sn+1)} are convergent. Now, note that there is α ∈ [0, b) with

limsup
n→∞

χ(q(sn, sn+1)) = α. (16)

Now, for b0 ∈ (α, b), there is n0 ∈ N such that for each for each n > n0,

χ(q(sn, sn+1))< b0, (17)

and then we get

χ(q(sn, sn+1))× . . .×χ(q(sn0+1, sn0+2))< bn−n0
0 . (18)

Also, it follows from (14) that for any n > n0,

ξ (q(sn, Γ(sn)))−ξ (q(sn+1, Γ(sn+1)))≥ γξ (q(sn, sn+1)), (19)

where γ = b−b0. Note that for any n > n0, we have

Volume 5 Issue 4|2024| 6409 Contemporary Mathematics



ξ (q((sn+1, Γ(sn+1)))≤ χ (q(sn, sn+1))ξ (q(sn, sn+1))

≤ 1
b

χ (q(sn, sn+1))ξ (q(sn, Γ(sn)))

≤ 1
b2 χ (q(sn, sn+1))χ (q(sn−1, sn))ξ (q(sn−1, Γ(sn−1)))

...

≤ 1
bn [χ (q(sn, sn+1))×·· ·× χ (q(s1, s2))]ξ (q(s1, Γ(s1)))

=
χ (q(sn, sn+1))×·· ·× χ

(
q(sn0+1, sn0+2)

)
bn−n0

×
χ
(
q(sn0 , sn0+1)

)
×·· ·× χ (q(s1, s2))ξ (q(s1, Γ(s1)))

bn0
. (20)

Thus,

ξ (q(sn+1, Γ(sn+1)))≤
(

b0

b

)n−n0

k, (21)

where k = χ(q(sn0 , sn0+1))× ....×χ(q(s1, s2))ξ (q(s1, Γ(s1)))/bn0 . Now, since b0 < b, we have lim
n→∞

(b0/b)n−n0 = 0, and
we get the decreasing sequence {ξ (q(sn, Γ(sn)))} converging to 0. Thus, we have

q(sn, Γ(sn))→ 0. (22)

For any n > n0,

ξ (q(sn, sn+1))< cnξ (q(s0, s1)), (23)

where c = b0/b < 1. Thus, for m > n > n0, n, m ∈ N,

ξ (q(sn, sm))≤
m−1

∑
j=1

ξ (q(s j, s j+1))<
cn

1− c
ξ (q(s0, s1)). (24)

Clearly, lim
n,m→∞

ξ (q(sn, sm)) = 0, and thus we get that
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lim
n,m→∞

q(sn, sm) = 0, (25)

that is, {sn} is Cauchy sequence in S.
Using Lemma 3, we obtain the following fixed point result.
Theorem 8 Assume that the assumptions of Lemma 3 hold. If S is complete, then there exists an orbit of Γ which

converges in S. Further, if there is a lower semicontinuous function β on S with β (s) = q(s, Γ(s)), then, there exists
u0 ∈ S such that β (u0) = 0. Also, if the mapping Γ is closed valued and q(u0, u0) = 0 then u0 ∈ Γ(u0).

Proof. Following the Lemma 3, we get a Cauchy sequence {sn} of S. Thus, there is some u0 ∈ S with lim
n→∞

sn = uo.

The lower semi-continuity of β and (22), yield

0 ≤ β (u0)≤ liminf
n→∞

β (sn) = liminf
n→∞

q(sn, Γ(sn)) = 0, (26)

and thus, β (u0) = q(u0, Γ(u0)) = 0. Since q(u0, u0) = 0, and Γ(u0) is closed, thus it follows by Lemma 1 that u0 ∈ Γ(u0).
Consequently, we obtain the following result as a special case.
Corollary 1 Let Γ : S →Cl(S) be such that for 0 < b, h < 1 with h < b, s1 ∈ S we get s2 ∈ Γ(s1) with

bξ (q(s1, s2))≤ ξ (q(s1, Γ(s1))),

ξ (q(s2, Γ(s2)))≤ hξ (q(s1, s2)). (27)

If S is complete, suppose that a real-valued function β on S defined by β (s) = q(s, Γ(s)) is lower semicontinuous.
Then, there exists u0 ∈ S such that β (u0) = 0. Further, if q(u0, u0) = 0, then u0 ∈ Fix(Γ).

We also obtain the following intriguing result by substituting a different natural condition for the function β ’s lower
semicontinuity in Theorem 8.

Theorem 9 Assume that the assumptions of Theorem 3 without the assumption of the real-valued function β hold.
Further, consider that

inf{ξ (q(s, u))+ξ (q(s, Γ(s))) : s ∈ S}> 0, (28)

for all u ∈ S with u /∈ Γ(u) and ξ is a continuous function at 0. Then, Fix(Γ) ̸= /0.
Proof. As in Theorem 3, we get a sequence {sn} which becomes a Cauchy sequence with sn ∈ Γ(sn−1). Since S is

complete, there exists u0 ∈ S such that the sequence {sn} converges to u0. Since q is a Q-function, we have for any n > n0

ξ (q(sn, u0))≤
cn

1− c
ξ (q(s0, s1)), (29)

where c = b0/b < 1. Since q(sn, Γ(sn))≤ q(sn, sn+1), for any n, and the function ξ is non-decreasing, we have

ξ (q(sn, Γ(sn)))≤ ξ (q(sn, sn+1)), (30)
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and thus by using (23), we get

ξ (q(sn, Γ(sn)))≤ cnξ (q(s0, s1)), (31)

Assume that u0 /∈ Γ(u0). Then, we have

0 < inf{ξ (q(s, u0))+ξ (q(s, Γ(s))) : s ∈ S}

≤ inf{ξ (q(sn, u0))+ξ (q(sn, Γ(sn))) : n > n0}

≤ inf
{

cn

1− c
ξ (q(s0, s1))+ cnξ (q(s0, s1)) : n > n0

}

=

{
2− c
1− c

ξ (q(s0, s1))

}
inf{cn : n > n0}= 0, (32)

which is impossible, and hence u0 ∈ Fix(Γ).
Theorem 10 Let Γ : S →Cl(S) be a multivalued mapping. Assume that the following conditions hold:
(i) there exists a function χ : R+ → [0, 1) such that for any t ∈ R+

limsup
r→t+

χ(r)< 1; (33)

(ii) there exists a function ξ ∈ Ω[0, F) such that for any s1 ∈ S, there exists s2 ∈ Γ(s1) satisfying

ξ (q(s1, s2)) = ξ (q(s1, Γ(s1))),

ξ (q(s2, Γ(s2)))≤ χ(q(s1, s2))ξ (q(s1, s2)); (34)

(iii) a real-valued function β on S defined by β (s) = q(s, Γ(s)) is lower semicontinuous.
If S is complete, then there exists u0 ∈ S such that β (u0) = 0. Further, if q(u0, u0) = 0 then u0 ∈ Γ(u0).
Proof. Let s0 ∈ S be any initial point. We use the same approach as in the proof of Theorem 3 to show that there is

a Cauchy sequence {sn} with sn ∈ Γ(sn−1) and

ξ (q(sn, sn+1)) = ξ (q(sn, Γ(sn))),

ξ (q(sn+1, Γ(sn+1)))≤ χ(q(sn, sn+1))ξ (q(sn, sn+1)), χ(q(sn, sn+1))< 1. (35)

Consequently, there exists u0 ∈ S such that lim
n→∞

sn = u0. Since β is lower semicontinuous, we have
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0 ≤ β (u0)≤ liminf
n→∞

β (sn) = 0, (36)

thus, β (u0) = q(u0, Γ(u0)) = 0. Further, by closedness of Γ(u0) and since q(u0, u0) = 0, It follows from Lemma 1 that
u0 ∈ Γ(u0).

The following fixed point result can be obtained by applying the same methodology as in the Theorem 9 proof.
Suppose that the assumptions of Theorem 10 without (iii) hold. Assume that

inf{ξ (q(s, u))+ξ (q(s, Γ(s))) : s ∈ S}> 0, (37)

for any u ∈ S with u /∈ Γ(u) and the function ξ is continuous at 0. Then, Fix(Γ) ̸= /0.
(i) Theorem 8 extends and generalizes [28, Theorem 5]. Indeed, if we consider ξ (t) = t for each t ∈ (0, F) in

Theorem 2.1, then we can get Theorem 5 due to Latif and Al-Mezel [28].
(ii) Theorem 8 contains [15, Theorem 4] of Pathak and Shahzad as a special case.
(iii) Corollary 1 extends and generalizes [28, Theorem 3] due to Latif and Al-Mezel; it also generalizes [31, Theorem

3.3].
(iv) Theorem 10 extends and generalizes fixed point results [16, Theorem 7] and [12, Theorem 7], and improves

fixed point result [15, Theorem 6].
In support of our main results Theorems 8 and Theorem 10, we present the following example. Let S = [0, 1]. Define

Λ : S×S → R+ as follows:

Λ(s1, s2) =

{
0; if s1 = s2,

s2; otherwise.
(38)

Clearly, (S, Λ) is a quasi-metric space. Define a Q-function q : S×S → R+ by

q(s1, s2) = s2, for alls1, s2 ∈ S. (39)

Let Γ : S →Cl(S) be defined as

Γ(s) =



{
1
2

s2
}

; s ∈
[

0,
1
2

)
∪
(

1
2
, 1
]
,

{
0,

1
4

}
; s =

1
2
.

(40)

Note that δ (S) = 1.LetF ∈ [1, +∞), b= 9/10. Define a function ξ : [0, F)→R by ξ (t) = t1/2. Clearly, ξ ∈Ω[0, F).
Define χ : R+ → [0, b) by
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χ(t) =


(

3
4
)1/4t1/2; t ∈

[
0,

1
2

)
,

3
8

; t ∈
[

1
2
, +∞

)
.

(41)

Note that

β (s) = q(s, Γ(s)) =


{

1
2

s2
}

; s ∈
[

0,
1
2

)
∪
(

1
2
, 1
]
,

0; s =
1
2
,

(42)

and β is lower semicontinuous. Moreover, for any s1 ∈ [0, 1/2)∪(1/2, 1],we have Γ(s1) = {(1/2)s2
1}. Take s2 = (1/2)s2

1,
then we have

bξ (q(s1, s2)) =
9
10

ξ
(

q
(

s1,
1
2

s2
1

))

=
9
10

(
1
2

s2
1

)1/2

≤
(

1
2

s2
1

)1/2

= ξ (q(s1, Γ(s1))), ξ (q(s2, Γ(s2)))

= ξ

(
q

(
1
2

s2
1,

1
2

(
1
2

s2
1

)2
))

≤
(

3
4

)1/4(1
2

s2
1

)1/2(1
2

s2
1

)1/2

= χ(q(s1, s2))ξ (q(s1, s2)). (43)

Thus, for all s1 ∈ [0, 1], s1 ̸= 1/2, T satisfies all the conditions of Theorem 8. Now, let s1 = 1/2, then we have
Γ(s1) = {0, 1/4}. Clearly, that for s1 = 1/2, there is s2 = 0 ∈ Γ(s1) such that ξ (q(s1, Γ(s1))) = 0. Now

bξ (q(s1, s2)) =
9
10

ξ
(

q
(

1
2
, 0
))

= 0 = ξ (q(s1, Γ(s1))) ,

ξ (q(s2, Γ(s2))) = ξ (q(0, 0)) = χ(q(s1, s2))ξ (q(s1, s2)). (44)

Thus, for s1 = 1/2 all the conditions of Theorem 8 are satisfied and hence Fix(Γ) ̸= /0. Note that Fix(Γ) = {0}. Note
that in the above example, the Q-function q is not a w-distance because (S, D) is not a metric space.
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3. Conclusion and recommendation
Among others, Feng and Liu [8], Klim and Wardowski [17], and Ciric [16] studied the existence of fixed points for

multivalued contractive mappings without using the Hausdorff–Pompeiu metric, and consequently, they generalized some
classically known fixed point results, including Theorem 1. In this paper, we establish some general fixed point results
for multivalued generalized contractive mappings on quasi-metric spaces for the Q-function. Our results generalize and
improve a number of known fixed point results, including the corresponding fixed point results which are stated in Section
2. To illustrate our main fixed point theorems, we have also provided an example. This research leads us in the future
towards finding results for fixed points in more general spaces for generalized distances.
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