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use in our study with various iterative techniques from the literature. The results in this study enhance, broaden and unite
corresponding results in the literature.
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1. Introduction

The existence of fixed point for nonexpansive mapping was initiated by Browder [1], Gohde [2] and Kirk [3]
independently in 1965. Browder proved the fixed point theorem for nonexpansive mapping on a convex, bounded and
closed subset of a Hilbert space. Browder and Gohde [1, 2] swiftly generalized a similar conclusion from a Hilbert space
to a uniformly convex Banach space. For a further generalization of nonexpansive mappings, see [4—-6]. The question
of whether fixed points exist in Banach spaces and how to approximate them for firmly nonexpansive mappings was
investigated by Kohsaka and Takahashi [7] in 2008.

Since nonexpansive mappings are unquestionably one of the most important issues in the field of metric fixed-point
theory, there is a sizable corpus of study on more general types of mappings than nonexpansive ones in the literature.

Let O # 0 be a subset of a Banach space E and g is a self-map on Q. Also, the set of fixed points denoted by
Fix(g) #0if
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llgn —sll < [In —sll;

foralln € Q, s € Fix(g), then g is called quasi-nonexpansive mapping, in addition, if the following inequality

llgn — gl < eln = &l + B (I —gnll +11& —&&lD) +vlin— &Sl +11E—gnl),

foralln, { € O, where @, B, y>0and a+2p +2y < 1, holds g is called generalized nonexpansive mapping [8].
Suzuki [9] defined Condition (C) as a generalization of nonexpansive mapping, that is,

1
slen—=nl < lin =&l = llsn —g&ll < ln—Ell. vn, ¢ < 0. (1

Aoyama et al. [10] presented o.-nonexpansive in Banach spaces, they established certain fixed point results for such
mappings. A mapping g: Q — Q is called a-nonexpansive, if foralln, { € Q and o < 1

lgn —g&11* < e (llgn = CI1* +Im — S 117) + (1 —2a)|In — .

The generalized oi-nonexpansive mapping was introduced by the Pant et al. [11], they also discovered several fixed
point results for these mappings. A mapping g : QO — Q is called generalized a-nonexpansive mapping for all 1, § €

o1 L
Q. a<lif 5{ln —gn|l < [ln — | implies

llgn —gCll < e(ln —gCl+ 1€ —gnl) + (1 —2a)[In - E]|.

Akutsah et al. [12] presented generalized (¢, 8)-nonexpansive type-1 mapping, thatis, Let Q be a nonempty subset of
a Banach space E. The mapping g : Q — Q is called generalized (, §)-nonexpansive type-1 mapping, if &, B, A € [0, 1)
exist, such that @ < fB,and e+ < 1, forany n, { € Qif A||gn — g&|| < |n — ||, then

llgn — &€l < allgn — Il + Blln — gLl + (1 = (a+B))[[n - .-

For the approximation of nonexpansive mappings the following iterations taken from [13] are being used:
In 1953, Mann proposed an iteration for the calculation of fixed points for nonexpansive mappings. The iteration
that named as Mann iteration is stated as follows:

nj+1 =Bn;+ (1 - B;)gn;,

for each j > 1and {B;} C (0,1).
Ishikawa gave an iteration in 1994 for calculating fixed point for nonexpansive mappings as below:
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m=n €@
Nj+1=((1—a;)n; + a;g¢;)
&= ((1=Bj)n;+Bjgn;),

where o; and f; are in (0, 1).
Noor introduced the three-step method of iteration in 2000 as follows:

m=necgQ

Nj+1 = ((1—a;)n;+a;gg;)
Cj=((1=Bj)n;+Bjsz;)
zj=((1=y)n;+vgn;),

where ¢, B and y;j are in (0, 1).
Agrwal purposed an iteration in 2007 for calculating fixed point for nonexpansive mappings as below:

m=necQ
Nj+1 = ((1—a;)gn;+ a;g¢;)
&= ((1=Bj)n;+Bjgn;),

where «; and f; are in (0, 1).
Abbas et al introduced the three-step method of iteration in 2014 as follows:

m=necgQ

Nj+1 = ((1-a;)gzj + @;8g;)
¢j=((1—Bj)gn;+Bjgz;)
zj=((1=y)n;+vgn;),

where ¢, B; and y; arein (0, 1).
Later, in 2023, Dashputre [14] proposed a new iteration procedure and used generalized (., f8)-nonexpansive type-1

mapping in the framework of Banach spaces to show some strong and weak convergence results. The iteration scheme
defined by Dashputre’s is as follows:

Foreachng € Qand {a;}, {B;} being sequences in (0, 1), let Q # 0 be a subset of a Banach space E and g : Q — Q be

a mapping which is generalized (o, B)-nonexpansive type-1 mapping they formalize the sequence 7); in iterative manner
as:

zj=((1—aj)n;+oyn;)
§i=((1-Bj)zj +Bjgzj) 2)
N1 = g&;.
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2. Preliminaries

In 1970, Takahashi [15] present the definition of convexity in a metric space such as, for all z, 1, {, € M and
A € [0, 1], amapping W : M? x [0, 1] — M is a convex structure in M if

d(z, Wn, §, 4)) <Ad(z, n)+(1-2)d(z, §).

A nonempty subset Q of a convex metric space M is convex if W(n, {, A) e Q foralln, { € Qand 4 € [0, 1].
The concept of hyperbolic space was introduced by Kohlenbach [16] in 2005. Any metric space (M, d) that meets the
following axioms for each u, 17, {, z€ M and «, B € [0, 1] is deemed as hyperbolic space:

du, W(n, §, a)) < (1-a)d(u, n)+ad(u, §)

dW(n, &, a), Wn, ¢, B)) =la—Bldn, ¢)

Wn, ¢, ) =W(, n, (1-a))

d(Wn, z, @), W(C, u, @) < (1 —a)d(n, §)+ad(z, u)

where d is a metric defined on M.
Many mathematicians approximated fixed points in hyperbolic space, with variety of mappings and iterations, for
more on this, readers are referred to [17]. The following notions are taken from [18].

1
Ifforalln, &, u € M, m >0, there exists a ¢ € (0, 1] such that (d (W (n, g, 2) ) u) <(l—o)mwhered(n, u) <

m, d(§, u) <mandd(n, §)>em, € € (0, 2], then a hyperbolic space (M, d, W) is declared as uniformly convex.

A map 7 : (0, o) x (0, 2] — (0, 1] that yields such a c = n(m, €) foru, n, { € M, m >0 and € € (0, 2] is
demonstrate as modulus of uniform convexity of M.

Let {n;} represent any bounded sequence, for € M, one can formalize a continuous functional m(., {n;}) : M —
(0, =) by

m(n, n;) = limsupd(n, n;). 3)

oo

Then

(@) ro(n;) = inf{m(n, n;) : n € Q} is declared as asymptotic radius of {n;} in respect of Q, where Q is subset of
M.

(b) The set Ap(nj) =N € M such that m(n, n;) <m(g, n;) for any { € Q is declared as asymptotic center of {n;}
in respect of Q, where Q is subset of M.

The asymptotic center and radius are simply represented by A(n;) and r(n;) respectively. The set A(n;) may be
empty, a singleton or contain infinitely many points. In a complete uniformly convex hyperbolic space with a monotone
modulus of uniform convexity, it is known that bounded sequences have a unique asymptotic center with respect to closed
convex subsets [18].
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In 1976, Lim [19] gave the notion of A-convergence, that is, a sequence {7;} in M which is declare as A-converge
to n € M for every subsequence {n;,} of {n;}, provided that i is the unique asymptotic center. The A-limit of {n;} is
denoted by 71 and result is expressed as A —lim;n; = 1.

Payanak and Kirk [20] modified the results given by Lim for CAT (0) spaces, for more A-convergence results in
CAT (0) spaces, see [21].

The following lemma will be needed to develop convergence of sequences in our main results.

Lemma 1 [18] Assume that (M, d, W) is a hyperbolic space which is uniformly convex, with monotone modulus
of uniform convexity p. Moreover n € M and {p;} € (0, 1). If {u;} and {v;} are sequences in M such that
limsup; ,,d(j, n) < m, limsup; .. d(v;, n) < m, and lim;,.d(W(u;, vj, p;), n) = m for some m > 0, then
limjﬂmd([.tj, Vj) =0.

3. Main result

Inspired and motivated by results given by Dashuptre, we convert the Dashuptre iteration process into hyperbolic
space. We will use the generalized (o, )-nonexpansive mapping in hyperbolic space (M, d, W) to generate the new
iterative scheme. Next, we will investigate and demonstrate the strong and A-convergence of our approach.

Definition 1 Let Q # 0 be a subset of M where M is a hyperbolic space and d is metric defined on M. The mapping
g: 0 — Qs called generalized (a, 3)-nonexpansive type-1 mapping, if @, f§, A € [0, 1) exist, such that o < f3, and
o+pB <1, foranyn, § €0, Ad(gn, g€) <d(n, {), then

d(gn, g§) < ad(gn, §)+Bd(n, gf)+(1—(a+p))d(n, §). “4)

Using Definition 1, we proposed the new iterative scheme for the approximation of fixed points in hyperbolic space
M. Given a hyperbolic space M, let Q # @ and g : Q — Q being a generalized (o, 3)-nonexpansive type-1 mapping. We
define an iterative sequence {7;} for each 1o € Q as follows:

nj+1=g(&;)
§i=8W(g(z)), zj: Bj))
zj =8W(g(n;), nj, @;)). (5)

Lemma 2 Given that Q # 0 be a subset of hyperbolic space M and g : Q — O be generalized (o, 3)-nonexpansive
type-1 mapping with Fix(g) # 0. Then g is quasi-nonexpansive mapping.

Proof. Since with Fix(g) #0,let { € Fix(g) and n € Q. Since g is generalized (¢, §)-nonexpansive type-1 mappings
so equation (4) implies

(I-a)d(gn, gf) < (1—-a)d(n, {),

since § € Fix(g), it follows
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d(gn, g¢) <d(n, {).

O
Lemma 3 Let Q # 0 be the subset of hyperbolic space M and g: Q — Q be a generalized («, f3)-nonexpansive
type-1 mapping. Then for each and every 1, § € O

an. s0) < (15

B>d(n,gn)+d(n7 ¢).

Proof. Consider

d(n, g€) <d(m, gn)+d(gn, gf),

thus, equation (4) implies,

(1-PB)d(n, ¢§) < (1+a)d(n, gn)+(1-B)d(n, ).

which completes the proof. O
Lemma 4 For Q # 0, be a closed and convex subset of M where M is a hyperbolic space. Let g: Q — Qbe a
generalized (o, )-nonexpansive type-1 mapping. For all bounded sequence {n;} in Q such that limd(n;, gn;) =0,
then g contain a fixed point that is gn = 7.
Proof. Given that{n;} is bounded sequence in Q such that limd(n;, gn;) =0. Let n € Ap({n;}) and by (3) we
have

m(gn, n;) = limsupd(n;, gn),

Joreo

Lemma 3 implies

1+a).. :
m(gn, n;) < (Hi)llmsupd(nj, gn;) +limsupd(n;, 1)

jeo joeo

m(gn, n;) < limsupd(n;, N).

Joee

This implies that gn € Ap({n;}). By uniqueness of asymptotic center it is shown that gn = 7. O

Theorem 1 Assume M is hyperbolic space and Q # 0, be a closed and convex subset of M. Let g: QO — Q is
generalized (&, fB)-nonexpansive type-1 mapping with Fix(g) # 0. If {n;} be a sequence formalize by (5), then

(@) limj_,.d(n;}, s) exists for all s € Fix(g).

(b) lim;...d(n;, g11;) = 0.

Proof. (a) Let s € Fix(g) and for the sequence formalize in equation (5), consider
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d(zj, s) =d(gW(g(nj, nj, &), 5)-
Since g is generalized (o, B)-nonexpansive type-1 mapping, from Lemma 2 it follows that
d(zj, ) <d(W(g(nj, nj, &), 5),
by the convexity of metric space and Lemma 2, we get
d(Zj, S) < Otjd(gnj, s)+ (1 - Oéj)d(nj, S)
< d(njv S). (6)
Consider {{;} from equation (5) and by using equation (6), we have the form
d(Gj, s) =d (g(W(gzj> zj, Bj)), 5)
W (zj, zjs Bj), 5)
<d(zj, s). (7

Consider the sequence {n;41} from equation (5)-(7) and Lemma 2, we obtained the form

d(njs1, s) =d (8¢}, s)
<d(g(s(W(gzj; zj; Bj)) s)
d(nj+17 S) < d(Zj, S)? (8)

this shows that d(7;, s) is bounded and nonincreasing for all s € Fix(g). Thus {7} is bounded and lim;_,..d(n;, ) exists
for all s € Fix(g). Hence the result holds.

(b) Now assume that lim;_,.,d(7;, s) = m. Thus, two cases arises:

(i) if m = 0, then lim . d(n;, 5) = 0 and

hmd(n]a 877]) < hm d(njv S)+ hmd(gnh S)
e e e

< limd(n;, s) + limd(n;, s) =0,
Jreo Joree
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(ii) if m # 0, we have d(z;, s) < d(nj, s). Then by applying limsup;_,., on both sides, we have

limsupd(z;, s) < limsupd(n;, s) <m
oo Jroo

liminfd(n;y1, s) <liminfd(z;, s),
Joeo Joeo
since lim;_,..d(7n;, s) = r and the sequence {n;} is nonincreasaing. Thus lim;_,.d (741, s) = m and we obtain

m = liminfd(n;41, s) <liminfd(z;, s).
Joee Jreo

Thus, by Lemma 1, result holds. O

Lemma 5 Assume that Q # 0 be a convex subset of hyperbolic space M. If g be generalized (e, f3)-nonexpansive
type-1 mapping on Q and Fix(g) is nonempty, then Fix(g) is closed.

Proof. Assume that {1;} C Fix(g) and {1} converges to some { € Fix(g). According to Lemma 3

dn, g¢) < ((1+a)/(1-B))d(n, gn)+d(n, §),

taking lim sup and using Theorem 1, we get

. I+a) .. .
imsupd(n. ¢0) < (15 ) imsupd(. gn,)-+tmsupd(n, 0

J—roo I ﬁ J—roo J—roo

limsupd(n;, g€) <limsupd(n;, ).
joroo

oo

Since O C M has unique limit point of Q. Therefore, g = { and Fix(g) is closed. O

The following definitions are needed for further use.

Definition 2 [22] Let Q be a nonempty subset of a Banach space, a mapping g : Q — Q satisfies Condition (I)
if there exists a nondecreasing function f : [0, o) — [0, o) such that f(0) = 0 and f(r) > 0 for all # € (0, ) and
In—g(m)|l > f(d(n, Fix(g))) for all x € Q where d(n, Fix(g)) denotes distance from 1 to Fix(g).

Definition 3 If {gn;} has a convergent subsequence in Q for a bounded sequence {n;} € Q, then g is said to be
completely continuous.

Theorem 2 In a hyperbolic space M, let Q # 0, be a closed and convex subset of M. Let g: Q — Q be a mapping that
fulfills properties of generalized (o, B)-nonexpansive type-1 mapping, where Fix(g) # 0. Given two sequences {;},
{Bj}in (0, 1)and at; + B; < 1, let {cx;} and {B;} satisfy

(2) 0 < liminf; ., a; < limsup; ., a;+f; < 1

(b) liminf;_,..d(n;, Fix(g)) =0

(c) g satisfies Condition (7).

If g is completely continuous, then sequence {n;} which is formalize in equation (5), strongly convergent to some
fixed point of g.
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Proof. As g is completely continuous, there is a subsequence {n;,} of {n;} such that {gn;} converges and by
Theorem 1, {n;} € Q is bounded. Thus, we have lim;_..d(n;, gn;) =0.
Let limj_,. 1j, = g. By continuity of g and lim;_,..d(n;;, gnj;) = 0, we obtain

lim 77, = lim gn;;.
J=ee Jee

Hence g € Fix(g) and lim;_,..d(n;, s) exists for all s € Fix(g), so {n;} converges. O

Theorem 3 Let Q # 0, be a closed and convex subset of hyperbolic space M which is uniformly convex with
monotone mudulus of uniform convexity p and g : Q — Q be a mapping that have properties of generalized (a, f3)-
nonexpansive type-1 mapping with Fix(g) is nonempty if and only if liminf; ,..d (1;, Fix(g)) = O the sequence {n;}
which is specified by equation (5) strongly convergent to some fixed point of g where we formulize d (n);, Fix(g)) as
infycrin(g) d(Nj, M)

Proof. Suppose {n;} converges to some fixed point of g, say s. Then lim;.d(n;, s) =0 and since 0 <
d(n;, Fix(g)) < d(nj, s), we have

0.< lim d(n;, Fix(g)) < lim d(n;, 5
Joe Joe

0 < limd(n;, Fix(g)) <0,
Joe

which implies that lim;_,..d (1;, Fix(g)) =0.
Conversely, assume that liminf; ,..d (1;, Fix(g)) = 0. Then there is a subsequence {u;} of {n;} such that
lim;j_,ed (U, Fix(g)) =0. Now we will prove that {n;} converges to s € Fix(g).
Consider any arbitrary subsequence {1, } of {it;} and {v;} sequence belongs to Fix(g) in sucha way thatd (u;,, vi) <
1
% foralli > 1. By Theorem 1, {1} is bounded and nonincreasing, so the subsequence {1, } of {n;} is also nonincreasing

l
and bounded, we have

1
d(ujiJrl’ vi) < d(nujn Vi) < 2i

d(Viy1, Vi) <d(Vier, Miv1) +d(Uig1, Vi)

this proves that {v;} is a Cauchy sequence belongs to Fix(g). Since Fix(g) has proved closed by Lemma 5, {v;} is
converges to s. Since limj_.d (n;;, 5) is the sequence {n;} converges to s. Thus lim;_,..d (i, s) = 0. Hence the
sequence {1;} converges to s. O
Theorem 4 Given that Q # @ be a closed and convex subset of M being a hyperbolic space. Assume thatg: QO — Q
A 1
is a generalized (o, )-nonexpansive mapping such that > € [O, 2] with Fix(g) # 0 and {n, } be a sequence formalize
by (5), then A-converges to the unique fixed point of g.
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Proof. Since, every bounded sequence have unique asymptotic center in respect of Q C M and {n;} is bounded, thus
any subsequences {1;} and {v;} of {n;} also has unique asymptotic center. Also, by Theorem 1, lim; ,..d(n;, gn;) =0,
we have

lim d(uj, guj) =0and lim; ,..d(v;, gv;) =0,
Jmreo ' T
thus by using Lemma 4, i, v € Fix(g). Now, assume that u # v and

limsupd(n;, p) = limsupd(u;, ),
e

=
by asymptotic center, we obtain

limsupd(p;, p) <limsupd(u;, v)

jeo jreo

= limsupd(n;, v)

jreo

= limsupd(v;, v)
jren

< limsupd(n;, p).

je

which is contradiction to our supposition, therefore 1 = v. Then sequence {n;} A-converges to unique fixed point of g.[]

4. Numerical example

Now, we will provide examples of generalized (¢, 8)-nonexpansive type-1 mapping and compare the convergence
behavior of the iteration method employed in this study with the iterations proposed by Mann, Ishikawa, Noor, Agrawal,
and Abbas.

Example 1 Let M = R? be a hyperbolic space and Q = [0, 1] is a closed and convex subset of M. We defined a

metric on M as d(1, §) = |m — G|+ |m & — m&|, for every (M1, m2), (1, &) € @ with (1 = %) and (12 = %)~
Now define a map g: Q — Q such that
2 2
g(m, m) = <1371+Oll37 22> ¥ (m, m) €0. ©)
Then g is generalized (@, )-nonexpansive type-1 mapping for every a, 3, A € [0, é] ,a>p.

Solution First step demonstrate that Ad(gn, g&) <d(n, ). Second step shows that
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d(gn, &) < ad(gn, §)+Bd(n, g&)+(1—(a+p))d(n, §).

Step 1 Let any arbitrary 1 = (11, m2), § = (&1, &) €0,

dten, ¢0)=[3m - )

+ ’3 (Mm& —m&)— (iaﬁ(m +¢i +al3)> ‘,

we have

’g(mél —mb) — <§063(111 +& +aﬁ))‘ <|mé& —m&)l,

consequently, it results

Ad(gn, g¢) <d(n, §).

Step 2 Assuming

ad(gn, §)+Bd(n, gf)+(1—(a+p))d(n, &), (10)

determining values of ad(gn, §) and Bd (g€, n)

2
ﬂ"'aﬁ_gl

adten. ) =a(|

s

)
)

pan, &)= (%! +ap-m

3

+ ‘ <23C1 + aﬁ) - 28m

g and n; = é, we get that

lyi > ==
applying a > 3, 1 3 )

ad(gn, &) > Bd(n, §),

using o > 3 and Bd(n, g€) < ad(gn, §) in (10) implies that

ad(gn, §) —ad(n, §)+Bd(n, g§) —Bd(n, §)+d(n, &) =d(n, ¢),

this implies that
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ad(gn, §) —ad(n, §)+pd(n, g¢) —Bd(n, §)+d(n, §) = d(gn, &),

hence proved that

d(gn, g§) < ad(gn, &) —ad(n, §)+pd(n, ¢§) —Bd(n, §)+d(n, §)d(n, &),

thus the mapping g is generalized (o, )-nonexpansive type-1 mapping.
The following Tables 1 and 2, and Please replace the word figures with Figure 1, 2 and 3 shows convergence behavior
of iterative procedures with initial value n; = (0, 1) and oo = 0.5, B = 0.3, y = 0.3 on x-axis and y-axis, respectively.

Table 1. Comparison of iterations on x-axis

Mann Ishikawa Agarwal Noor Abbas New
0.075000000000000  0.090000000000000  0.165000000000000  0.093000000000000  0.222000000000000  0.350000000000000
0.137500000000000  0.162000000000000  0.269500000000000  0.166780000000000  0.334480000000000  0.350000000000000
0.189583333333333  0.219600000000000  0.335683333333333  0.225312133333333  0.391469866666667  0.445061728395062
0.232986111111111  0.265680000000000  0.377599444444444  0.271747625777778  0.420344732444444  0.448902606310014
0.269155092592593  0.302544000000000  0.404146314814815  0.308586449783704  0.434974664438518  0.449756134735559
0.299295910493827  0.332035200000000  0.420959332716049  0.337811916828405  0.442387163315516  0.449945807719013
0.324413258744856  0.355628160000000  0.431607577386831  0.337811916828405  0.446142829413195  0.449987957270892
0.345344382287380  0.374502528000000  0.438351465678326  0.379391313520313  0.446142829413195  0.449997323837976
0.362786985239483  0.389602022400000  0.442622594929607  0.393983775392782  0.449009821452916  0.449999405297328
0.377322487699569  0.401681617920000  0.445327643455418  0.405560461811607  0.449498309536144  0.449999867843851
0.389435406416308  0.411345294336000  0.447040840855098  0.414744633037208  0.449745810164980  0.449999970631967
0.399529505346923  0.419076235468800  0.448125865874895  0.422030742209518  0.449871210483590  0.449999993473770
0.407941254455769  0.425260988375040  0.448813048387434  0.427811055486218  0.449934746645019  0.449999998549727
0.414951045379808  0.430208790700032  0.449248263978708  0.432396770685733  0.449966938300143  0.449999999677717
0.420792537816506  0.434167032560026  0.449248263978708  0.436034771410681  0.449983248738739  0.449999999928381
0.425660448180422  0.437333626048020  0.449698470329237  0.438920918652474  0.449991512694294  0.449999999984085
0.429717040150352  0.439866900838416  0.449809031208517  0.441210595464296  0.449995699765109  0.449999999996463
0.433097533458626  0.441893520670733  0.449879053098727  0.443027072401675  0.449997821214322  0.449999999999214
0.435914611215522  0.443514816536586  0.449923400295861  0.444468144105329  0.449998896081923  0.449999999999825
0.438262176012935  0.444811853229269  0.449951486854045  0.445611394323561  0.449999440681508  0.449999999999961
0.440218480010779  0.445849482583415  0.449969275007562  0.446518372830025  0.449999716611964  0.449999999999991
0.441848733342316  0.446679586066732  0.449980540838122  0.447237909111820  0.449999856416728  0.449999999999998
0.443207277785263  0.447343668853386  0.449987675864144  0.447808741228710  0.449999927251142  0.450000000000000
0.444339398154386  0.447874935082709  0.449992194713958  0.448261601374777  0.449999963140579  0.450000000000000
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Table 2. Comparison of iterations on y-axis

Mann Ishikawa Agarwal Noor Abbas New
0.833333333333333  0.800000000000000  0.633333333333333  0.793333333333333  0.506666666666667  0.222222222222222
0.694444444444444  0.640000000000000  0.401111111111111 0.629377777777778  0.256711111111111  0.049382716049383
0.578703703703704  0.512000000000000  0.254037037037037  0.499306370370370  0.130066962962963  0.010973936899863
0.482253086419753  0.409600000000000  0.160890123456790  0.396116387160494  0.065900594567901  0.002438652644414
0.401877572016461  0.327680000000000  0.101897078189300  0.314252333813992  0.033389634581070  0.000541922809870
0.334897976680384  0.262144000000000  0.064534816186557  0.249306851492433  0.016917414854409  0.000120427291082
0.000039305567154  0.209715200000000  0.040872050251486  0.197783435517331  0.008571490192900  0.000026761620240
0.279081647233653  0.167772160000000  0.025885631825941  0.156908192177082  0.004342888364403  0.000005947026720
0.232568039361378  0.134217728000000  0.016394233489763  0.124480499127152  0.002200396771297  0.000001321561493
0.193806699467815  0.107374182400000  0.010383014543516  0.098754529307540  0.001114867697457  0.000000293680332
0.161505582889846  0.085899345920000  0.006575909210894  0.078345259917315  0.000564866300045  0.000000065262296
0.134587985741538  0.068719476736000  0.004164742500233  0.062153906201070  0.000286198925356  0.000000014502732
0.112156654784615  0.054975581388800  0.002637670250147  0.049308765586182  0.000145007455514  0.000000003222829
0.093463878987179  0.043980465111040  0.001670524491760  0.039118287365038  0.000073470444127  0.000000000716184
0.077886565822649  0.035184372088832  0.001057998844781  0.031033841309597  0.000037225025024  0.000000000159152
0.064905471518874  0.028147497671066  0.000670065935028  0.024620180772280  0.000018860679346  0.000000000035367
0.054087892932395  0.022517998136852  0.000424375092185  0.019532010079342  0.000009556077535  0.000000000007859
0.045073244110329  0.018014398509482  0.000268770891717  0.015495394662945  0.000004841745951  0.000000000001747
0.037561036758608  0.014411518807586  0.000170221564754  0.012293013099270  0.000002453151282  0.000000000000388
0.031300863965507  0.011529215046068  0.000107806991011  0.009752457058754  0.000001242929983  0.000000000000086
0.026084053304589  0.009223372036855  0.000068277760974  0.007736949266611  0.000000629751191  0.000000000000019
0.021736711087157  0.007378697629484  0.000043242581950  0.006137979751512  0.000000319073937  0.000000000000004
0.018113925905964  0.005902958103587  0.000027386968568  0.004869463936199  0.000000161664128  0.000000000000001
0.015094938254970  0.004722366482870  0.000017345080093  0.003863108056051  0.000000081909825  0.000000000000000
0.012579115212475  0.003777893186296  0.000010985217392  0.003064732391134  0.000000041500978  0.000000000000000
0.010482596010396  0.003022314549037  0.000006957304349  0.002431354363633  0.000000021027162  0.000000000000000
0.008735496675330  0.002417851639229  0.000004406292754  0.001928874461816  0.000000010653762  0.000000000000000
0.007279580562775  0.001934281311383  0.000002790652078  0.001530240406374  0.000000005397906  0.000000000000000
0.006066317135646  0.001547425049107  0.000001767412982  0.001213990722390  0.000000002734939  0.000000000000000
0.005055264279705  0.001237940039285  0.000001119361556  0.000963099306429  0.000000001385702  0.000000000000000
0.004212720233087  0.000792281625143  0.000000708928985  0.000764058783101  0.000000000702089  0.000000000000000
0.003510600194240  0.000990352031428  0.000000448988357  0.000606153301260  0.000000000355725  0.000000000000000
0.002925500161866  0.000633825300114  0.000000284359293  0.000480881618999  0.000000000180234  0.000000000000000
0.002437916801555  0.000507060240091  0.000000180094219  0.000381499417740  0.000000000091319  0.000000000000000
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Convergence behavior of different iterations
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Figure 1. Convergence behavior of iterations
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Convergence behavior on logarithmic scale
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Example 2 Assume that Q = [0, 1] is a closed and convex subset of M = R with usual metric. Now formalize a map
g: O — Q such that

(1)
then g is generalized (a, f)-nonexpansive type-1 mapping foreveryn, { €O, n <l and a, B, A € [0,

1
~|, a<B.
o
Solution First, demonstrate that g is generalized (o, 8)-nonexpansive type-1 mapping. subsequently the convergence
the behavior of the iteration used in this study is being analyzed and compared with the convergence behavior of other
iterations.

It must be shown that if Ad(gn, g&) <d(n, §) then

d(gn, g8) < ad(gn, &) +Bd(n, gf)+ (1—(a+p))d(n, §),

First it is necessary to establish that Ad(gn, g&) <d(n, §)

as the function g(n) is continuous on [0, 1] and differentiable on (0, 1) then by Mean value theorem there exists ¢ € [0, 1]
such that

e?2 —e2 5
2 - 4(C_n)7
1
as£<lso
4 27
e%—e% 1
< (¢ —
57— =5(=n),
taking absolute value
e%—eg 1
< _
‘ S <51 -l

d(gn, g§) <d(n, ),

Volume 5 Issue 4|2024| 5427

Contemporary Mathematics



this implies that

Ad(gn, g€) <d(n, §).

Now it is necessary to prove that

d(gn, g¢) < ad(gn, §)+pd(n, g¢)+(1—(a+p))d(n, &),

consider
ad(gn, §)+pBd(n, g¢)+(1—(a+p))d(n, £),
using a < B, { > n, we get that

6%71721"
2

ezzlfleC
2

(=)o

utilizing @ < B and Bd(n, g€) > ad(gn, {) in equation (12) implies that

)

ad(gn, §) —ad(n, §)+pd(n, g¢) —Bd(n, §)+d(n, §) =d(n, &),

hence it is shown that

ad(gn, §) —ad(n, §)+pd(n, g¢) —Bd(n, §)+d(n, §) = d(gn, &),

thus g is generalized (a, f)-nonexpansive type-1 mapping.

(12)

The following Please replace the word tables with Table 3 and Table 4 and Please replace the word figures with
Figure 4 and Figure 5 show the convergence behavior of iterative procedures with initial value 7 = 0.1, { = 0.99 and

a=0.12, f =0.12and y=0.2.
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Table 3. Comparison of iterations by numerical values

Mann Ishikawa Agarwal Noor Abbas New
0.033071993369211  0.090795454803432  0.025354737208883  0.090780783623989  0.019802212099950  0.001334010239514
0.010810262187702  0.082432591527308  0.006309888848529  0.082406045850667  0.003849372992689  0.000017267805236
0.003519920545003  0.074835435169912  0.001562884134784  0.074799407067613  0.000745549626480  0.000000223430378
0.001144671514698  0.067934690970084  0.000386651349045  0.067891220816200  0.000144295957703  0.000000002890980
0.000372091959189  0.061667189355495  0.000095628063811  0.061618012101584  0.000027923634022  0.000000000037407
0.000120937675168  0.055975370971915  0.000023649382003  0.055921956607780  0.000005403536993  0.000000000000484
0.000039305567154  0.050806810092987  0.000005848526530  0.050750399014035  0.000001045639738  0.000000000000006
0.000012774396228  0.046113774510544  0.000001446342712  0.046055408422506  0.000000202341794  0.000000000000000
0.000004151687953  0.041852819887808  0.000000357680681  0.041793368801019  0.000000039155162  0.000000000000000
0.000001349299554  0.037984416503060  0.000000088454440  0.037924602299959  0.000000007576916  0.000000000000000
0.000000438522458  0.034472606304578  0.000000021874784  0.034413023304229  0.000000001466209  0.000000000000000
0.000000142519810  0.031284688226765  0.000000005409634  0.031225821117824  0.000000000283726  0.000000000000000
0.000000046318939  0.028390929772750  0.000000001337803  0.028333169240589  0.000000000054904  0.000000000000000
0.000000015053655  0.025764302942955  0.000000000330839  0.025707959276543  0.000000000010624  0.000000000000000
0.000000004892438  0.023380242675961  0.000000000081816  0.023325557605098  0.000000000002056  0.000000000000000
0.000000001590042  0.021216426063069  0.000000000020233  0.021163583045800  0.000000000000398  0.000000000000000
0.000000000516764  0.019252570697400  0.000000000005004  0.019201703850539  0.000000000000077  0.000000000000000
0.000000000167948  0.017470250619584  0.000000000001237  0.017421452461680  0.000000000000015  0.000000000000000
0.000000000054583  0.015852728422906  0.000000000000306  0.015806056578251  0.000000000000001  0.000000000000000
0.000000000017739  0.014384802179622  0.000000000000076 ~ 0.014340285173763  0.000000000000003  0.000000000000000
0.000000000005765  0.013052665945950  0.000000000000019  0.013010308207202  0.000000000000001  0.000000000000000
0.000000000001874  0.011843782695169  0.000000000000005  0.011803568862613  0.000000000000001  0.000000000000000
0.000000000000609  0.010746768615734  0.000000000000001  0.010708667241915  0.000000000000001  0.000000000000000
0.000000000000198  0.009751287794151  0.000000000000000  0.009715254519852  0.000000000000001  0.000000000000000
0.000000000000064  0.008847956380234  0.000000000000000  0.008813936649227  0.000000000000001  0.000000000000000
0.000000000000021  0.008028255405347  0.000000000000000  0.007996186778678  0.000000000000001  0.000000000000000
0.000000000000007  0.007284451492351  0.000000000000000  0.007254265614373  0.000000000000001  0.000000000000000
0.000000000000002  0.006609524759315  0.000000000000000  0.006581149021233  0.000000000000001  0.000000000000000
0.000000000000001  0.005997103277791  0.000000000000000  0.005970462218827  0.000000000000001  0.000000000000000

Table 4. CPU time comparison for Figure 4 and Figure 5

Volume 5 Issue 4|2024| 5429

Iterations Figure 1 Figure 2
Mann 0.29576 sec  1.1877 sec

Ishikawa 0.2051 sec 1.1656 sec

Agarwal  0.29942sec  1.1772 sec
Noor 0.19578 sec  1.1824 sec
Abbas 0.19838 sec  1.1625 sec
New 0.20245sec 1.1598sec
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Convergence behavior on logarithmic scale
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Now we will prove the existence of the solution of a nonlinear quadratic integral equation by applying our
convergence result.

Application Let C(Q) be the set of all continuous functions defined on Q = [0, 1] and d : C(Q) x C(Q) — R defined
by

d(n, §) =§25|7”I(t)—4(f)\7 v, £eC(Q)

(C(Q), d, H) is a hyperbolic space with modulus of uniform convexity where H is a convex structure. Assume S is the
set of functions 7 : [0, 4o0) — [0, +o0) which satisfies the following condition:

T is nondecreasing and 7' (¢) < ¢ for all € [0, +o0).

Consider the nonlinear quadratic equation as follows:
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mgzﬂﬂ+aA%Mnﬂﬂ&n@»MJeQ7a2Q (13)

wherex: Q>R h:OxR—->Rand f: QO xQ0—R.
Now let a mapping g : C(Q) — C(Q) defined as follows:

g0 =) +a [ (10, )56, n(5))ds, 1€ 0, 20

Suppose that the following condition holds:

1. x: Q — R is continuous

2. f: 0% 0 — Ris continuous, f(z, {) > 0 and there exists P > 0 and T € S such that forallt € Q and a, b € R,
[f(z, @) = f(z, b)| < PT(Ja—bl);

3. h: QxR — Ris continuous at 7 € Q for every s € Q and measurable at s € Q for all € Q such that A(z, s) >0
and [ (h(r, s) <K;

4, limj*)wd(nj, gn]) =0.

Theorem 5 Under conditions (1)-(4), the integral equation (13) has a solution in C(Q).

Proof. Using conditions 2 we obtain

lg(m)(1) —g(&)(1)] < Ot/Ol(h(n s)PT(|(m)(1) = (§)(t])))ds.

Since T is nondecreasing, we have

g(I(m@) = (©) D)) <¢ (Supln(t) - C(t)|> =T(d(n, ¢))

teQ

From equation 3 we obtain that

lg(m)(1) —g($)(1)| < aPT(d(n, §))

Therefore,
d(gn, g€) =sup|n(r) — C(1)]
teQ

< aKPT(d(n, §))

<(d(n, %))

and for A € (0, 1]
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d(gn, ¢¢)(n, &) (14)

Ad(gn, g€) <d(m, §)

Now, consider equation (14) and using triangular inequality, we have

d(gn, g¢) < ad(gn, §)+pd(n, g¢)+(1—(a+p))d(n, §).

Hence the mapping g on the set of all continuous functions is generalized (¢, f)-nonexpansive type-1 mapping. By
Lemma 4, we have that Fix(g) is nonempty. Now we have all the conditions of Theorem 4 so in the view of Theorem
4 we get sequence formalized by equation (5) A-converges to the unique fixed point of g in C(Q). This implies that the
integral equation (13) has a solution in C(Q).

5. Conclusion

In this article, we generalized the iteration scheme in hyperbolic space and proved some strong A-convergence results
using generalized (¢, )-nonexpansive type-1 mapping. Our results generalized the results in linear space. At the end,
we presented some examples of our results and gave a comparison with some other iterative schemes using computational
tools.
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