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Abstract: In decision-making, linear programming is one of the most useful models for obtaining the optimal solution.
A crucial element of the linear programming (LP) model is the minimum cost flow (MCF). The objective of the MCF is
to reduce the transportation cost of a single product across a network with capacity constraints. Recently, neutrosophic
set theory has become a strong way to deal with the uncertainty that often comes with trying to optimize things. This
manuscript explores how neutrosophic set theory can be applied to the MCF problem which has caught the interest of
some researchers. The primary objective of this study is threefold: firstly, to tackle the MCF problem considering the
uncertainty of the neutrosophic set, focusing especially on the cost. Secondly, to introduce an innovative lexicographical
method tailored for the MCF problem, marking a first in the field of neutrosphic sets. Lastly, to combine this new method
with a multi-objective optimization approach, improving the way we solve the MCF problem in various ways at once.
This thorough method is meant to lead to more detailed and effective ways of solving optimization problems when there
is uncertainty. To show how our method works, we will go through some numerical examples related to the MCF problem
with cost defined by neutrosophic numbers.

Keywords: full fuzzy linear programming (FFLP), single-valued triangular neutrosophic (SVTN) numbers, multi-
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SVTN Single-valued triangular neutrosophic
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FFLP Full fuzzy linear programming
NMFP Neutrosophic minimal flow problem
MOLP Multi-objective linear programming
TrNMCF Triangular neutrosophic minimal flow
MADM Multi-attribute decision making
SOLP Single-objective linear programming
C Maximum capacity of the arc
MO Multi-objective
LA Lexicographic approach
RAP Redundancy allocation problem
H Terminal node
T Initial node

1. Introduction
In diverse real-world situations linear programming (LP) problem referred to as linear optimization, aims tomaximize

(profits) or minimize (cost) a linear function while satisfying a set of linear constraints. LP problem contains a wide range
of applications such as optimal resource allocation, production planning, inventory management, production scheduling,
bandwidth allocation, network design, and so on. Various researchers have been making significant contributions in the
field of optimization problems, such as Hobson et al. [1] have shown that linear programming (LP), a mathematical
method, can be effectively used for network problems, including fuel scheduling and contingency analysis. Similarly,
Luathep et al. [2] have developed a universal optimizationmethod to tacklemixed transportation network design problems,
which are usually complex mathematical problems with balance constraints. Li et al. [3] proposed a step-by-step LP
method to determine freight allocation in a multi-mode freight transport network model. In a different approach, Dong et
al. [4] introduced a unique version of the maximum concurrent flow problem using LP, known as the triples formulation.
They also provided ways to derive a triple solution from an edge-path solution. Fuller and Shanmugham [5] have
introduced a new approach to studying rural freight transportation using network flow models, and they have compared
this method with LP. Garg and Sharma [6] introduced a problem of RAP in a series system, focusing on multi-objective
reliability. They treated the system’s reliability and the associated design cost as two separate objectives. In contrast,
Garg et al. [7] introduced a methodology for optimizing both system reliability and design cost in a bi-objective reliability
redundancy allocation problem for a series-parallel system. This shows the versatility and wide application of LP in
solving various network and optimization problems. Addressing all areas of Linear Programming (LP) simultaneously
can be quite challenging. Therefore, in this context, we will focus solely on discussing the network flow problem and
its sub-areas. Network flow problems contain various sub-areas such as shortest path problem (SPP) [8], maximal flow
problem, transportation problem, and minimum cost flow (MCF). Out of these MCF problem is one of the special cases
of network flow problem. In the MCF problem, the goal is to determine the least expensive way to transport a specified
amount of flow through a network. This network is made up of supply nodes, directed arcs and demand nodes, and each
arc has an associated cost and capacity constraint. The task is to find the most cost-effective way to meet the demand
from the supply while adhering to the capacity constraints of each arc.

Several researchers are working on the MCF problem. Goldberg et al. [9] present a new approach to solving the
MCF problem using successive approximation methods and also Vygen [10] presents a new dual algorithm for the MCF
problem using a variation of the best-known strongly polynomial MCF algorithm. Hu et al. [11] developed an algorithm
for solving MCF problem with the complementary slackness at each iteration and to find an augmenting path by updating
node potential iteratively with a dual approach. Holzhauser et al. [12] present a specialized network simplex algorithm for
solving the budget-constrained MCF problem and to solve the MCF problem Ciupala [13] proposed a new method deficit
scaling method which is based on a generic pre flow algorithm. then after Ciurea and Ciupala [14] another approach is a
sequential and parallel algorithm based on decreasing path algorithms and parallel pre-flow algorithms to solve the MCF

Volume 5 Issue 4|2024| 6477 Contemporary Mathematics



problem. We have attempted to explain various approaches to solving the MCF problem in this paragraph. However, we
will now explore some applications of the MCF problem, as discussed in the following paragraph.

The various applications of the MCF problem such as Sirivongpaisal [15] introduced a novel approach for addressing
the MCF problem by leveraging the stochastic LP technique within the context of supply chain problems and, Ghatee
et al. [16] designed a network plan for trainspotting hazardous materials, utilizing the MCF problem under uncertain
environments. Furthermore, Grossmann et al. [17] introduced anMCF approach for dynamic assignment trials in networks
models with storage devices over time. Additionally, Ghatee and Hashemi [18] tackled the bus network planning problem
by employing a generalized MCF problem in uncertain environments and so on.

Based on the above literature survey, the classical Minimum Cost Flow (MCF) problem has various factors like cost,
supply, demand, and capacity. In the standard MCF problem, these factors are set and clear. But in real life, these factors
can change because of uncertainty. This is why we’re introducing a new way to solve the MCF problem when these
factors are not certain. There are different theories, like probability theory, vagueness theory, and fuzzy theory, that have
been created to solve problems with uncertainty in real-life situations. In 1965, a new concept called the fuzzy set was
introduced by, Zadeh [19] to handle uncertain real situations. Utilizing fuzzy logic, Zimmermann [20] introduced a new
concept in the field of linear programming in 1978, known as fuzzy linear programming.

Numerous researchers have extensively worked in this area and have developed various methods. Lotfi et al. [21]
proposed a method to solve full fuzzy linear programming (FFLP) problems by approximating fuzzy triangular numbers
to their nearest symmetric counterparts, thereby transforming the problem into a crisp MOLP problem and subsequently
using the LA for optimal solution determination. Similarly, Ezzati et al. [22] proposed an innovative algorithm based on a
new LA of triangular fuzzy numbers, which addresses FFLP challenges by transforming them into corresponding MOLP
problems and then resolving them using the lexicographic method. In addition, Das et al. [23] introduced an efficient
approach for solving FFLP problems, leveraging a novel LA on trapezoidal fuzzy numbers and deriving the method from
the auxiliary MOLP model. Following this, Das [24] modified the Das et al. [23] algorithm and proposed a new method
using LA for finding the fuzzy optimal solution of FFLP problems with triangular fuzzy numbers. Furthermore, applying
a LA, Perez-Canedo and Eduardo [25] introduced a new model for solving fuzzy linear assignment problems involving
various fuzzy numbers. Kumar et al. [26] present a network model to solve the SPP in which the arc length is weighted
fuzzy. Garg [27] developed an LP model to solve the MCDM problem with unknown attribute weights, leveraging an
improved score Function for Interval-Valued Pythagorean Fuzzy Numbers. In contrast, Garg and Singh [28] addressed
the issue of interval-valued problems and aggregation operators within the context of a triangular type 2 fuzzy problem.
Additionally, Akram et al. [29] introduced the complex picture fuzzy set (CPFS) as a generalized extension of the complex
intuitionistic fuzzy set (CIFS) by incorporating a neutral membership degree and Gayen et al. [30] introduce the concept
of an anti-fuzzy subgroup and analyze its attributes.

Also, there are several researchers have extensively worked in the area of fuzzy MCF problems such as El-
Sherbeny [31] introduced a novel algorithm designed to efficiently solve fuzzy MCF problems that incorporate fuzzy
time windows, utilizing a polynomial-time algorithm personalized for fuzzy time windows. In a similar vein, Alharbi et
al. [32] introduced an interactive methodology aimed at addressing the Multi-objective MCF within a fuzzy environment,
where the associated costs are described as trapezoidal fuzzy numbers. And, Khalifa and Edalatanah [33] proposed a
novel approach for solving Multi-Objective MCF problems using the fuzzy goal programming technique. They consider
objective functions with possibilistic coefficients and employ an alpha-Pareto optimal solution-based scenario. Many
researchers have used these theories and their extensions, like fuzzy theory and extended fuzzy theory, to solve problems
with uncertainty. In a fuzzy environment, uncertainty is effectively addressed using vague reasoning. However, when
confronted with indeterminate and inconsistent information, accurately handling such situations becomes challenging. To
tackle this, in 1999, Smarandache [34] introduced the concept of the Neutrosophic Set (NS).

The concept of neutrosophic sets is an advanced mathematical approach that builds upon fuzzy logic to better manage
data that is unclear, inconsistent, or incomplete. It focuses on three key measures: the degree to which information is not
true (falsity), not determinable (indeterminacy), and true (truth), to improve how we handle uncertain and imprecise data.
These three distinct levels of membership fall within a unique range, which is just above 0 and just below 1. However,
the membership level of a fuzzy set is confined within the standard range of 0 to 1. The NS is particularly useful in
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modeling a variety of real-world scenarios. This is because it has the ability to handle information that is incomplete,
inconsistent, or uncertain. There are some researchers who work in neutrosophic environments such as Edalatpanah [35]
introduced a direct model to solve the LP with TrNNs and Abdel-Basset et al. [36] presented a new method for solving
the LP model with TrpNNs. Khan et al. [37] proposed a new approach to solving the MADM problem by using interval-
valued neutrosophic environments. Wang et al. [38] introduced SVTN problems for solving the LP problem and also so
many researchers [39–42] are worked on SVTN environments. These operators play a crucial role in addressing various
practical complexities. We have compiled the significant contributions of various researchers who have introduced these
practical applications in Table 1.

Table 1. The significant contributions of various researchers in different NS environments

Authors Years Significance

Dey et al. [43] 2019 Dey et al. explore the MST problem in a neutrosophic
weighted graph with single-valued neutrosophic arc lengths.

Broumi et al. [44] 2019 To solve the SPP under the triangular and interval-valued TrpNNs.

Khalifa and Kumar [45] 2020 Khalifa and Kumar proposed a new approach to solve the multi-objective assignment
problem under an interval-valued TrpNNs environment.

Fallah and Nozari [46] 2021 A neutrosophic programming approach designs a multi-objective
problem under uncertainty-resilient biomass supply chain.

Giri and Roy [47] 2022 Solving the MO transportation problem under single-valued trapezoidal neutrosophic numbers.

Adhikary et al. [48] 2024 Solving the MST Problem with trapezoidal neutrosophic numbers representing arc weights.

Dey et al. [49] 2024 To solve the SPP using a Fermatean interval-valued neutrosophic environment.

Gupta et al. [50] 2024 To solve a MO fixed-charge transportation problem with TrpNNs parameters.

1.1 Motivation and novelties

Neutrosophic set theory is a recognized method for handling uncertainty in optimization issues. The concept of MCF
under the neutrosophic setting has been explored by a handful of scholars. This article proposes a solution method for the
MCF problem with neutrosophic parameters, eliminating the need for ranking methods because different ranking methods
can lead to varied solutions. This drawback has motivated us to develop a new solution approach that does not depend
on any ranking method. Therefore, we use this approach by converting it into an MOLP and then using a lexicographic
approach to transform it into a single crisp LP problem. The novelties of this manuscript are as follows:

• Introduce a novel lexicographical approach to the MCF problem, marking a first in the domain of neutrosophic set
literature.

• This model facilitates the resolution of new problem sets under the neutrosophic set numbers.

1.2 Objective
Existing methods for addressing MCF problems are fraught with numerous challenges, as detailed throughout this

manuscript. These issues have inspired the development of an innovative approach that applies neutrosophic logic toMCF.
From this perspective, an attempt is being made to extend this article, as there currently exists no method for applying
lexicographical approach to the TrNMCF problem. The main objective of this manuscript is as follows:

• To address the MCF problem within the context of neutrosophic uncertainty, where the cost factor is a pivotal
element.

• To combine the lexicographical approach with a multi-objective perspective, aiming to optimize the MCF problem
on multiple fronts simultaneously.
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1.3 Structure of the manuscript

Figure 1. Structure of the manuscript

2. Preliminaries
Definition 1 Neutrosophic Set [51]:
A set ñeuE in the universal setK, is said to be a neutrosophic set if ñeuE =

{(
κ,
[
TñeuE (κ) , IñeuE (κ) , FñeuE (κ)

])
: κ ∈ K

}
Where FñeuE (κ) : K → [0, 1], IñeuE (κ) : K → [0, 1], and TñeuE (κ) : K → [0, 1] are defined as the falsity membership
function FẼη

(κ), indeterminacy function, IẼη
(κ) and truth membership functions TẼη

(κ), of an element κ in ñeuE and
respectively and TñeuE (κ) , IñeuE (κ) , FñeuE (κ) satisfy the condition.

0 ≤ TñeuE (κ)+ IñeuE (κ)+FñeuE (κ)≤ 3

Definition 2 Single-valued triangular neutrosophic (SVTN) number [52]:
SVTN number is a special type of SVTN set. A set Ẽη =

〈(
ε̂11, ε̂21, ε̂31

)
, (δ11, δ21, δ31) ,

( ⌢
ϖ11,

⌢
ϖ21,

⌢
ϖ31

)〉
is

called SVTN number if its define a truth functions TẼη
(κ), indeterminacy function, IẼη

(κ) and the falsity membership
function FẼη

(κ) of an element κ in Ẽη is defined as,

TẼη
(κ) =



(
κ − ε̂11

ε̂21 − ε̂11

)
ε̂11 ≤ κ < ε̂21

1 ε̂21 = κ(
ε̂31 −κ

ε̂31 − ε̂21

)
ε̂21 < κ ≤ ε̂31

0 otherwise


, IẼη

(κ) =



(
δ21 −κ

δ21 −δ11

)
δ11 ≤ κ < δ21

0 δ21 = κ(
κ −δ21

δ31 −δ21

)
δ21 < κ ≤ δ31

1 otherwise


and
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FẼη
(κ) =



( ⌢
ϖ21−κ
⌢

ϖ21−
⌢

ϖ11

)
⌢

ϖ11 ≤ κ <
⌢

ϖ21

0
⌢

ϖ21 = κ(
κ −

⌢
ϖ21

⌢
ϖ31−

⌢
ϖ21

)
⌢

ϖ21 < κ ≤
⌢

ϖ31

1 otherwise


with the condition 0 ≤ TẼη

(κ)+ IẼη
(κ)+FẼη

(κ)≤ 3.
Definition 3 Arithmetic Operations for SVTN number [36]:

Let Ẽη1 =
〈(

ε̂11, ε̂21, ε̂31
)
, (δ11, δ21, δ31) ,

( ⌢
ϖ11,

⌢
ϖ21,

⌢
ϖ31

)〉
and Eη2 =

〈 (
ε̂12, ε̂22, ε̂32

)
, (δ12, δ22, δ32) ,( ⌢

ϖ12,
⌢

ϖ22,
⌢

ϖ32

) 〉
be two SVTN numbers and θ > 0 then

(i) Eη1 ⊕Eη2 =

〈(
ε̂11 + ε̂12, ε̂21 + ε̂22, ε̂31 + ε̂32

)
, (δ11 +δ12, δ21 +δ22, δ31 +δ32) ,

( ⌢
ϖ11+

⌢
ϖ12,

⌢
ϖ21

+
⌢

ϖ22,
⌢

ϖ31+
⌢

ϖ32

)〉
(ii) Eη1 ⊗Eη2 =

〈(
ε̂11.ε̂12, ε̂21.ε̂22, ε̂31.ε̂32

)
, (δ11.δ12, δ21.δ22, δ31.δ32) ,

( ⌢
ϖ11 .

⌢
ϖ12,

⌢
ϖ21 .

⌢
ϖ22,

⌢
ϖ31 .

⌢
ϖ32

)〉
(iii) θ ⊙Eη1 =

〈(
θ .̂ε11, θ .ε̂21, θ ε̂31

)
, (θ .δ11, θ .δ21, θ .δ31) ,

(
θ .

⌢
ϖ11, θ .

⌢
ϖ21, θ .

⌢
ϖ31

)〉
.

Definition 4 Let Ẽη =
〈(

ε̂11, ε̂21, ε̂31
)
, (δ11, δ21, δ31) ,

( ⌢
ϖ11,

⌢
ϖ21,

⌢
ϖ31

)〉
be an SVTN number and define a

functionsM, N from a set of neutrosophic numbers characterized by a set of the real number N (R) to real line such
that each neutrosophic number is such that

M
(

Ẽη

)
=

1
12

[
8+
(
ε̂11 +2.ε̂21 + ε̂31

)
− (δ11 +2.δ21 +δ31)−

( ⌢
ϖ11 +2.

⌢
ϖ21 +

⌢
ϖ31

)]
And

N
(

Ẽη

)
=

1
4
[(

ε̂11 +2.ε̂21 + ε̂31
)
− (δ11 +2.δ21 +δ31)

]

Where the function M
(

Ẽη

)
and N

(
Ẽη

)
are known as the score function and the accuracy function respectively.

Definition 5 [36] A ranking function Mof neutrosophic number is a function defined from a set of neutrosophic
numbers which characterized by a set of real number N (R) to real line such that each neutrosophic number is converted

into a real number. Let Ẽη1 =
〈(

ε̂11, ε̂21, ε̂31
)
, (δ11, δ21, δ31) ,

( ⌢
ϖ11,

⌢
ϖ21,

⌢
ϖ31

)〉
and Eη2 =

〈 (
ε̂12, ε̂22, ε̂32

)
,

(δ12, δ22, δ32) ,( ⌢
ϖ12,

⌢
ϖ22,

⌢
ϖ32

)
〉

be two any SVTN numbers then
1. If M

(
Ẽη1

)
> M

(
Ẽη2

)
then Ẽη1 ≻ Ẽη2

2. If M
(

Ẽη1

)
< M

(
Ẽη2

)
then Ẽη1 ≺ Ẽη2

3. If M
(

Ẽη1

)
= M

(
Ẽη2

)
and if

(a) N
(

Ẽη1

)
> N

(
Ẽη2

)
then Ẽη1 ≻ Ẽη2

(b) N
(

Ẽη1

)
< N

(
Ẽη2

)
then Ẽη1 ≺ Ẽη2
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(c) N
(

Ẽη1

)
= N

(
Ẽη2

)
then Ẽη1 ≈ Ẽη2 .

3. Our proposed model
Before we start with a proposed algorithm, we introduce a sub-section i.e., The existing crisp model in MCF problem

and the NMFP with neutrosophic cost.

3.1 Existing crisp model in MCF problem

Let a directed graph Gη = (Nη , ℵη) is considered, where Nη = {1, 2, 3, ..., t} is the set of finite nodes and
ℵη represents the set of arcs. Each arc is denoted by (q, t) ∈ ℵη , accompanied by a flow τqt , and a cost-per-unit flow
Skqt from arc q to t. The two numbers, pqt and ℓqt are to be considered as the upper and lower capacity respectively. A
number ϒq, which represents the supply, demand, or transshipment node, is to be assigned to each node q ∈ Nη . The node
q is identified as a transshipment node if ϒq equals 0. If ϒq is less than 0, then the node q is identified as a demand node.
If ϒq is greater than 0, then the node q is identified as a supply node.

The general formulation of the mathematical model for the classical MCF problem is to be considered as follows:

Mini Z= ∑
(q, t)∈ℵη

Skqt τqt

Subject to

∑
t: (q, t)∈ℵη

τqr − ∑
t: (t, q)∈ℵη

τtq = ϒq, ∀q ∈ Nη

0 ≤ ℓqt ≤ τqt ≤ pqt ∀(q, t) ∈ ℵη

3.2 Transformation of the crisp model MCF problem into NMFP with neutrosophic cost

In this section, consider the scenario where we substitute the cost Skqt convert into a neutrosophic cost per unit flow
S̃kη

qt from arc q to t. Then the general formulation of the mathematical model for the NMFP with neutrosophic cost is to
be considered as follows:

Mini Õη ≈ ∑
(q, t)∈ℵη

S̃kη
qt τqt (1)

Subject to constraints

∑
t: (q, t)∈ℵη

τqt − ∑
t: (t, q)∈ℵη

τtq = ϒq, ∀q ∈ Nη (2)

0 ≤ ℓqt ≤ τqt ≤ pqt∀(q, t) ∈ ℵη (3)
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3.3 Algorithm: A novel approach for finding the NMFP with neutrosophic cost considering as
SVTN number for cost parameters

We considered a directed graph whose arcs denote the neutrosophic cost per unit flow S̃kη
qt from arc q to t. In this

section, our proposed algorithm tends to provide a novel methodology for finding the NMFP with neutrosophic cost
considering as SVTN number for cost parameters.

The steps of the algorithm are as follows
Algorithm
Step 1: Here we consider the S̃kη

qt of the form S̃kη
qt =

〈(
S̃kη

1qt , S̃kη
2qt , S̃kη

3qt

)
,
(

S̃kη
4qt , S̃kη

5qt , S̃kη
6qt

)
,
(

S̃kη
7qt , S̃kη

8qt ,

S̃kη
9qt . Then the NMFP with neutrosophic cost S̃kη

qt , the objective function in equation (1) will be

MiniÕη ≈ ∑
(q, t)∈ℵη

〈 (
S̃kη

1qt , S̃kη
2qt , S̃kη

3qt

)
,
(

S̃kη
4qt , S̃kη

5qt , S̃kη
6qt

)
,(

S̃kη
7qt , S̃kη

8qt , S̃kη
9qt

) 〉
τqt (4)

With subject to constraints equation (2) and (3).
Step 2: Now, the above objective function can be expanded into nine several crisp objective functions as:

Min
(

Õη
1

)
= ∑

(q, t)∈ℵη

S̃kη
1qtτqt ;Min

(
Õη

2

)
= ∑

(q, t)∈ℵη

S̃kη
2qtτqt ;

Min
(

Õη
3

)
= ∑

(q, t)∈ℵη

S̃kη
3qtτqt ;Min

(
Õη

4

)
= ∑

(q, t)∈ℵη

S̃kη
4qtτqt ;

Min
(

Õη
5

)
= ∑

(q, t)∈ℵη

S̃kη
5qtτqt ;Min

(
Õη

6

)
= ∑

(q, t)∈ℵη

S̃kη
6qtτqt ;

Min
(

Õη
7

)
= ∑

(q, t)∈ℵη

S̃kη
7qtτqt ;Min

(
Õη

8

)
= ∑

(q, t)∈ℵη

S̃kη
8qtτqt ;

Min
(

Õη
9

)
= ∑

(q, t)∈ℵη

Skη
9qt .τqt


(5)

With the same subject to constraints equation (2) and (3).
Step 3: First of all, solving the below problem by the LPP method

Min
(

Õη
1

)
= ∑

(q, t)∈ℵη

S̃kη
1qtτqt (6)

With the same subject to constraints equation (2) and (3). The optimal value of the above equation (6) is (̂Rs1)
∗

Step 4: Again, calculate the subsequent problem given as below

Min
(

Õη
2

)
= ∑

(q, t)∈ℵη

S̃kη
2qtτqt (7)

Subject to
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(̂Rs1)
∗ = ∑

(q, t)∈ℵη

S̃kη
1qtτqt

Also with the constraints (2)and(3)

 (8)

The optimal value of the above equation (7) is (̂Rs2)
∗.

Step 5: Now, calculate the subsequent problem given as below

Min
(

Õη
3

)
= ∑

(q, t)∈ℵη

S̃kη
3qtτqt (9)

Subject to

(̂Rs2)
∗ = ∑

(q, t)∈ℵη

S̃kη
2qtτqt

Also with the constraints (8)

 (10)

The optimal value of the above equation (9) is (̂Rs3)
∗.

Step 6: Again, calculate the subsequent problem given as below

Min
(

Õη
4

)
= ∑

(q, t)∈ℵη

S̃kη
4qtτqt (11)

Subject to

(̂Rs3)
∗ = ∑

(q, t)∈ℵη

S̃kη
3qtτqt

Also with the constraints (10)

 (12)

The optimal value of the above equation (11) is (̂Rs4)
∗.

Step 7: Again. calculate the subsequent problem given as below

Min
(

Õη
5

)
= ∑

(q, t)∈ℵη

S̃kη
5qtτqt (13)

Subject to

(̂Rs4)
∗ = ∑

(q, t)∈ℵη

S̃kη
4qtτqt

Also with the constraints (12)

 (14)
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The optimal value of the above equation (13) is (̂Rs5)
∗.

Step 8: Again, calculate the subsequent problem given as below

Min
(

Õη
6

)
= ∑

(q, t)∈ℵη

S̃kη
6qtτqt (15)

Subject to

(̂Rs5)
∗ = ∑

(q, t)∈ℵη

S̃kη
5qtτqt

Also with the constraints (14)

 (16)

The optimal value of the above equation (15) is (̂Rs6)
∗.

Step 9: Again, calculate the subsequent problem given as below

Min
(

Õη
7

)
= ∑

(q, t)∈ℵη

S̃kη
7qtτqt (17)

Subject to

(̂Rs6)
∗ = ∑

(q, t)∈ℵη

S̃kη
6qtτqt

Also with the constraints (16)

 (18)

The optimal value of the above equation (17) is (̂Rs7)
∗.

Step 10: Now, calculate the subsequent problem given as below

Min
(

Õη
8

)
= ∑

(q, t)∈ℵη

S̃kη
8qtτqt (19)

Subject to

(̂Rs7)
∗ = ∑

(q, t)∈ℵη

S̃kη
7qtτqt

Also with the constraints (18)

 (20)

The optimal value of the above equation (19) is (̂Rs8)
∗.

Step 11: Again, calculate the subsequent problem given as below

Min
(

Õη
9

)
= ∑

(q, t)∈ℵη

S̃kη
9qt .τqt (21)
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Subject to

(̂Rs8)
∗ = ∑

(q, t)∈ℵη

S̃kη
8qtτqt

Also with the constraints (20)

 (22)

The optimal value of the above equation (21) is (̂Rs9)
∗.

Step 12: The final optimal value is in the form of a neutrosophic environment is

Min
(

Õn
)
=
〈
(Õη

1 , Õη
2 , Õη

3 ), (Õ
η
4 , Õη

5 , Õη
6 ), (Õ

η
7 , Õη

8 , Õη
1 )
〉

The End.
Theorem 1 The optimal solution of equation (4) is the same as the optimal solution of the NMFP with neutrosophic

cost equation (21).
Proof. Let τ∗qt be the optimal solution of equation (21) and τ∝

qt be another solution of NMFP with neutrosophic cost
of equation (4). Then by using concept of above proposed method we obtained that the solution of the equation (21) is
the least value among the all problems from equation (4) to equation (19). Now using the optimality condition, τ∗qt is
optimal value of the problem equation (6) and from the feasibility condition, τ∝

qt is the feasible solution of the equation
(6). Therefore, it can be written as-

(̂Rs1)
∗ = ∑

(q, t)∈ℵη

S̃kη
1qt .τ

∗
qt ≤ ∑

(q, t)∈ℵη

S̃kη
1qt .τ

∝
qt

Moreover, due to optimality condition of τ∗qt and feasibility condition of τ∝
qt for equation 7 and 8 can be written as

(̂Rs2)
∗ = ∑

(q, t)∈ℵη

S̃kη
2qt .τ

∗
qt ≤ ∑

(q, t)∈ℵη

S̃kη
2qt .τ

∝
qt

Similarly,

(̂Rs3)
∗ = ∑

(q, t)∈ℵη

S̃kη
3qt .τ

∗
qt ≤ ∑

(q, t)∈ℵη

S̃kη
3qt .τ

∝
qt

(̂Rs4)
∗ = ∑

(q, t)∈ℵη

S̃kη
4qt .τ

∗
qt ≤ ∑

(q, t)∈ℵη

S̃kη
4qt .τ

∝
qt

(̂Rs5)
∗ = ∑

(q, t)∈ℵη

S̃kη
5qt .τ

∗
qt ≤ ∑

(q, t)∈ℵη

S̃kη
5qt .τ

∝
qt

(̂Rs6)
∗ = ∑

(q, t)∈ℵη

S̃kη
6qt .τ

∗
qt ≤ ∑

(q, t)∈ℵη

S̃kη
6qt .τ

∝
qt

(̂Rs7)
∗ = ∑

(q, t)∈ℵη

S̃kη
7qt .τ

∗
qt ≤ ∑

(q, t)∈ℵη

S̃kη
7qt .τ

∝
qt
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(̂Rs9)
∗ = ∑

(q, t)∈ℵη

S̃kη
9qt .τ

∗
qt ≤ ∑

(q, t)∈ℵη

S̃kη
9qt .τ

∝
qt

(̂Rs8)
∗ = ∑

(q, t)∈ℵη

Skη
8qt .τ

∗
qt ≤ ∑

(q, t)∈ℵη

S̃kη
8qt .τ

∝
qt

Hence,

〈 (
(̂Rs1)

∗, (̂Rs2)
∗, (̂Rs3)

∗
)
,(

(̂Rs4)
∗, (̂Rs5)

∗, (̂Rs6)
∗
)
,(

(̂Rs7)
∗, (̂Rs8)

∗, (̂Rs9)
∗
)

〉
≤

〈 ∑
(q, t)∈ℵη

Skη
1qtτ

∝
qt , ∑

(q, t)∈ℵη

Skη
2qtτ

∝
qt , ∑

(q, t)∈ℵη

Skη
3qtτ

∝
qt ,

∑
(q, t)∈ℵη

Skη
4qtτ

∝
qt , ∑

(q, t)∈ℵη

Skη
5qtτ

∝
qt , ∑

(q, t)∈ℵη

Skη
6qtτ

∝
qt ,

∑
(q, t)∈ℵη

Skη
7qtτ

∝
qt , ∑

(q, t)∈ℵη

Skη
8qtτ

∝
qt , ∑

(q, t)∈ℵη

Skη
9qtτ

∝
qt

〉

To illustrate our proposed algorithm, we consider an example, a flow network shown in see Figure 2.

4. Numerical example
Now let us consider an example, a flow network presented by Ghatee et al [16]. (see Figure 2) with fourteen arcs and

seven nodes. The cost value of each arc is presented by triangular neutrosophic numbers. In this example, to determine
the flow of network with the least cost.

Figure 2. The network consider for Solving MCF problem under neiutrosophic environment
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Table 2. Consider the below data for Solving NMFP under neiutrosophic environment

T H Neutrosophic arc cost C T H Neutrosophic arc cost C

1 3 <(1, 4, 7), (1, 3, 5), (3.5, 6, 7.5)> 40 3 6 <(1, 5, 8), (1.5, 4.5, 7.5), (4, 6.5, 9)> 100

1 4 <(0.5, 2.5, 4.5), (1, 2, 3), (1.5, 3.5, 5.5)> 10 3 7 <( 1, 5, 8), (1.5, 3, 6.5), (4, 7, 9)> 90

1 5 <(1, 3, 5), (0.5, 1.5, 3.5), (3, 4, 6)> 15 4 5 <(10, 15, 20), (14, 16, 22), (12, 15, 19)> 15

2 3 <(1, 2, 3), (0.5, 1.5, 2.5), (1.5, 2.5, 3.5)> 50 4 6 <(20, 25, 30), (24, 26, 32), (22, 25, 29)> 30

2 4 <(1, 1.5, 4), (0.5, 1, 2.5), (2.25, 3, 4.25)> 80 4 7 <(15, 20, 25), (19, 21, 27), (17, 20, 24)> 20

2 5 <(1.5, 2.5, 3.5), (1, 1.5, 3), (2, 3, 4)> 40 5 6 <(13, 18, 23), (17, 19, 25), (15, 18, 22)> 15

3 4 <(2, 4, 6), (1.5, 2.5, 4.5), (3, 5, 7)> 20 5 7 <(15, 20, 25), (19, 21, 27), (17, 20, 24)> 100

Solution:
Step 1: To solve the problem, first of all, transform the above network into a mathematical model named equation

(23)

Min
(

Õη
)
=⟨(1, 4, 7) , (1, 3, 5) , (3.5, 6, 7.5)⟩τ13 + ⟨(0.5, 2.5, 4.5) , (1, 2, 3) ,(1.5, 3.5, 5.5)⟩τ14

+ ⟨(1, 3, 5) ,(0.5, 1.5, 3.5) ,(3, 4, 6)⟩τ15 + ⟨(1, 2, 3) , (0.5, 1.5, 2.5) , (1.5, 2.5, 3.5)⟩τ23

+ ⟨(1, 1.5, 4) , (0.5, 1, 2.5) , (2.25, 3, 4.25)⟩τ24 + ⟨(1.5, 2.5, 3.5) , (1, 1.5, 3) , (2, 3, 4)⟩τ25

+ ⟨(2, 4, 6) , (1.5, 2.5, 4.5) , (3, 5, 7)⟩τ34 + ⟨(1, 5, 8) , (1.5, 4.5, 7.5) , (4, 6.5, 9)⟩τ36

+ ⟨(1, 5, 8) , (1.5, 3, 6.5) , (4, 7, 9)⟩τ37 + ⟨(10, 15, 20) , (14, 16, 22) , (12, 15, 19)⟩τ45

+ ⟨(20, 25, 30) , (24, 26, 32) , (22, 25, 29)⟩τ46 + ⟨(15, 20, 25) , (19, 21, 27) , (17, 20, 24)⟩τ47

+ ⟨(13, 18, 23) , (17, 19, 25) , (15, 18, 22)⟩τ56 + ⟨(15, 20, 25) , (19, 21, 27) , (17, 20, 24)⟩τ57. (23)

Subject to constraints:

τ15 + τ14 + τ13 = 30; 0 ≤ τ14 ≤ 10; τ25 + τ24 + τ23 = 60; 0 ≤ τ15 ≤ 15
0 ≤ τ13 ≤ 40; 0 ≤ τ34 ≤ 20; τ37 + τ36 + τ34 − τ23 − τ13 = 0; 0 ≤ τ36 ≤ 100;
0 ≤ τ23 ≤ 50, −τ36 − τ46 − τ56 =−20; 0 ≤ τ25 ≤ 40; 0 ≤ τ24 ≤ 80;
0 ≤ τ37 ≤ 90; τ45 + τ46 + τ47 − τ14 − τ24 − τ34 = 0; 0 ≤ τ56 ≤ 15
0 ≤ τ45 ≤ 15, −τ37 − τ47 − τ57 =−70; 0 ≤ τ46 ≤ 30, −τ37 − τ47 − τ57 =−70;
τ57 + τ56 − τ45 − τ25 − τ15 = 0; 0 ≤ τ47 ≤ 20; 0 ≤ τ57 ≤ 100


(24)

Step 2:
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Min
(

Õη
1

)
=1τ13 +0.5τ14 +1τ15 +1τ23 +1τ24 +1.5τ25 +2τ34 +1τ36 +1τ37 +10τ45

+20τ46 +15τ47 +13τ56 +15τ57.

Min
(

Õη
2

)
=4τ13 +2.5τ14 +3τ15 +2τ23 +1.5τ24 +2.5τ25 +4τ34 +5τ36 +5τ37 +15τ45

+25τ46 +20τ47 +18τ56 +20τ57.

Min
(

Õη
3

)
=7τ13 +4.5τ14 +5τ15 +3τ23 +4τ24 +3.5τ25 +6τ34 +8τ36 +8τ37 +20τ45

+30τ46 +25τ47 +23τ56 +25τ57.

Min
(

Õη
4

)
=1τ13 +1τ14 +0.5τ15 +0.5τ23 +0.5τ24 +1τ25 +1.5τ34 +1.5τ36 +1.5τ37

+14τ45 +24τ46 +19τ47 +17τ56 +19τ57.

Min
(

Õη
5

)
=3τ13 +2τ14 +1.5τ15 +1.5τ23 +1τ24 +1.5τ25 +2.5τ34 +4.5τ36 +3τ37

+16τ45 +26τ46 +21τ47 +19τ56 +21τ57.

Min
(

Õη
6

)
=5τ13 +3τ14 +3.5τ15 +2.5τ23 +2.5τ24 +3τ25 +4.5τ34 +7.5τ36 +6.5τ37

+22τ45 +32τ46 +27τ47 +25τ56 +27τ57.

Min
(

Õη
7

)
=3.5τ13 +1.5τ14 +3τ15 +1.5τ23 +2.25τ24 +2τ25 +3τ34 +4τ36 +4τ37

+12τ45 +22τ46 +17τ47 +15τ56 +17τ57.

Min
(

Õη
8

)
=6τ13 +3.5τ14 +4τ15 +2.5τ23 +3τ24 +3τ25 +5τ34 +6.5τ36 +7τ37 +15τ45

+25τ46 +20τ47 +18τ56 +20τ57.
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Min
(

Õη
9

)
=7.5τ13 +5.5τ14 +6τ15 +3.5τ23 +4.25τ24 +4τ25 +7τ34 +9τ36 +9τ37

+19τ45 +29τ46 +24τ47 +22τ56 +24τ57.

Subject to constraints:
Along with the same constraints equation (24).
Step 3: First of all, solving the below problem by usual method

Min
(

Õη
1

)
=1τ13 +0.5τ14 +1τ15 +1τ23 +1τ24 +1.5τ25 +2τ34 +1τ36 +1τ37 +10τ45

+20τ46 +15τ47 +13τ56 +15τ57. (25)

With the same subject to constraints equation (24). The optimal value of the above equation (25) is (̂Rs1)
∗ = 305.

Step 4: Again, calculate the subsequent problem given as below

Min
(

Õη
2

)
= 4τ13 +2.5τ14 +3τ15 +2τ23 +1.5τ24 +2.5τ25 +4τ34 +5τ36 +5τ37 +15τ45

+25τ46 +20τ47 +18τ56 +20τ57. (26)

Subject to

(̂Rs1)
∗ = 1τ13 +0.5τ14 +1τ15 +1τ23 +1τ24 +1.5τ25 +2τ34 +1τ36 +1τ37 +10τ45

+20τ46 +15τ47 +13τ56 +15τ57 = 305
Also with the constraints equation (24)

 (27)

The optimal value of the above equation (26) is (̂Rs2)
∗ = 825.

Step 5: Again, calculate the subsequent problem given as below

Min
(

Õη
3

)
=7τ13 +4.5τ14 +5τ15 +3τ23 +4τ24 +3.5τ25 +6τ34 +8τ36 +8τ37 +20τ45

+30τ46 +25τ47 +23τ56 +25τ57. (28)

Subject to
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(̂Rs2)
∗ = 4τ13 +2.5τ14 +3τ15 +2τ23 +1.5τ24 +2.5τ25 +4τ34 +5τ36 +5τ37 +15τ45

+25τ46 +20τ47 +18τ56 +20τ57.= 825
Also with the constraints equation (27)

 (29)

The optimal value of the above equation (28) is (̂Rs3)
∗ = 1,265.

Step 6: Again, calculate the subsequent problem given as below

Min
(

Õη
4

)
=1τ13 +1τ14 +0.5τ15 +0.5τ23 +0.5τ24 +1τ25 +1.5τ34 +1.5τ36 +1.5τ37 +14τ45

+24τ46 +19τ47 +17τ56 +19τ57. (30)

Subject to

(̂Rs3)
∗ = 7τ13 +4.5τ14 +5τ15 +3τ23 +4τ24 +3.5τ25 +6τ34 +8τ36 +8τ37 +20τ45

+30τ46 +25τ47 +23τ56 +25τ57 = 1,265
Also with the constraints equation (29)

 (31)

The optimal value of the above equation (30) is (̂Rs4)
∗ = 355.

Similarly proceed from step 6 to step 10, we get the solution (̂Rs9)
∗ = 1,380.

Now, The optimal value of the above is (̂Rs9)
∗ = 1,380 and τ13 = 30, τ14 = 0, τ15 = 0, τ23 = 50, τ24 = 0, τ25 =

10, τ34 = 0, τ36 = 10, τ37 = 70, τ45 = 0, τ46 = 0, τ47 = 0, τ56 = 10, τ57 = 0.
Hence, the solution ⟨(305, 825, 1,265) , (355, 625, 1,085) , (670, 1,070, 1,380)⟩ and τ13 = 30, τ14 = 0, τ15 =

0, τ23 = 50, τ24 = 0, τ25 = 10, τ34 = 0, τ36 = 10, τ37 = 70, τ45 = 0, τ46 = 0, τ47 = 0, τ56 = 10, τ57 = 0.

Figure 3. The graphical representation of ⟨(305, 825, 1,265) , (355, 625, 1,085) , (670, 1,070, 1,380)⟩

Advantage and limitations of proposed model:
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In this article, we introduce a novel approach for solving the TrNMCF using lexicographic approach, and the proposed
model offers several significant advantages of the proposed model are given as below.

• According to our knowledge, this could be the first approach for solving the TrNMCF problem using Lexicographic
approach.

• Lexicographic approach can be estimated with significant level of accuracy and simple algorithm can be developed
as well.

• This proposed model represents easy and reality efficiently than existing model, because we consider all aspects
(i.e., the falsity, indeterminacy, and truthness degree) of the decision-making process.

Limitation of proposed model the number of constraints is larger than the original problem because we use the
lexicographic approach to convert the multi-objective LP problem.

5. Conclusion
The Minimum Cost Flow (MCF) problem seeks the optimal flow through a network at minimal cost. It has various

factors like cost, supply, demand, and capacity. The goal is to determine the least expensive way to transport a specified
amount of flow through an MCF problem. Our novel approach employs Neutrosophic cost, treating cost parameters as
triangular neutrosophic numbers while maintaining crisp decision variables and capacities. Focusing on lexicographic
methods, this active research field has practical implications. We illustrate our method by solving an MCF problem with
neutrosophic cost using LINGO 18.0 software.
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