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Abstract: This study explores the spectral Galerkin approach to solving the space-time Schrödinger, wave, Airy, and
beam equations. In order to facilitate the creation of a semi-analytical approximation solution, it uses polynomial bases
that are formed from a linear combination of Jacobi polynomials (JPs) in both spatial and temporal dimensions. By
using these polynomials to expand the exact solution, the paper hopes to satisfy the homogeneous starting and Dirichlet
boundary requirements. Notably, the Jacobi Galerkin (JG) method exhibits exponential convergence rates if the solution is
sufficiently smooth. This result emphasizes the JG approach’s potential as an effective numerical solution method, which
has promise for a variety of applications in other domains where these equations occur, such as quantum mechanics,
acoustics, optics, and structural mechanics.
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1. Introduction
Spectral techniques for differential problems have advanced quickly over the past fifty years. The remarkable

accuracy of these makes them fascinating. As a result, they have been successfully used to numerically simulate
various issues in science and engineering, as seen in [1–3]. Sturm-Liouville problems are crucial for spectral approaches
because the spectral approximation of a differential equation’s solution is typically considered a finite expansion of the
eigenfunctions of a suitable Sturm-Liouville problem.

Jacobi polynomials J(ζ , η)
n (x)(n = 0, 1, 2, ...) are crucial for mathematical analysis and its applications. It is

demonstrated that only the JPs can arise as eigenfunctions of a single Sturm-Liouville problem ([3], Chapter 3). All
polynomial solutions to singular Sturm-Liouville problems on [−1, 1] can be found in this class of polynomials. Particular
instances of the JPs include Chebyshev, Legendre, and ultraspherical polynomials. Jacobi spectral methods and their
special cases are of important use in numerical analysis and scientific computing. They are extensively used to handle
many models, such as ordinary differential equations, fractional differential equations, delay differential equations, partial
differential equations, high-order PDEs, time-dependent PDEs in physics, and many real-world applications, like the
Lane-Emden equation in astronomy and the Burger equation in fluid dynamics. See, for instance, [4–9].
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The choice of setting the time domain to [−1, 1] in numerical methods, particularly when using Jacobi polynomials
for time discretization, may seem atypical compared to the more common practice of using [0, 1]. However, there are
reasons behind this choice that are rooted in the mathematical properties and advantages offered by Jacobi polynomials.
Jacobi polynomials are a set of mathematical functions that are orthogonal to each other. They are defined on the interval
between −1 and 1 (see, [10, 11]). They have desirable properties such as orthogonality, which means that different
polynomials in the family are orthogonal to each other with respect to a certain weight function. These properties make
Jacobi polynomials well-suited for approximating functions with respect to certain inner products. When using Jacobi
polynomials for time discretization, the choice of setting the time domain to [−1, 1] aligns with the domain of orthogonality
for these polynomials. This allows us to leverage their orthogonality properties effectively in numerical approximations or
spectral methods (see, [12]). By restricting the time domain to [−1, 1] , we can utilize the advantageous properties of Jacobi
polynomials to accurately and efficiently represent functions in terms of polynomial expansions. Additionally, working
with a symmetric interval such as [−1, 1] simplifies the mathematics involved in the numerical methods. It enables
symmetries and simplifications in algorithmic implementation and reduces the computational complexity compared to
working with an asymmetric interval. While setting the time domain to [−1, 1] may appear atypical compared to the
traditional [0, 1] interval, it offers practical advantages in terms of leveraging the properties of Jacobi polynomials,
simplifying mathematical formulations, and facilitating efficient numerical computations.

The common spectral technique is only applicable to nonsingular problems on rectangular bounded domains and is
based on the Legendre or Chebyshev approximation. However, a variety of problems can be solved using the broader
Jacobi technique; see [13–16]. The p-version of the finite element approach, the boundary element method, and a spectral
method for axisymmetrical domains, on the other hand, were all examined using some Jacobi approximation results, and
various rational spectral methods in [17–23], besides, in the study of quadratures involving the values of derivatives of
functions at endpoints. It is crucial to understand that, in the context of the Galerkin technique, the basis functions (BFs)
used to determine how well spectral methods approximate problems compared to finite difference and finite element
methods [24].

Here, we apply the JG approximations to directly solve linear PDEs with initial and boundary conditions. We offer
suitable bases that fulfill these conditions and can be used efficiently as a starting step for handling linear PDEs. These
bases resulted in discrete systems with effectively invertible, exceptionally structured matrices.

The motivation to find numerical spectral solutions for linear partial differential equations, such as the Schrödinger,
wave, Airy, and beam equations, stems from their extensive applicability in science and engineering. These equations
describe diverse aspects of the physical world, from quantum mechanics to wave phenomena, optics, and structural
behavior. Numerical solutions are crucial because these equations often lack analytical solutions for complex scenarios,
enabling researchers and engineers to model and optimize systems, make predictions in various fields, and facilitate
scientific exploration. Additionally, the teaching of numerical methods for solving linear PDEs plays a pivotal role in
educating future scientists and engineers, emphasizing their practical importance in addressing real-world challenges when
analytical solutions are unavailable. For more details about the applications of linear PDEs, the interested reader is referred
to [25, 26]. Solving linear partial differential equations (PDEs) presents several challenges, including complexities in
handling complex geometries and boundaries, ensuring numerical stability, minimizing discretization errors, achieving
convergence, defining appropriate boundary conditions, managing high-dimensional and time-dependent problems,
addressing nonlinearity within linear PDEs, and optimizing parallel computing resources. Additionally, challenges arise
in applications such as optimization and sensitivity analysis, adaptive methods, heterogeneous media, memory and storage
management, and leveraging high-performance computing. Successfully tackling these challenges requires expertise in
numerical methods, computational science, and domain-specific knowledge to obtain accurate and efficient solutions for
a wide range of real-world problems.

This paper is organized as follows: Section 2 is dedicated to the preliminary properties of JPs. Section 3 is the
central part, providing in-depth, new spectral Galerkin algorithms for solving the Schrödinger equation, Airy equation,
wave equation, and beam model. Section 4 is a brief overview of how to easily handle nonhomogeneous conditions.
Section 5 is dedicated to finding an upper estimate for the unknown expansion coefficients and the rate of convergence
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for truncation errors. Section 6 presents some numerical test problems along with comparisons, and finally, Section 7
contains concluding remarks.

2. Some properties of JPs
The JPs with the real parameters (ζ >−1, η >−1) (see, Luke [27] and Szegö [28]), are a sequence of polynomials

J(ζ , η)
n (z)(n = 0, 1, 2, ...), constitute an orthogonal system concerning the weight function w(ζ , η)(z) = (1− z)ζ (z+1)η ,
that is,

∫ 1

−1
w(ζ , η)(z)J(ζ , η)

m (z)J(ζ , η)
n (z)dz = γ(ζ , η)

n δmn,

where δmn is the Kronecker function and

γ(ζ , η)
n =

2η+ζ+1 Γ(n+ζ +1) Γ(n+η +1)
(2n+η +ζ +1) n!Γ(n+η +ζ +1)

. (1)

Standardizing the JPs makes sense for our current needs so that

J(ζ , η)
n (1) =

(ζ +1)n

n!
, J(ζ , η)

n (−1) =
(−1)n (η +1)n

n!
, (2)

where (a)k =
Γ(a+k)

Γ(a) . These polynomials may be generated using the standard three-term difference equation of JPs with

initials J(ζ , η)
0 (z) = 1 and J(ζ , η)

1 (z) = 1
2 [ζ −η +(1+λ )z], or obtained from Rodrigue’s formula

J(ζ , η)
n (z) =

(−1)n

2n n!
(1− z)−ζ (z+1)−η Dn

[
(1− z)ζ+n(z+1)η+n

]
,

where λ = η + ζ + 1, and denote D as the differential operator d
dz . When η = ζ , one retrieves the ultraspherical

polynomials, also known as symmetric Jacobi polynomials. Similarly, when η = ζ = ± 1
2 or η = ζ = 0, one obtains

the Legendre polynomials, the Chebyshev polynomials of the first- and second-kinds, respectively. Additionally, for
nonsymmetric Jacobi polynomials, the special cases ζ = −η = ± 1

2 correspond to the Chebyshev polynomials of the
third- and fourth-kinds.

The special values

DqJ(ζ , η)
n (1) =

q−1

∏
i=0

Γ(n+ζ +1)(n+λ + i)
2q(n−q)! Γ(q+ζ +1)

, DqJ(ζ , η)
n (−1) = (−1)n+qDqJ(η , ζ )

n (1),

will be of important use later. The Jacobi-Gauss quadrature is commonly used to evaluate the previous integrals. For any
φ ∈ P2N+1(Λ) and Λ = (−1, 1) denotes a bounded domain, we have
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∫ 1

−1
φ(z)w(ζ , η)(z)dz =

N

∑
i=0

ϖ (ζ , η)
i φ(z(ζ , η)

i ),

PN(Λ) represents the set of polynomials with a degree up toN. The symbolsϖ (ζ , η)
i and z(ζ , η)

i (where 0≤ i≤N) represent
the Christoffel numbers and the nodes in Λ, respectively, following standard conventions. In the Jacobi-Gauss scheme,
the values of z(ζ , η)

i (where 0 ≤ i ≤ N) correspond to the zeros of J(ζ , η)
N+1 (z) and the weights

ϖ (ζ , η)
i =

G(ζ , η)
N

(1− (z(ζ , η)
i )2)

[
∂zJ

(ζ , η)
N+1 (z(ζ , η)

i )
]2 , 0 ≤ i ≤ N,

where

G(ζ , η)
N =

2ζ+η+1Γ(N +ζ +2)Γ(N +η +2)
(N +1)!Γ(2N +ζ +η +2)

.

The following lemma is essential in our sequel work.
Lemma 1 The qth derivative of J(ζ , η)

n (z) can be written as

DqJ(ζ , η)
k (z) =

k−q

∑
i=0

Cq(k, i, ζ , η)J(ζ , η)
i (z), (3)

where

Cq(k, i, ζ , η) =
(k+λ )q(k+λ +q)i(i+ζ +q+1)k−i−q Γ(i+λ )

2q(k− i−q)! Γ(2i+λ )

× 3F2

 −k+ i+q, k+ i+λ +q, i+ζ +1
; 1

i+ζ +q+1, 2i+λ +1

 ,

where in this context, let λ = ζ +η + 1, and (·)i denotes the Pochhammer symbol. Refer to [27] for the definition of
generalized hypergeometric functions, including the special 3F2.

3. Linear PDEs
In this section, using the Galerkin technique and Jacobi expansions in both time and space, we construct a time-space

discretization for the following linear partial differential equations. The space-time spectral Galerkinmethod to hyperbolic
and advection-reaction-diffusion equations are studied in [14] and [29], respectively. Here are some common linear PDEs
used in various applications: Schrodinger, wave, Airy, and beam equations. We consider the simplest case where both
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spatial and temporal domains are within the range of−1 to 1. There is no loss of generality, as this can always be achieved
by simply changing the variables. Because this can always be accomplished by simply changing the variables, there is no
loss of generality.

3.1 Schrödinger equation
The linear Schrödinger equation is

∂u
∂ t

− I
∂ 2u
∂ z2 = g(z, t), (z, t) ∈ Ω: = Λ2, (4)

with boundary conditions

u(±1, t) = 0, t ∈ (−1, 1), (5)

together with initial condition

u(z, −1) = 0, z ∈ (−1, 1), (6)

where I =
√
−1. We insert a proposed solution into equations (4)-(6) and demand that the overall residual resulting

from projecting onto the space formed by the test functions equals zero. Here, PN(Λ) and PM(Λ) represent the collection
of polynomials with degrees up to N in space and M in time, respectively. As we consider u(z, −1) ≡ 0 as well as
u(±1, t)≡ 0, we choose suitable basis for the time ansatz from

Pt
M(Λ) = {y ∈ PM(Λ) |y(−1)≡ 0} ,

as well as for space

Ps
N(Λ) = {y ∈ PM(Λ) |y(±1)≡ 0} ,

For the sake of convenience, define

SL: = PN(Λ)⊗PM(Λ),

WL: = Ps
N(Λ)⊗Pt

M(Λ),

where the multiindex L = (N, M). In order to represent the integrals used in the JG spectral formulation of the model
equations, we introduce the notation below
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⟨⟨⟨·⟩⟩⟩ ≡
∫ 1

−1

∫ 1

−1

∫ 1

−1
· w(ζ , η)(z) w(ζ , η)(y) w(ζ , η)(t) dz dy dt,

⟨⟨·⟩⟩ ≡
∫ 1

−1

∫ 1

−1
· w(ζ , η)(z) w(ζ , η)(t) dz dt,

⟨·⟩z ≡
∫ 1

−1
· w(ζ , η)(z) dz,

⟨·⟩t ≡
∫ 1

−1
· w(ζ , η)(t) dt.

The discrete solution is written as follows in terms of a matrix U(1)
i j with unknown coefficients:

u(z, t)⋍ û1(z, t) =
N−2

∑
i=0

M−1

∑
j=0

ϕ (ζ , η)
i (z)U(1)

i j ψ(ζ , η)
j (t). (7)

where ϕ (ζ , η)
i (z) ∈ Ps

N(Λ) and ψ(ζ , η)
j (t) ∈ Pt

M(I).
The Galerkin problem is then presented by finding û1 ∈WL in such a way

⟨⟨v̂1∂t û1⟩⟩− I
〈〈

v̂1∂ 2
x û1

〉〉
= ⟨⟨gv̂1⟩⟩ , ∀v̂1 ∈WL, (8)

The linear system associated with (8) relies on the selection of basis functions ϕ (ζ , η)
i (z) and ψ(ζ , η)

j (t) over WL.
To ensure that the resulting system remains sparse and easily invertible, it is essential to meticulously choose a suitable
basis for both spatial and temporal domains. Hence, we explore basis functions in the form of a compact array of Jacobi
polynomials. Therefore, we choose the basis functions of expansion ϕ (ζ , η)

i (z) and ψ(ζ , η)
j (t) to be of the form:

ϕ (ζ , η)
i (z) = J(ζ , η)

i (z)+ εiJ
(ζ , η)
i+1 (z)+ ςiJ

(ζ , η)
i+2 (z),

ψ(ζ , η)
j (t) = J(ζ , η)

j (t)+ρ jJ
(ζ , η)
j+1 (t),

where the parameters {εi, ςi} and
{

ρ j
}
are selected to meet the Dirichlet border and homogenous beginning conditions

such that ϕ (ζ , η)
i (z)∈Ps

N(Λ) for i= 0, 1, . . . , N−2 andψ(ζ , η)
j (t)∈Pt

M(I) for j = 0, 1, . . . , N−1. While the choice of these
modal BFs may seem random or unexplained, there is actually a specific reason for their selection, it can be demonstrated
that they provide an appropriate basis that enables straightforward evaluation of the involved derivatives when combined
with (3).

Lemma 2 For all i ≥ 0, there exists a unique set of {εi, ςi, ρi} such that
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ϕ (ζ , η)
i (z) = J(ζ , η)

i (z)+ εiJ
(ζ , η)
i+1 (z)+ ςiJ

(ζ , η)
i+2 (z),

ψ(ζ , η)
i (t) = J(ζ , η)

i (t)+ρiJ
(ζ , η)
i+1 (t),

verify the boundary-initial conditions in (5) and (6).
Proof. From the boundary-initial conditions; ϕ (ζ , η)

i (−1) = ϕ (ζ , η)
i (1) = 0 and the two relations (2), we have the

following system

−εi
(i+η +1)
(i+1)

+ ςi
(i+η +1)(i+η +2)

(i+1)(i+2)
=−1,

εi
(i+ζ +1)
(i+1)

+ ςi
(i+ζ +1)(i+ζ +2)

(i+1)(i+2)
=−1.

Therefore, εi and ςi can be determined in a unique manner to provide the solution

εi =− (i+1)(η −ζ )(2i+ζ +η +3)
(i+ζ +1)(i+η +1)(2i+ζ +η +4)

,

ςi =− (i+1)(i+2)(2i+ζ +η +2)
(i+ζ +1)(i+η +1)(2i+ζ +η +4)

.

Also, from the initial condition ψ(ζ , η)
j (0) = 0 and the relation (2), we have that

ρ j
( j+η +1)
( j+1)

= 1.

Hence ρ j can be uniquely determined to give

ρ j =
( j+1)

( j+η +1)
.

It is clear that ϕ (ζ , η)
i (z) ∈ Ps

N−2(Λ) and ψ(ζ , η)
j (t) ∈ Pt

M−1(Λ) are two linearly independent basis function sets.
Therefore, by dimension argument, we have

Pt
M(Λ) = span

{
ψ(ζ , η)

j (t): j = 0, 1, 2, . . . , M−1
}
, Ps

N(Λ) = span
{

ϕ (ζ , η)
j (z): j = 0, 1, 2, . . . , N −2

}
.

It is clear that the Galerkin formulation of (8) is equivalent to following discrete discretization
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〈〈
ϕ (ζ , η)

i (z)∂t û1(z, t)ψ(ζ , η)
j (t)

〉〉
− I

〈〈
ϕ (ζ , η)

i (z)∂ 2
x û1(z, t)ψ(ζ , η)

j (t)
〉〉

=
〈〈

ϕ (ζ , η)
i (z)g(z, t)ψ(ζ , η)

j (t)
〉〉

,

for 0 ≤ i ≤ N−2 and 0 ≤ j ≤ M−1, we establish the following conventions for clarity: the indices i and r are assumed to
range from 0 to N−2, while the indices j and s range from 0 to M−1. Additionally, we adopt the convention of summing
over repeated indices.

The discretization method explained earlier can be expressed in the form of a matrix:

〈
ϕ (ζ , η)

i ϕ (ζ , η)
r

〉
z
U(1)

i j

〈
dψ(ζ , η)

j

dt
ψ(ζ , η)

s

〉
t

− I

〈
ϕ (ζ , η)

i
d2ϕ (ζ , η)

r

dz2

〉
z

U(1)
i j

〈
ψ(ζ , η)

T , j ψ(ζ , η)
T , s

〉
t

=
〈〈

ϕ (ζ , η)
i (z)g(z, t)ψ(ζ , η)

j (t)
〉〉

.

Let us denote

U(1) =
(
U(1)

i j

)
, G= (Gi j) , A= (Air) , B= (Bir) , D= (Dir) , E= (E js) ,

where U is the matrix of unknown coefficients,G is the reaction matrix whose entries areGi j = ⟨⟨ ϕ (ζ , η)
i (z)g(z, t)ψ(ζ , η)

j
(t)⟩⟩, and the nonzero elements of the matrices A, B, D and E are given altogether in Theorem 1. The previous integral
can be evaluated with the Jacobi-Gauss quadrature. The JG discretization of the Schrödinger equation (4) is equivalent to
the following matrix equation (ME)

AU(1)D− IBU(1)E=G. (9)

To get the solution of (9), we rewrite it in a more suitable form using the Kronecker product (KP) (denoted by ⊗).
Let F ∈ Rn, m and G ∈ Rq, p, then the KP of F and G is defined as the matrix

F⊗G =


f11G f12G · · · f1mG
f21G f22G · · · f2mG
...

...
. . .

...
fn1G fn2G · · · fnmG

 ∈ Rnq, mp.

Let fi ∈Rn denote the columns of F ∈Rn, m, such that F= [ f1, . . . , fm]. The vector formed by stacking the columns
of F on top of one another is called vec(F) , which is an nm-vector, i.e.

vec(F) =

 f1
...
fm

 ∈ Rnm.
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The following helpful attribute of the KP and the vec operator will be used in the following discussions. We have
the matrix product FGH for any three matrices F, G and H for which

vec(FGH) =
(
HT ⊗F

)
vec(G),

we can express the set of discrete equations (9) in the following matrix form (MF) where T denotes the transpose.

(
DT ⊗A− IET ⊗B

)
vec(U(1)) = vec(G).

The solution to this linear system can be obtained using an appropriate iterative method to compute the numerical
solution (7). In our implementation, we solved these systems using the Mathematica function FindRoot with zero initial
approximation.

Theorem 1 Let

Air =
〈

ϕ (ζ , η)
i ϕ (ζ , η)

r

〉
z
, Bir =

〈
ϕ (ζ , η)

i
d2ϕ (ζ , η)

r

dz2

〉
z

,

D js =

〈
dψ(ζ , η)

j

dt
ψ(ζ , η)

s

〉
t

, E js =
〈

ψ(ζ , η)
j ψ(ζ , η)

s

〉
t
.

Then the nonzero elements Air, Bir, D js and E js are given by

Aii = γ(ζ , η)
i + ε2

i γ(ζ , η)
i+1 + ς2

i γ(ζ , η)
i+2 ,

Ai+1, i = Ai, i+1 = εiγ
(ζ , η)
i+1 + ςiεi+1γ(ζ , η)

i+2 ,

Ai+2, i = Ai, i+2 = ςiγ
(ζ , η)
i+2 ,

Bii = ςiA2(i+2, i, ζ , η)γ(ζ , η)
i ,

Bir = O2(r, i, ζ , η)γ(ζ , η)
i +O2(r, i+1, ζ , η)εiγ

(ζ , η)
i+1

+O2(r, i+2, ζ , η)ςiγ
(ζ , η)
i+2 , r = i+n, n ≥ 1,

D j j = ρ jA1( j+1, j, ζ , η)γ(ζ , η)
j ,

D js = χ1(s, j, ζ , η)γ(ζ , η)
j +χ1(s, j+1, ζ , η)ρ jγ

(ζ , η)
j+1 , s = j+n, n ≥ 1,
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E j j = γ(ζ , η)
j +ρ2

j γ(ζ , η)
j+1 ,

E j+1, j = E j, j+1 = ρ jγ
(ζ , η)
j+1 ,

where

Oσ (r, i, ζ , η) = Aσ (r, i, ζ , η)+ εrAσ (r+1, i, ζ , η)+ ςrAσ (r+2, i, ζ , η),

χσ (s, j, ζ , η) = Aσ (s, j, ζ , η)+ρsAσ (s+1, j, ζ , η),

and γ(ζ , η)
i is given by (1).
Proof. The basis functions ϕ (ζ , η)

i (z) andψ(ζ , η)
j (t) are selected such that ϕ (ζ , η)

i (z)∈Ps
N(Λ) for i= 0, 1, . . . ,N−2 and

ψ(ζ , η)
j (t)∈ Pt

M(I) for j = 0, 1, . . . , N−1. Additionally, it is evident that ϕ (ζ , η)
i (z) and ψ(ζ , η)

j (t) are linearly independent,
and the dimensions of Ps

N(Λ) and Pt
M(I) are both (N −1) and (N) respectively. The nonzero elements Air for 0 ⩽ i, r ⩽

N − 2 can be computed directly using the properties of Jacobi polynomials. Specifically, the diagonal elements of the
matrix A have the form:

Aii = γ(ζ , η)
i + ε2

i γ(ζ , η)
i+1 + ς2

i γ(ζ , η)
i+2 ,

Furthermore, all other formulas can be derived through direct computations utilizing the properties of Jacobi
polynomials.

Corollary 1 (Legendre Case) If η = ζ = 0, then the nonzero elementsAir,Bir,D js andE js are expressed as follows:

Aii =
4(2i+3)

(2i+1)(2i+5)
, Ai, i+2 = Ai+2, i =− 2

2i+5
,

Bii =−2(2i+3),

D j j = 2, D js = 4, s = j+n, n ≥ 1,

E j j =
8( j+1)

(2 j+1)(2 j+3)
, E j, j+1 = E j+1, j =

2
(2 j+3)

.

Corollary 2 (ChebyshevU Case) If η = ζ = 1
2 , then the nonzero elements Air, Bir, D js and E js are expressed as

follows:
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Aii =
4
(
i2 +4i+5

)
Γ
(
i+ 3

2

)2

(i+3)2Γ(i+2)2 , Ai, i+2 = Ai+2, i =
2Γ

(
i+ 3

2

)
Γ
(
i+ 7

2

)
(i+3)Γ(i+1)Γ(i+4)

,

Bii =−
8(i+2)Γ

(
i+ 3

2

)2

(i+3)Γ(i+1)2 ,

Bir =
21−2i√πΓ(i+ 2n+3

2 )Γ(2i+5)
(r+3)(2i+3)Γ(i+1)Γ(i+2)Γ(r+2)

, r = i+n, n even number,

D j j =
4( j+1)Γ

(
j+ 3

2

)2

Γ( j+1)Γ( j+3)
, D js =

8Γ( j+ 2n+5
2 )Γ( j+ 3

2 )

Γ( j+1)Γ(s+3)
, s = j+n, n ≥ 1,

E j j =
4
(
2 j2 +6 j+5

)
Γ
(

j+ 3
2

)2

(2 j+3)Γ( j+3)2 , E j, j+1 = E j+1, j =
4( j+1)Γ

(
j+ 5

2

)2

(2 j+3)Γ( j+3)2 .

Corollary 3 (ChebyshevT Case) If η = ζ =− 1
2 , then the nonzero elements Air, Bir, D js and E js are expressed as

follows:

Aii =
Γ
(
i+ 1

2

)2

Γ(i+1)2 , Ai, i+2 = Ai+2, i =−
Γ
(
i+ 1

2

)
Γ
(
i+ 5

2

)
2Γ(i+1)Γ(i+3)

,

Bii =−
2(i+1)(i+2)Γ

(
i+ 1

2

)2

Γ(i+1)2 ,

Bir =−
4(i+1)Γ(i+ 1

2 )Γ(i+
2n+1

2 )

Γ(i+1)Γ(r+1)
, r = i+n, n even number,

D j j =
( j+1)Γ

(
j+ 1

2

)2

Γ( j+1)2 , D js =
2Γ( j+ 2n+3

2 )Γ( j+ 1
2 )

Γ( j+1)Γ(s+1)
, s = j+n, n ≥ 1,

E j j =
Γ
(

j+ 1
2

)2

Γ( j+1)2 , E j, j+1 = E j+1, j =
Γ
(

j+ 3
2

)2

(2 j+1)Γ( j+1)Γ( j+2)
.

3.2 Wave equation
The numerical solution of the linear wave equation in the following form is examined in this section:

∂ 2u
∂ t2 − ∂ 2u

∂ z2 = g(z, t), on(−1, 1)2, (10)
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with boundary conditions

u(±1, t) = 0, t ∈ (−1, 1),

and initial conditions

u(z, −1) = ut(z, −1) = 0, z ∈ (−1, 1).

The goal of our approach is to provide an extended solution by combining the BFs of JPs, in the form

u(z, t)⋍ û2(z, t) =
N−2

∑
i=0

M−2

∑
j=0

ϕ (ζ , η)
i (z)U(2)

i j ψ̂(ζ , η)
j (t).

Now, we choose the BFs ϕ (ζ , η)
i (z) and ψ̂(ζ , η)

j (t) to be of the form

ϕ (ζ , η)
i (z) = J(ζ , η)

i (z)+ εiJ
(ζ , η)
i+1 (z)+ ςiJ

(ζ , η)
i+2 (z), i = 0, 1, . . . , N −2,

ψ̂(ζ , η)
j (t) = J(ζ , η)

j (t)+ ρ̂ jJ
(ζ , η)
j+1 (t)+ ϱ̂ jJ

(ζ , η)
j+2 (t), j = 0, 1, . . . , M−2.

It is not difficult to show that the BFs ϕ (ζ , η)
i (z) ∈ Ps

N+2(Λ) and ψ̂(ζ , η)
j (t) ∈ Pt

M+2(Λ) are given by

ϕ (ζ , η)
i (z) =J(ζ , η)

i (z)− (i+1)(η −ζ )(η +ζ +2i+3)
(ζ + i+1)(η + i+1)(η +ζ +2i+4)

J(ζ , η)
i+1 (z)

− (i+1)(i+2)(η +ζ +2i+2)
(ζ + i+1)(η + i+1)(η +ζ +2i+4)

J(ζ , η)
i+2 (z),

ψ̂(ζ , η)
j (t) =J(ζ , η)

j (t)+
2( j+1)(η +ζ +2 j+3)

(η + j+1)(η +ζ +2 j+4)
J(ζ , η)

j+1 (t)

+
( j+1)( j+2)(η +ζ +2 j+2)

(η + j+1)(η + j+2)(η +ζ +2 j+4)
J(ζ , η)

j+2 (t).

In the wave equation, the Jacobi-Galerkin (JG) technique (10) is then equivalent to
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〈
ϕ (ζ , η)

i ϕ (ζ , η)
l

〉
z
U(2)

i j

〈
d2ψ̂(ζ , η)

j

dt2 ψ̂(ζ , η)
m

〉
t

−

〈
ϕ (ζ , η)

i
d2ϕ (ζ , η)

l
dz2

〉
z

U(2)
i j

〈
ψ̂(ζ , η)

j ψ̂(ζ , η)
m

〉
t

=
〈〈

ϕ (ζ , η)
i (z)g(z, t)ψ̂(ζ , η)

j (t)
〉〉

.

(11)

The following ME corresponds to the wave equation’s JG discretization (11):

AU(2)R−BU(2)S=G. (12)

The collection of discrete equations (12) can be expressed in the MF shown below:

(
RT ⊗A−ST ⊗B

)
vec(U(2)) = vec(G).

Theorem 2 Let

R jm =

〈
d2ψ̂(ζ , η)

j

dt2 ψ̂(ζ , η)
m

〉
t

, S jm =
〈

ψ̂(ζ , η)
j ψ̂(ζ , η)

m

〉
t
.

The nonzero elements R jm and S jm can be obtained using the following equations:

R j j = ϱ̂ jA2( j+2, j, ζ , η)γ(ζ , η)
j ,

R jm = λ2(m, j, ζ , η)γ(ζ , η)
j +λ2(m, j+1, ζ , η)ρ̂ jγ

(ζ , η)
j+1

+λ2(m, j+2, ζ , η)ϱ̂ jγ
(ζ , η)
j+2 , m = j+n, n ≥ 1,

S j j = γ(ζ , η)
j + ρ̂2

j γ(ζ , η)
j+1 + ϱ̂2

jγ
(ζ , η)
j+2 ,

S j+1, j = S j, j+1 = ρ̂ jγ
(ζ , η)
j+1 + ϱ̂ jρ̂ j+1γ(ζ , η)

j+2 ,

S j+2, j = S j, j+2 = ϱ̂ jγ
(ζ , η)
j+2 ,

where

λσ (m, j, ζ , η) =Aσ (m, j, ζ , η)+ ρ̂mAσ (m+1, j, ζ , η)+ ϱ̂mAσ (m+2, j, ζ , η).
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Proof. The nonzero entries of R and S can be readily obtained by using the properties of Jacobi polynomials, which
are presented in Section 2..

The following corollaries report specific orthogonal functions that are produced by studying the class of JPs as direct
special cases:

Corollary 4 (Legendre Case) If η = ζ = 0, then the nonzero elements R jm and S jm are expressed as follows:

R j j =
2( j+1)(2 j+3)

( j+2)
,

R jm =
2n(2 j+3)(2 j+2n+3)(2 j+n+3)

( j+2)( j+n+2)
, m = j+n, n ≥ 1,

S j j =
12( j+1)(2 j+3)

( j+2)(2 j+1)(2 j+5)
, S j, j+1 = S j+1, j =

4
j+3

, S j, j+2 = S j+2, j =
2( j+1)

( j+2)(2 j+5)
.

Corollary 5 (ChebyshevU Case) If η = ζ = 1
2 , then the nonzero elements R jm and S jm are expressed as follows:

R j j =
8( j+2)(2 j+3)Γ

(
j+ 3

2

)2

( j+3)(2 j+5)Γ( j+1)2 ,

R jm =
32(2n j+(n2 +4n−1))( j+2)( j+n+2)Γ( j+ 3

2 )Γ( j+ (2n+5)
2 )

(2 j+5)Γ( j+1)Γ( j+n+4)
, m = j+n, n ≥ 1,

S j j =
12

(
4 j4 +32 j3 +95 j2 +124 j+63

)
Γ
(

j+ 3
2

)2

( j+3)2(2 j+5)2Γ( j+2)2 ,

S j, j+1 = S j+1, j =
8
(
4 j2 +20 j+27

)
Γ
(

j+ 3
2

)
Γ
(

j+ 5
2

)
(2 j+5)(2 j+7)Γ( j+1)Γ( j+4)

,

S j, j+2 = S j+2, j =
2( j+1)( j+2)Γ

(
j+ 5

2

)2

Γ( j+4)2 .

Corollary 6 (ChebyshevT Case) If η = ζ =− 1
2 , then the nonzero elements R jm and S jm are expressed as follows:

R j j =
2( j+1)( j+2)(2 j+1)Γ

(
j+ 1

2

)2

(2 j+3)Γ( j+1)2 ,

R jm =
8(2n j+(n2 +2n+1))Γ( j+ 1

2 )Γ( j+ (2n+3)
2 )

(2 j+3)Γ( j+1)Γ( j+n+1)
, m = j+n, n ≥ 1,
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S j j =

(
12 j2 +24 j+13

)
Γ
(

j+ 1
2

)2

(2 j+3)2Γ( j+1)2 ,

S j, j+1 = S j+1, j =
2
(
4 j2 +12 j+7

)
Γ
(

j+ 1
2

)
Γ
(

j+ 3
2

)
(2 j+3)(2 j+5)Γ( j+1)Γ( j+2)

,

S j, j+2 = S j+2, j =
Γ
(

j+ 3
2

)2

2Γ( j+1)Γ( j+3)
.

3.3 Airy equation
Let’s discuss the Airy equation

∂u
∂ t

+
∂ 3u
∂ z3 = g(z, t), on (−1, 1)2, (13)

with boundary conditions

u(±1, t) = uz(1, t) = 0, t ∈ (−1, 1),

and initial conditions

u(z, −1) = 0, z ∈ (−1, 1).

The goal of our approach is to obtain an extended solution utilizing a combination of JPs’ BFs, in the form

u(z, t)⋍ û3(z, t) =
N−3

∑
i=0

M−1

∑
j=0

ϕ̂
(ζ , η)

i (z)U(3)
i j ψ(ζ , η)

j (t).

Now, we choose the BFs ϕ̂
(ζ , η)

i (z) and ψ(ζ , η)
j (t) to be of the form

ϕ̂
(ζ , η)

i (z) = J(ζ , η)
i (z)+ ε̂iJ

(ζ , η)
i+1 (z)+ ς̂iJ

(ζ , η)
i+2 (z)+ δ̂iJ

(ζ , η)
i+3 (z), i = 0, 1, . . . , N −3,

ψ(ζ , η)
j (t) = J(ζ , η)

j (t)+ρ jJ
(ζ , η)
j+1 (t), j = 0, 1, . . . , M−1.

It is not difficult to show that the BFs ϕ̂
(ζ , η)

i (z) ∈ Ps
N+3(Λ) and ψ(ζ , η)

j (t) ∈ Pt
M+1(Λ) are given by
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ϕ (ζ , η)
i (z) =J(ζ , η)

i (z)− (i+1)(η +ζ +2i+3)(−ζ +2η + i+1)
(ζ + i+1)(η + i+1)(η +ζ +2i+5)

J(ζ , η)
i+1 (z)

− (i+1)(i+2)(2ζ −η + i+3)(η +ζ +2i+2)
(ζ + i+1)(ζ + i+2)(η + i+1)(η +ζ +2i+6)

J(ζ , η)
i+2 (z)

+
(i+1)(i+2)(i+3)(η +ζ +2i+2)(η +ζ +2i+3)

(ζ + i+1)(ζ + i+2)(η + i+1)(η +ζ +2i+5)(η +ζ +2i+6)
J(ζ , η)

i+3 (z),

ψ(ζ , η)
j (t) =J(ζ , η)

j (t)+
( j+1)

(η + j+1)
J(ζ , η)

j+1 (t).

Consequently, the Airy equation’s JG scheme (13) is equivalent to

〈
ϕ̂
(ζ , η)

i ϕ̂
(ζ , η)

l

〉
z
U(3)

i j

〈
dψ(ζ , η)

j

dt
ψ(ζ , η)

m

〉
t

+

〈
ϕ̂
(ζ , η)

i
d3ϕ̂

(ζ , η)

l
dz3

〉
z

U(3)
i j

〈
ψ(ζ , η)

j ψ(ζ , η)
m

〉
t

=
〈〈

ϕ̂
(ζ , η)

i (z)g(z, t)ψ(ζ , η)
j (t)

〉〉
.

(14)

The following ME corresponds to the Jacobi-Galerkin discretization of the Airy equation (14)

PU(3)D+QU(3)E=G. (15)

The set of discrete equations (15) can be expressed in the MF shown below:

(
DT ⊗P+ET ⊗Q

)
vec(U(3)) = vec(G).

Theorem 3 Let

Pim =
〈

ϕ̂
(ζ , η)

i ϕ̂
(ζ , η)

m

〉
z
, Qim =

〈
d3ϕ̂

(ζ , η)

i
dz3 ϕ̂

(ζ , η)

m

〉
z

.

Then the nonzero elements Pim and Qim are given by
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Pii = γ(ζ , η)
i + ε̂2

i γ(ζ , η)
i+1 + ς̂2

i γ(ζ , η)
i+2 + δ̂ 2

i γ(ζ , η)
i+3 ,

Pi+1, i = Pi, i+1 = ε̂iγ
(ζ , η)
i+1 + ς̂iεi+1γ(ζ , η)

i+2 + δ̂iς̂i+1γ(ζ , η)
i+3 ,

Pi+2, i = Pi, i+2 = ς̂iγ
(ζ , η)
i+2 + δ̂iε̂i+2γ(ζ , η)

i+3 ,

Pi+3, i = Pi, i+3 = δ̂iγ
(ζ , η)
i+3 ,

Qii = δ̂iA3(i+3, i, ζ , η)γ(ζ , η)
i ,

Qir = ϖ3(r, i, ζ , η)γ(ζ , η)
i +ϖ3(r, i+1, ζ , η)ε̂iγ

(ζ , η)
i+1

+ϖ3(r, i+2, ζ , η)ς̂iγ
(ζ , η)
i+2 +ϖ3(r, i+3, ζ , η)δ̂iγ

(ζ , η)
i+3 , r = i+n, n ≥ 1,

where

ϖσ (r, i, ζ , η) =Aσ (r, i, ζ , η)+ ε̂rAσ (r+1, i, ζ , η)+ ς̂rAσ (r+2, i, ζ , η)+ δ̂rAσ (r+3, i, ζ , η),

Proof. The JPs’ properties in Section 2 facilitate determining nonzero entries of P and Q.
The following corollaries report specific orthogonal functions that are produced by studying the class of JPs as direct

special cases:
Corollary 7 (Legendre Case) If η = ζ = 0, then the nonzero elements Pir and Qir are expressed as follows:

Pii =
16(i+2)(2i+3)

(2i+1)(2i+5)(2i+7)
,

Pi, i+1 = Pi+1, i =− 2
2i+7

,

Pi, i+2 = Pi+2, i =− 8(i+3)
(2i+5)(2i+9)

,

Pi, i+3 = Pi+3, i =
2(2i+3)

(2i+5)(2i+7)
,

Qii = 2(2i+3)2,

Qir = (−1)n4(2i+3)(2i+2n+3), r = i+n, n ≥ 1.
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Corollary 8 (ChebyshevU Case)) If η = ζ = 1
2 , then the nonzero elements Pir and Qir are expressed as follows:

Pii =
8
(
i4 +10i3 +38i2 +65i+45

)
Γ
(
i+ 3

2

)2

(i+3)2(i+4)2Γ(i+2)2 ,

Pi, i+1 = Pi+1, i =−
2(i(i+6)+12)Γ

(
i+ 3

2

)
Γ
(
i+ 5

2

)
(i+4)Γ(i+1)Γ(i+5)

,

Pi, i+2 = Pi+2, i =−
(2i+3)(2i+5)

(
i2 +7i+13

)
Γ
(
i+ 3

2

)2

(i+3)Γ(i+1)Γ(i+6)
,

Pi, i+3 = Pi+3, i =
(i+1)(i+2)2(2i+5)(2i+7)Γ

(
i+ 5

2

)2

(2i+3)Γ(i+5)2 ,

Qii =
16(i+2)2Γ

(
i+ 3

2

)2

(i+4)Γ(i+1)2 ,

Qir =−16(i+2)(i+n+2)(2i3 +(4n+15)i2 +(12n2 +28n+17)i+(8n3 +18n2 +22n+6))
Γ(i+1)Γ(i+n+5)

×Γ
(

i+
3
2

)
Γ
(

i+
(2n+3)

2

)
, r = i+n, n = 1, 3, 5, · · · ,

Qir =
16(i+2)(i+n+2)(2i3 +(4n+15)i2 +(12n2 +40n+37)i+(8n3 +30n2 +46n+30))

Γ(i+1)Γ(i+n+5)

×Γ
(

i+
3
2

)
Γ
(

i+
(2n+3)

2

)
, r = i+n, n = 2, 4, 6, · · · .

Corollary 9 (ChebyshevT Case)) If η = ζ =− 1
2 , then the nonzero elements Pir and Qir are expressed as follows:

Pii =

(
2i2 +6i+5

)
Γ
(
i+ 1

2

)2

(i+2)2Γ(i+1)2 ,

Pi, i+1 = Pi+1, i =−
(
i2 +4i+2

)
Γ
(
i+ 1

2

)
Γ
(
i+ 3

2

)
2Γ(i+1)Γ(i+4)

,

Pi, i+2 = Pi+2, i =−
(i+1)

(
2i2 +10i+11

)
Γ
(
i+ 1

2

)
Γ
(
i+ 5

2

)
2(i+4)Γ(i+3)2 ,
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Pi, i+3 = Pi+3, i =
(i+1)2Γ

(
i+ 1

2

)
Γ
(
i+ 7

2

)
2Γ(i+3)Γ(i+4)

,

Qii =
4(i+1)2(i+3)Γ

(
i+ 1

2

)2

Γ(i+1)2 ,

Qir =−4(i+1)(2i3 +(8n+9)i2 +(36n2 +12n−1)i+(24n3 +18n2))

(i+n+2)Γ(i+1)Γ(i+n+1)

×Γ
(

i+
1
2

)
Γ
(

i+
(2n+1)

2

)
, r = i+n, n = 1, 3, 5, · · · ,

Qir =
4(i+1)(2i3 +(8n+9)i2 +(36n2 +48n+13)i+(24n3 +54n2 +36n+6))

(i+n+2)Γ(i+1)Γ(i+n+1)

×Γ
(

i+
1
2

)
Γ
(

i+
(2n+1)

2

)
, r = i+n, n = 2, 4, 6, · · · .

3.4 Beam equation

Lastly, take into account the fourth-order beam equation

∂ 2u
∂ t2 +

∂ 4u
∂x4 = g(x, t), on (−1, 1)2, (16)

with boundary conditions

u(±1, t) = ux(±1, t) = 0, t ∈ (−1, 1),

and initial conditions

u(x, −1) = ut(x, −1) = 0, x ∈ (−1, 1).

The goal of our approach is to obtain an extended solution utilizing a combination of JPs’ BFs, in the form

u(x, t)⋍ û4(x, t) =
N−4

∑
i=0

M−2

∑
j=0

ϕ̃
(ζ , η)

i (x)U(4)
i j ψ̂(ζ , η)

j (t).

Currently, we select the BFs ϕ̃
(ζ , η)

i (x) and ψ̂(ζ , η)
j (t) to have the quality
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ϕ̃
(ζ , η)

i (x) = J(ζ , η)
i (x)+ ε̃iJ

(ζ , η)
i+1 (x)+ ς̃iJ

(ζ , η)
i+2 (x)+ δ̃iJ

(ζ , η)
i+3 (x)+ τ̃iJ

(ζ , η)
i+4 (x), i = 0, 1, . . . , N −4,

ψ̂(ζ , η)
j (t) = J(ζ , η)

j (t)+ ρ̂ jJ
(ζ , η)
j+1 (t)+ ϱ̂ jJ

(ζ , η)
j+2 (t) j = 0, 1, . . . , M−2.

It is simple to demonstrate how the basis works ϕ̃
(ζ , η)

i (x) ∈ Ps
N+4(Λ) and ψ̂(ζ , η)

j (t) ∈ Pt
M+2(Λ) are given by

ϕ̃
(ζ , η)

i (x) =J(ζ , η)
i (x)+

2(i+1)(ζ −η)(η +ζ +2i+3)
(ζ + i+1)(η + i+1)(η +ζ +2i+6)

J(ζ , η)
i+1 (x)

− (i+1)(i+2)(η +ζ +2i+2)(η +ζ +2i+5)
(ζ + i+1)(ζ + i+2)(η + i+1)(η + i+2)(η +ζ +2i+6)(η +ζ +2i+7)

×
(
−ζ 2 +4ζη +5ζ −η2 +5η +2i2 +2ζ i+2η i+10i+12

)
J(ζ , η)

i+2 (x)

− 2(i+1)(i+2)(i+3)(ζ −η)(η +ζ +2i+2)(η +ζ +2i+3)
(ζ + i+1)(ζ + i+2)(η + i+1)(η + i+2)(η +ζ +2i+6)(η +ζ +2i+8)

J(ζ , η)
i+3 (x)

+
(i+1)(i+2)(i+3)(i+4)(η +ζ +2i+2)(η +ζ +2i+3)(η +ζ +2i+4)

(ζ + i+1)(ζ + i+2)(η + i+1)(η + i+2)(η +ζ +2i+6)(ζ +η +2i+7)(η +ζ +2i+8)

× J(ζ , η)
i+4 (x),

ψ̂(ζ , η)
j (t) =J(ζ , η)

j (t)+
2( j+1)(η +ζ +2 j+3)

(η + j+1)(η +ζ +2 j+4)
J(ζ , η)

j+1 (t)+
( j+1)( j+2)(η +ζ +2 j+2)

(η + j+1)(η + j+2)(η +ζ +2 j+4)
J(ζ , η)

j+2 (t).

The JG scheme (16) used in the beam equation can be considered to be equal to

〈
ϕ̃
(ζ , η)

i ϕ̃
(ζ , η)

l

〉
x
U(4)

i j

〈
d2ψ̂(ζ , η)

j

dt2 ψ̂(ζ , η)
m

〉
t

+

〈
ϕ̃
(ζ , η)

i
d4ϕ̃

(ζ , η)

l
dx4

〉
x

U(4)
i j

〈
ψ̂(ζ , η)

j ψ̂(ζ , η)
m

〉
t

=
〈〈

ϕ̃
(ζ , η)

i (x)g(x, t)ψ̂(ζ , η)
j (t)

〉〉
.

(17)

The Jacobi-Galerkin discretization of the beam equation (17) corresponds to the following ME

KU(4)R+LU(4)S=G. (18)

The set of discrete equations (18) can be expressed in the MF shown below:
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(
RT ⊗K+ST ⊗L

)
vec(U(4)) = vec(G).

Theorem 4 Let

Kim =
〈

ϕ̃
(ζ , η)

i ϕ̃
(ζ , η)

m

〉
x
, Lim =

〈
d4ϕ̃

(ζ , η)

i
dx4 ϕ̃

(ζ , η)

m

〉
x

.

Then the nonzero elements Kim and Lim are given by

Kii = γ(ζ , η)
i + ε̃2

i γ(ζ , η)
i+1 + ς̃2

i γ(ζ , η)
i+2 + δ̃ 2

i γ(ζ , η)
i+3 + τ̃2

i γ(ζ , η)
i+4 ,

Ki+1, i =Ki, i+1 = ε̃iγ
(ζ , η)
i+1 + ς̃iεi+1γ(ζ , η)

i+2 + δ̃iς̃i+1γ(ζ , η)
i+3 + τ̃iδ̃i+1γ(ζ , η)

i+4 ,

Ki+2, i =Ki, i+2 = ς̃iγ
(ζ , η)
i+2 + δ̃iε̃i+2γ(ζ , η)

i+3 + τ̃iς̃i+2γ(ζ , η)
i+4 ,

Ki+3, i =Ki, i+3 = δ̃iγ
(ζ , η)
i+3 + τ̃iε̃i+3γ(ζ , η)

i+4 ,

Ki+4, i =Ki, i+4 = τ̃iγ
(ζ , η)
i+4 ,

Lii = τ̃iA4(i+4, i, ζ , η)γ(ζ , η)
i ,

Lir = ς4(r, i, ζ , η)γ(ζ , η)
i + ς4(r, i+1, ζ , η)ε̃iγ

(ζ , η)
i+1 + ς4(r, i+2, ζ , η)ς̃iγ

(ζ , η)
i+2

+ ς4(r, i+3, ζ , η)δ̃iγ
(ζ , η)
i+3 + ς4(r, i+4, ζ , η)τ̃iγ

(ζ , η)
i+4 , r = i+n, n ≥ 1,

where

ςσ (r, i, ζ , η) =Aσ (r, i, ζ , η)+ ε̃rAσ (r+1, i, ζ , η)+ ς̃rAσ (r+2, i, ζ , η)+ δ̃rAσ (r+3, i, ζ , η)

+ τ̃rAσ (r+4, i, ζ , η).

Proof. The properties of JPs presented in Section 2 can be used to easily obtain the nonzero entries of K and L.
The following corollaries report specific orthogonal functions that are produced by studying the class of JPs as direct

special cases:
Corollary 10 (Legendre Case) If η = ζ = 0, then the nonzero elements Kir and Lir are expressed as follows:
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Kii =
12(2i+3)(2i+5)

(2i+1)(2i+7)(2i+9)
,

Ki, i+1 =Ki+1, i = 0,

Ki, i+2 =Ki+2, i =− 8
2i+11

,

Ki, i+3 =Ki+3, i = 0,

Ki, i+4 =Ki+4, i =
2(2i+3)

(2i+7)(2i+9)
,

Lii = 2(2i+3)2(2i+5),

Lir = 0, r = i+n, n ≥ 1.

Corollary 11 (ChebyshevU Case)) If η = ζ = 1
2 , then the nonzero elements Kir and Lir are expressed as follows:

Kii =
12

(
i4 +12i3 +53i2 +102i+84

)
Γ
(
i+ 3

2

)2

(i+4)2(i+5)2Γ(i+2)2 ,

Ki, i+1 =Ki+1, i = 0,

Ki, i+2 =Ki+2, i =
8
(
i2 +8i+18

)
Γ
(
i+ 3

2

)
Γ
(
i+ 7

2

)
Γ(i+1)Γ(i+7)

,

Ki, i+3 =Ki+3, i = 0,

Ki, i+4 =Ki+4, i =
2(i+1)(i+2)2(i+3)Γ

(
i+ 3

2

)
Γ
(
i+ 11

2

)
Γ(i+6)2 ,

Lii =
32(i+2)2(i+3)Γ

(
i+ 3

2

)2

(i+5)Γ(i+1)2 ,

Lir = 0, r = i+n, n = 1, 3, 5, · · · ,

Contemporary Mathematics 2072 | Y. H. Youssri.



Lir =−
128(i+2)(i+3)(i2 +(n+6)i+(n2 +3n+8))Γ

(
i+ 3

2

)
Γ
(

i+ (4n+3)
2

)
(i+2n+4)(i+2n+5)Γ(i+1)Γ(i+2n+2)

, r = i+2n, n = 1, 2, 3, · · · .

Corollary 12 (ChebyshevT Case)) If η = ζ =− 1
2 , then the nonzero elementsKir and Lir are expressed as follows:

Kii =

(
3i2 +12i+13

)
Γ
(
i+ 1

2

)2

(i+3)2Γ(i+1)2 ,

Ki, i+1 =Ki+1, i = 0,

Ki, i+2 =Ki+2, i =−
2(i+4)(2i+3)

(
i2 +6i+7

)
Γ
(
i+ 3

2

)2

(2i+1)Γ(i+1)Γ(i+6)
,

Ki, i+3 =Ki+3, i = 0,

Ki, i+4 =Ki+4, i =
(i+1)2(i+2)Γ

(
i+ 1

2

)
Γ
(
i+ 9

2

)
2Γ(i+4)Γ(i+5)

,

Lii =
8(i+1)2(i+2)(i+4)Γ

(
i+ 1

2

)2

Γ(i+1)2 ,

Lir = 0, r = i+n, n = 1, 3, 5, · · · ,

Lir =
32(i+2)(i+2)(i2 +(3n+4)i+3(n+1)2)Γ

(
i+ 1

2

)
Γ
(

i+ (4n+1)
2

)
(i+2n+3)Γ(i+1)Γ(i+2n+1)

, r = i+2n, n = 1, 2, 3, · · · .

4. Nonhomogeneous boundary conditions
We outline a method for effectively converting problems with nonhomogeneous boundary-initial circumstances into

problems with homogeneous boundary-initial conditions (see [30–32]). Let us consider for instance the Schrödinger
equation (4) and Wave equation (10). Nonhomogeneous boundary-initial conditions for Airy and Beam equations can be
treated similarly.

If the solution u of equation (4) is subjected to non-homogeneous boundary-initial conditions:

u(±1, t) = a±(t), t ∈ (−1, 1),

u(z, −1) = b−(z), z ∈ (−1, 1).

Presently, assume the accompanying transformation
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u(z, t) = ũ(z, t)+ξ0(t)+ zξ1(t)+(z+1)(z−1)ξ (z) = ũ(z, t)+ue(z, t),

where

ξ0(t) =
a+(t)+a−(t)

2
, ξ1(t) =

a+(t)−a−(t)
2

, ξ (z) =
b−(z)− zξ1(−1)−ξ0(−1)

(z+1)(z−1)
,

and ũ is an unidentified auxiliary function that fulfills the modified problem

∂t ũ(z, t)+ I∂ 2
z ũ(z, t) = g∗(z, t), (z, t) ∈ Ω,

depending on the homogenous boundary-initial conditions

ũ(±1, t) = 0, t ∈ (−1, 1),

ũ(z, −1) = 0, z ∈ (−1, 1),

where

g∗(z, t) = g(z, t)−∂tue(z, t)+ I∂ 2
z ue(z, t),

while ue(z, t) is a function of any type that satisfies the initial nonhomogeneous boundary requirements.
Hence the solution u of (10) is subject to the nonhomogeneous boundary-initial conditions:

u(±1, t) = c±(t), t ∈ (−1, 1),

u(z, −1) = d−(z), ut(z, −1) = e−(z), z ∈ (−1, 1).

We move forward as follows:
Setting

u(z, t) = ũ(z, t)+α0(t)+ zα1(t)+(z+1)(z−1)(β0(z)+ tβ1(z)) = ũ(z, t)+ue(z, t),

where
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α0(t) =
c+(t)+ c−(t)

2
, α1(t) =

c+(t)− c−(t)
2

,

β0(z) =
d−(z)−α0(−1)− zα1(−1)+ e−(z)−∂tα0(−1)− z∂tα1(−1)

(z+1)(z−1)
,

β1(z) =
e−(z)−∂tα0(−1)− z∂tα1(−1)

(z+1)(z−1)
,

that fulfills the modified problem

∂ 2ũ
∂ t2 − ∂ 2ũ

∂ z2 = g∗(z, t), on (−1, 1)2,

depending on the homogenous boundary-initial conditions

ũ(±1, t) = 0, t ∈ (−1, 1),

ũ(z, −1) = ũt(z, −1) = 0, z ∈ (−1, 1).

where

g∗(z, t) = g(z, t)− ∂ 2ue

∂ t2 +
∂ 2ue

∂ z2 , on (−1, 1)2.

5. Convergence analysis and truncation error estimate
In this section, we use the findings of Hafez and Youssri [33] to determine the convergence rate of the unknown

solution coefficients and estimate the truncation error in the Jacobi Spectral expansion method for solving the reaction-
subdiffusion equation. We apply these results to all the linear PDEs discussed in Section 3 to establish their convergence
rate and truncation error.

Lemma 3 The following formulas for connections are valid:

ϕ (ζ , η)
i (x) = ν1i(1− x2)J(ζ+1, η+1)

i (x),

ϕ̂
(ζ , η)

i (x) = ν2i(1− x)2(x+1)J(ζ+2, η+1)
i (x),

ϕ̃
(ζ , η)

i (x) = ν3i(1− x2)2J(ζ+2, η+2)
i (x),

ψ(ζ , η)
j (t) = ν4 j(1+ t)J(ζ , η+1)

j (t),
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ψ̂(ζ , η)
j (t) = ν5 j(1+ t)2J(ζ , η+2)

j (t),

where

ν1i =
(2i+η +ζ +2)(2i+η +ζ +3)

4(i+ζ +1)(i+η +1)
,

ν2i =
(2i+η +ζ +2)(2i+η +ζ +3)(2i+η +ζ +4)

8(i+ζ +1)(i+ζ +2)(i+η +1)
,

ν3i =
(2i+η +ζ +2)(2i+η +ζ +3)(2i+ζ +η +4)(2i+η +ζ +5)

16(i+ζ +1)(i+ζ +2)(i+η +1)(i+η +2)
,

ν4 j =
(2 j+η +ζ +2)

2( j+η +1)
,

ν5 j =
(2 j+η +ζ +2)(2 j+η +ζ +3)

4( j+η +1)( j+η +2)
.

Proof. The proof follows directly from the definition of generalized JPs presented in [15].
Lemma 4 The following orthogonality relations are accurate:

A)
∫ 1

−1
ϕ (ζ , η)

i (x)ϕ (ζ , η)
j (x)w(ζ−1, η−1)(x)dx = ν2

1iγ
(ζ+1, η+1)
i δi j,

B)
∫ 1

−1
ϕ̂
(ζ , η)

i (x)ϕ̂
(ζ , η)

j (x)w(ζ−2, η−1)(x)dx = ν2
2iγ

(ζ+2, η+1)
i δi j,

C)
∫ 1

−1
ϕ̃
(ζ , η)

i (x)ϕ̃
(ζ , η)

j (x)w(ζ−2, η−2)(x)dx = ν2
3iγ

(ζ+2, η+2)
i δi j,

D)
∫ 1

−1
ψ(ζ , η)

i (t)ψ(ζ , η)
j (t)w(ζ , η−1)(t)dt = ν2

4iγ
(ζ , η+1)
i δi j,

E)
∫ 1

−1
ψ̂(ζ , η)

i (t)ψ̂(ζ , η)
j (t)w(ζ , η−1)(t)dt = ν2

5iγ
(ζ , η+2)
i δi j.

Proof. If we simplify the product of the basis functions and use the orthogonality relation of the Jacobi polynomials,
we can easily derive all of these orthogonality relations.

Lemma 5 [28] The following inequalities are valid:
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A) | J(ζ , η)
i (x) |≲ iq, q = max(ζ , η , −1

2
),

B) | ϕ (ζ , η)
i (x) |≲ iq1 , q1 = max(ζ +1, η +1, −1

2
),

C) | ϕ̂
(ζ , η)

i (x) |≲ iq2 , q2 = max(ζ +2, η +2, −1
2
),

D) | ϕ̃
(ζ , η)

i (x) |≲ iq3 , q3 = max(ζ +3, η +3, −1
2
),

E) | ψ(ζ , η)
j (t) |≲ jq4 , q4 = max(ζ , η +1, −1

2
),

F) | ψ̂(ζ , η)
j (t) |≲ jq5 , q5 = max(ζ , η +2, −1

2
).

In [33], Hafez and Youssri proved the following convergence result. If u(x, t) = x(L − x)t f (x)g(t) and | f ′′′(x)| ≤
A, |g′′′(t)| ≤ B is approximated by ũ(x, t), then the expansion coefficients ci j satisfy the following estimate∣∣ci j

∣∣= O
(

i−
5
2 j−

5
2

)
∀i, j > 3.

Let us use the notationsU (r)
i j to represent the expansion coefficients of the Schrödinger equation, Airy equation, wave

equation, and beam model, where r = 1, 2, 3, 4, respectively. The exact solutions can be expressed as separable in the
form u(r)(x, t) = fr(x)gr(t), where r = 1, 2, 3, 4, respectively, and fr and gr possess r+2 bounded continuous derivatives.
Finally, based on the result of Theorem 3 in [33] (mentioned above), we can obtain the following estimates.

Theorem 5 The estimates provided below are deemed to be accurate and valid

A) | U(1)
i j |≲ i−

5
2 j−

5
2 | f (3)1 |< M11 | g(3)1 |< M12,

B) | U(2)
i j |≲ i−

7
2 j−

7
2 | f (4)2 |< M21 | g(4)2 |< M22,

C) | U(3)
i j |≲ i−

9
2 j−

5
2 | f (5)3 |< M31 | g(3)3 |< M32,

D) | U(4)
i j |≲ i−

11
2 j−

7
2 | f (6)4 |< M41 | g(4)4 |< M42.

Based on Theorem 4 in [33] and Lemma 5, we can estimate as follows.
Theorem 6 If ζ < η < 1

2 then
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A) | U(1)
i j ϕ (ζ , η)

i (x)ψ(ζ , η)
j (t) |≲ (i j)η− 3

2 ,

B) | U(2)
i j ϕ (ζ , η)

i (x)ψ̂(ζ , η)
j (t) |≲ (i j)η− 3

2 ,

C) | U(3)
i j ϕ̂

(ζ , η)

i (x)ψ(ζ , η)
j (t) |≲ (i j)η− 3

2 ,

D) | U(4)
i j ϕ̃

(ζ , η)

i (x)ψ̂(ζ , η)
j (t) |≲ (i j)η− 3

2 .

Finally combining the results of Theorems 5 and 6, we have the following truncation error estimate.
Theorem 7 For 3.1, 3.2, 3.3 and 3.4 ∥uexact −uapp∥2 ≲ (NM)−

3
2 , where N, M are the numbers of retained modes in

the truncated approximate solution.

6. Numerical results
Example 1 We consider the following Schrödinger equation [34]:

∂u
∂ t

− I
∂ 2u
∂x2 = g(x, t), on(−1, 1)2,

with the boundary conditions:

u(±1, t) = 0, t ∈ (−1, 1),

and the initial condition:

u(x, −1) =−ex−1 sin(πx), x ∈ (−1, 1).

The smooth analytic solution of this problem is u = ex+t sin(πt
2 )sinπx. The known source function is given by

g = 1
2 et+x

(
π cos

(πt
2

)
sin(πx)−2I sin

(πt
2

)(
−2π cos(πx)+

(
π2 +(−1+ I)

)
sin(πx)

))
.

Table 1 shows the maximum absolute errors for Example 1 with with various choices of N, M, ζ and η . Figure
1 shows the space-time of absolute errors for Example 1 with ζ = 1

2 , η = − 1
2 and N = M = 18. Figure 2 shows the

convergence rates for Example 1 with ζ = 1
2 , η =− 1

2 .
Example 2 We consider the following wave equation [34]:

∂ 2u
∂ t2 − ∂ 2u

∂x2 = g(x, t), on(−1, 1)2,

with the boundary conditions:
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u(±1, t) = 0, t ∈ (−1, 1),

and the initial condition:

u(x, −1) =−ex−1 sin(πx), x ∈ (−1, 1),

and

ut(x, −1) =−ex−1 sin(πx), x ∈ (−1, 1).

Table 1. MAE with various choices of N, M, ζ and η for Example 1

N = M ζ η Real part Imaginary part ζ η Real part Imaginary part

6 6.96×10−3 9.32×10−4 1.53×10−2 8.96×10−3

12 0 0 3.27×10−8 5.61×10−9 1
2

1
2 8.62×10−8 1.11×10−7

18 1.73×10−15 3.88×10−15 2.26×10−14 8.01×10−15

6 7.23×10−3 4.90×10−3 3.65×10−3 1.39×10−3

12 - 1
2 - 1

2 7.23×10−8 1.20×10−8 1
2 0 7.98×10−8 3.09×10−7

18 7.53×10−14 5.10×10−14 5.29×10−13 3.17×10−13

6 2.39×10−2 1.08×10−2 2.81×10−2 2.20×10−2

12 0 1
2 3.26×10−8 1.82×10−7 1 1 3.30×10−7 3.49×10−7

18 5.68×10−13 3.15×10−13 7.47×10−14 3.76×10−14

Figure 1. The graphs of absolute errors obtained for Example 1 with ζ = 1
2 , η = − 1

2 and N = M = 18 (left panel for real part and right panel for
imaginary part)
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Figure 2. Exponential convergence in N = M for Example 1 with ζ =− 1
2 , η = 1

2 (left panel for real part and right panel for imaginary part)

The exact solution of the above problem is u(x, t) = ex+t sin(πt
2 )sinπx. The source function is given by g(x, t) =

1
4 πet+x

(
4cos

(πt
2

)
sin(πx)+ sin

(πt
2

)
(3π sin(πx)−8cos(πx))

)
.

Table 2 shows the maximum absolute errors and CPU time in seconds for Example 2 with with various choices of
N, M, ζ and η . For various choices of N and M, the graphs of the absolute error functions with ζ = −η = 1/2 are
displayed in Figure 3.

Table 2. Maximum absolute errors and CPU time with various choices of N, M, ζ and η for Example 2

N = M ζ η JG CPU time N = M JG CPU time

1 1 4.1921×10−1 2.3195×10−4

1
2

1
2 3.5439×10−1 1.7511×10−4

4 0 0 4.2676×10−1 0.015625 8 1.1932×10−4 0.03125

− 1
2

1
2 2.9024×10−1 9.9212×10−4

− 1
2 − 1

2 9.0489×10−1 4.8919×10−5

1 1 2.1459×10−7 2.5435×10−11

1
2

1
2 5.9406×10−8 6.6404×10−12

12 0 0 3.7341×10−8 0.078125 16 1.5477×10−12 0.109375

− 1
2

1
2 4.4371×10−7 1.6799×10−11

− 1
2 − 1

2 7.2687×10−8 3.3394×10−12
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Figure 3. The graphs of the absolute error functions for Example 2 at various choices of N = M with ζ =−η = 1/2

Example 3 We consider the following Airy equation [34]:

∂u
∂ t

+
∂ 3u
∂x3 = g(x, t), on(−1, 1)2,

with the boundary conditions:

u(±1, t) = 0, ux(1, t) = π
(
−et+1)sin

(πt
2

)
, t ∈ (−1, 1),

and the initial condition:
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u(x, −1) =−ex−1 sin(πx), x ∈ (−1, 1),

with the same exact solution as before. The source function is given by

g(x, t) =
1
2

et+x
(

π cos
(πt

2

)
sin(πx)−2sin

(πt
2

)((
3π2 −2

)
sin(πx)+π

(
π2 −3

)
cos(πx)

))
.

Figure 4. The graphs of the absolute error functions for Example 3 at various choices of N = M with η = ζ = 1/2
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Table 3 lists the maximum absolute errors, using the Jacobi Galerkin (JG) method with various choices of
N, M, ζ and η . For various choices of N and M, the graphs of the absolute error functions with η = ζ = 1/2 are
displayed in Figure 4.

Table 3. Maximum absolute errors with various choices of N, M, ζ and η for Example 3

N = M ζ η JG N = M JG

1 1 9.8166×10−2 9.8454×10−5

1
2

1
2 7.0324×10−2 5.8614×10−5

8 0 0 4.4119×10−2 12 2.9304×10−5

− 1
2

1
2 8.2491×10−3 5.2676×10−6

− 1
2 − 1

2 2.1501×10−2 1.0440×10−5

1 1 1.4523×10−8 2.8848×10−12

1
2

1
2 7.7420×10−9 1.4583×10−12

16 0 0 3.4268×10−9 20 5.6665×10−13

− 1
2

1
2 4.0132×10−10 8.7041×10−14

− 1
2 − 1

2 1.0816×10−9 1.3677×10−13

Example 4 We consider the following beam equation [34]:

∂ 2u
∂ t2 +

∂ 4u
∂x4 = g(x, t), on(−1, 1)2,

with the boundary conditions:

u(±1, t) = 0 = ux(±1, t), t ∈ (−1, 1),

and the initial conditions:

u(x, −1) =−ex−1 sin2(πx), ut(x, −1) =−ex−1 sin2(πx), x ∈ (−1, 1).

The exact solution of the above problem is u(x, t) = et+x sin
(πt

2

)
sin2(πx). The source function is given by g(x, t) =

1
8 et+x

(
8π cos

(πt
2

)
sin2(πx)− sin

(πt
2

)(
32π

(
4π2 −1

)
sin(2πx)+

(
8−97π2 +64π4

)
cos(2πx)+π2 −8

))
. Table 4 lists

the maximum absolute errors, using the Jacobi Galerkin (JG) method with various choices of N, M, ζ and η . For various
choices of N and M, the graphs of the absolute error functions with η = ζ = 0 are displayed in Figure 5.
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Table 4. Maximum absolute errors with various choices of N, M, ζ and η for Example 4

N = M ζ η JG N = M JG

1 1 4.5627×10−3 2.3549×10−5

1
2

1
2 1.2765×10−3 5.8096×10−6

12 0 0 2.3181×10−4 16 1.0249×10−6

− 1
2

1
2 1.6071×10−2 2.8658×10−5

− 1
2 − 1

2 5.8618×10−4 2.3902×10−6

1 1 2.2599×10−8 6.0718×10−12

1
2

1
2 5.1018×10−9 6.8922×10−13

20 0 0 7.4227×10−10 24 6.1146×10−14

− 1
2

1
2 1.0349×10−9 1.4156×10−11

− 1
2 − 1

2 1.6901×10−9 1.8600×10−13

Example 5 We consider the following wave equation [35]:

∂ 2u
∂ t2 − ∂ 2u

∂x2 = 0, (x, t) ∈ [0, π]× [0, 1],

with the boundary conditions:

u(0, t) = u(π, t) = 0, t ∈ [0, 1],

and the initial condition:

u(x, 0) = sin(x), x ∈ [0, π],

and

ut(x, 0) = 0, x ∈ [0, π].

The exact solution of the above problem is u(x, t) = sin(x)cos t.
Table 5 exhibits a comparison between the error obtained by using JG method and the Taylor matrix (TM) [35] and

Bernolli collocation (BC) [36] . The numerical results show that JG method is more accurate than the existing methods.
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Figure 5. The graphs of the absolute error functions for Example 4 at different choices of N = M with η = ζ = 0
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Table 5. Maximum absolute errors with various choices of ζ , η and x = t = 0.6, 0.7, 0.8, 0.9, 1 for Example 5

( 2
π x−1, 2t −1) ζ η

JG method TM method BC method
N = M = 12 N = M = 16 (N = 12) [35] (N = 12) [36]

1
2

1
2 8.50×10−13 7.49×10−16

(−0.618028, 0.2) 0 0 3.30×10−13 4.16×10−17 4.63×10−11 2.51×10−11

− 1
2 − 1

2 7.99×10−13 8.18×10−16

1
2

1
2 2.38×10−12 2.22×10−16

(−0.554366, 0.4) 0 0 7.14×10−13 5.55×10−17 3.27×10−10 2.29×10−11

− 1
2 − 1

2 1.27×10−12 6.93×10−16

1
2

1
2 1.85×10−12 3.05×10−16

(−0.490704, 0.6) 0 0 2.04×10−14 1.11×10−16 1.75×10−9 2.52×10−11

− 1
2 − 1

2 3.22×10−13 1.97×10−15

1
2

1
2 3.71×10−13 1.97×10−15

(−0.427042, 0.8) 0 0 2.40×10−13 8.32×10−16 7.61×10−9 2.22×10−11

− 1
2 − 1

2 1.15×10−13 1.11×10−15

1
2

1
2 0.00×10−00 0.00×10−00

(1, 1) 0 0 0.00×10−00 0.00×10−00 2.76×10−9 1.81×10−11

− 1
2 − 1

2 0.00×10−00 0.00×10−00

7. Concluding remarks
In this study, we focused on solving linear PDEs with their initial and boundary conditions using the JG method. We

introduce appropriate bases that meet these criteria and serve as a foundational step in tackling linear PDEs. These bases
yield discrete systems characterized by highly structured, practically invertible matrices. The outcomes are encouraging.
Our future objective is to expand the existing algorithms to address the fractional versions of these PDEs.
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