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Abstract: Many forecasting techniques have been put forth and used in recent years to predict stock market trends.
Recently, many researchers developed models based on Artificial Neural Network (ANN), Support Vector Machine
(SVM), Fuzzy Logic (FL) andMoving Average (MA). This paper presents the trend analysis of the stockmarket prediction
using the Hidden Markov Model and Viterbi algorithm with a 1-day, 2-day, 3-day, 4-day and 5-day variation in the
close value for the specified time frame. In this work, we developed a BSE price forecasting model based on Hidden
Markov Model due to its proven fittingness for modeling vigorous systems and pattern classification. We apply the HMM
methodology to forecast the BSE closing price from Jan 2021 to Dec 2021 using available past datasets from Investopedia.
The trend percentage of stock prices, which is computed for every observed sequence and hidden sequence, is provided by
the probability values π . In situations of uncertainty, decision makers can use the proportion of probability values derived
from the steady state probability distribution as a guide when making judgments.
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1. Introduction
With more companies going public in recent years, stocks have emerged as a popular topic in the financial industry.

A growing number of financial analysts and investors are also interested with stock price prediction because, on the one
hand, the trend of stock price will influence the trend of various economic behaviors to some degree. However, with
more people investing in the stock market every year, the only way to swiftly identify market trends and increase
investment returns is to precisely analyze the future trajectory of stock prices. Financial research focuses on stock price
prediction, which is typically seen as a difficult undertaking due to the extreme volatility of financial markets.

For the AI community, one of the most challenging problems has been stock price forecasting. Forecasting
research has usually been surpassed by traditional AI research, which is mostly concerned with developing intelligent
solutions intended to mimic human intelligence. However, due to its nonstationary, cyclical, and stochastic nature, stock
price forecasting is still very limited. The rate at which prices fluctuate in such a series is influenced by a number of
variables, including as equity, interest rates, securities, warrants, options, and mergers and acquisitions of noteworthy
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financial institutions. Ordinary investors cannot consistently earn in such a market. Because of this, regular investors
would be very interested in and in demand for an intelligent stock market predicting program.In an efficient market, stock
prices would be determined primarily by fundamentals, which, at the basic level, refer to a combination of two things:

• An earnings base, such as earnings per share (EPS).
• A valuation multiple, such as a P/E ratio.
It is common practice in the corporate world, particularly in the stock market, to hire a competent advisor or someone

to monitor stock prices and trends. This is done in order to investigate the chaotic system that contains a lot of data and
different elements that affect the stock price. Many researchers gave presentations on their research on stock market
prediction, which is confined to the index status alone. However, because the anticipated outcomes depend on several
variables or predictors, this paper forecast and predict the closing prices more precisely, which is more complex. Company
stocks typically follow the market, as well as the peers in their industry or sector. Some well-known investment businesses
contend that most of a stock’s movement is determined by the mix of sector and market movements as a whole rather than
by the performance of any one company (Studies have indicated that 90% of it can be attributed to economic and market
forces). For instance, “guilt by association” lowers demand for the entire sector when one retail stock suddenly has a poor
outlook, which typically hits other retail companies.

The selection of target stocks and the prediction of stock prices in the traditional quantitative investment field are
primarily based on the outcomes of long-term stock market experience [1]. Empirical stock analysis methods are difficult
to spread and promote and frequently have poor antirisk and long-term prediction abilities [2].

Furthermore, the conventional methods’ analysis speed was frequently slow. Consequently, statistical and financial
approaches to stock analysis emerged, marking the start of mathematical stock modeling. These approaches include the
autoregressive model [3], the stochastic volatility model [4], and the Markov model [5]. Their predictive and analytical
capabilities surpass those of empirical methods. Furthermore, because mathematical modeling is used, these models can
only be applied to the present large-scale data scenarios and are best suited for computer analyses, which are based on
sparse input data.

The stock price is an observable time series, meaning that its determinants are unknown variables. This characteristic
is congruent with the hidden Markov model (HMM), which numerous academics have used to predict stock prices. A
statistical model called HMM has been applied to image processing, pattern identification, DNA sequence analysis, and
automatic speech recognition [6]. This paper’s primary contribution is the construction of a HMM based stock price
prediction model. The rest of this paper is designed as follows. Proposed Scheme is reviewed in Section 2. The HMM
and the Viterbi Algorithm-based stock price prediction model is introduced in Section 3. Section 4 presents the outcomes
of the experiment. Section 5 concludes the paper.

2. Proposed scheme
Amachinewith a finite number of states is called aHiddenMarkovModel (HMM). It offers a probabilistic framework

for modeling a multivariate time series of observations. The use of hidden Markov models as a voice recognition tool
dates back to the early 1970s. Due to its solid theoretical foundation and robust mathematical structure, this statistically
based model has gained popularity over the past several years in a variety of fields. It is evident that HMM is an incredibly
useful tool with a wide range of uses. The benefits of HMM can be summed up as follows:

• It can handle fresh data robustly.
• It has a strong statistical base.
• Efficient in terms of computation to create and assess (since pre-existing training algorithms exist).
• It has an effective ability to predict similar patterns.
The fundamentals of HMM and how it might be applied to signal prediction are covered in the Rabiner tutorial. The

HMM, in contrast to the Markov chain, will select a specific course of action based on the observation probability as
well. The ability of the HMM to select the optimal overall strategy sequence given an observation sequence is crucial
to its performance. More representation capacity is provided by adding density functions to the HMM’s states than by
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predefined methods linked to the states. New patterns can be discovered by the unsupervised learning method of the
general HMM approach framework. It is not necessary to impose a “template” for it to learn because it can tolerate input
sequences of varying lengths. The HMM is briefly explained in the following session.

3. Hidden markov model
An HMM comprises of a five-tuple: (SSS, KKK, ΠΠΠ, AAA, BBB).
• S = {1, . . . , N} is the set of states. st denotes the state at time t.
• K = {k1, . . . , kM} is the output alphabet. M is the number of observation ranges.
• Π = {πi, i ∈ S} is the initial state distribution and πi is defined as

πi = P(s1 = i)

• Transition probability distribution A =
{

ai j
}
, i, j ∈ S.

ai j = P(st+1 | st) , 1 ≤ i, j ≤ N

• Emission probability distribution B = b j (ot).
The probabilistic function for each state j is:

b j (ot) = P(ot | st = j)

We can determine the probability of the observation sequence and the likely underlying state sequences by modeling
a problem as an HMM and assuming that the HMM produced a certain set of data. In order to create a more accurate
model, we can also train the model’s parameters using the observed data. Next, make use of the learned model to forecast
unknown data.

Given an observation sequence O = (o1, . . . , oT ) and an HMMµ = (AAA, BBB, ΠΠΠ), find the probability of the sequence
P(O | µ). This process is known as decoding. Here the observations are independent of each other the time t, the
probability of a state sequence S = (s1, . . . , sT ) generating the observation sequence can be calculated as:

P(O | S, µ) =
T

∏
t=1

P(ot | st , st+1, µ) (1)

= bs1 (o1) · · ·bs1s2 (o2) · · ·bsT−1sT (oT ) (2)

and the state transition probability,

P(S | µ) = πs1 ·as1s2 ·as2s3 · · ·asT−1sT

The joint probability of O and S :
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P(O, S | µ) = P(O | S, µ)P(S | µ) (3)

Therefore,

P(O | µ) = ∑
S

P(O | S, µ)P(S | µ) (4)

= ∑
s1.....sT+1

πs1

T

∏
t=1

ast st+1bst st+1ot (5)

By adding up the observation probabilities for every potential state sequence, the calculation is rather simple. The
computation increases exponentially with the length of T in the sequence. It requires (2T −1). NT+1 multiplications and
NT −1 additions.

4. Viterbi algorithm
According to [7] the Viterbi algorithm aims to find the optimal estimate for the hidden state sequence within

HMM, conditional on a series of system measurements. At each stage, the Viterbi algorithm finds the optimal value
for the state in the order, and continues the analysis to the next stage in the inductive way. To find the optimal order in
the hidden state

Q=(q1, q2, . . . qn) in the realization ofHMM, conditional on themeasurement sequence systemO=(o1, o2, . . . on),
the following variables are defined:

V ( j) = max
Q

P(Q = j | λ ) (6)

Where, Q denotes hidden stata sequence, O denotes observed sequence and V ( j) is the optimal value for HMM at
the time n, considering the first state of Si as the condition. The value of Vn( j) is calculated as follows:

Vn( j) = max
i=1

Vn−1(i)Pi jb j (on) (7)

Then to obtain the best value of P calculated using following formula

P = max
i=1

(i) (8)

The three factors are multiplied in equation (7) to extend the previous path by calculating the Viterbi probability at
time n are follows:

• Vn−1(i) is the probability of the previous Viterbi path from the previous time step.
• Pi j is the transition probability from the previous state to the current state.
• b j (on) is the observation state against the observation symbol given the current state j.
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5. Mathematical results and discussion
In this section, the data has been taken from Investopedia.com and the analysis focused on BSE daily close value data

from January 2021 to December 2021. We used two observation symbols: “I” for increasing states and “D” for decreasing
states and it is observed that the symbol is “I” if the differences in close values are larger than 0 and that the sign is “D” if
the differences in close values are less than 0. The symbols S1, S2, S3 and S4 stands for the four hypothesized concealed
states, which are low, moderate low, moderate high and high respectively. The states cannot be observed immediately. The
stock advertisement’s conditions are thought to be concealed. Given an arrangement of perception we are able discover
the covered up state grouping that created those perceptions. Figure 1 gives the daily closing value of the BSE stock price
values.

Figure 1. Daily closing value of BSE

Table 1. Interval values

Energy states

S1 =−15,000 to −500 Low (L)

S2 =−501 to 250 Moderate low (ML)

S3 = 251 to 500 Moderate high (MH)

S4 = 501 to 15,000 High (H)

The various probability values of TPM, EPM and π for difference in one day, two days, three day, four days and five
days are calculated and given as below in Table 1-11:

Initial State Probability for difference in one day close value:

π1 =
[

0.16194332 0.582995951 0.133603239 0.12145749
]
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Table 2. TPM for difference in 1 day close value

L ML MH H

L 0.225 0.65 0.025 0.1
ML 0.118881119 0.65034965 0.125874126 0.104895
MH 0.151515152 0.454545455 0.333333333 0.060606
H 0.3 0.3 0.1 0.3

Table 3. EPM for diff in 2 day

I D

L 0 1
ML 0.354166667 0.645833333
MH 1 0
H 1 0

Initial State Probability for difference in two day close value:

π2 =
[

0.199186992 0.528455 0.097561 0.174797
]

Table 4. TPM for difference in 2 day close value

L ML MH H

L 0.102041 0.510204 0.102041 0.285714
ML 0.184615 0.515385 0.130769 0.169231
MH 0.217391 0.608696 0.043478 0.130435
H 0.348837 0.534884 0.023256 0.093023

Table 5. EPM for diff in 2 day

I D

L 0 1
ML 0.354166667 0.645833333
L 0 1
ML 0.369231 0.630769
MH 1 0
H 1 0

Initial State Probability for difference in three days close value:
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π3 =
[

0.310204082 0.302041 0.102041 0.285714
]

Table 6. TPM for difference in 3 day close value

L ML MH H

L 0.157895 0.197368 0.144737 0.5
ML 0.178082 0.452055 0.082192 0.287671
MH 0.48 0.24 0.12 0.16
H 0.557143 0.285714 0.057143 0.1

Table 7. EPM for diff in 3 day

I D

L 0 1
ML 0.337838 0.662162
MH 1 0
H 1 0

Initial State Probability for difference in four days close value:

π4 =
[

0.352459016 0.217213 0.045082 0.385246
]

Table 8. TPM for difference in 4 day close value

L ML MH H

L 0.104651 0.127907 0.05814 0.709302
ML 0.346154 0.288462 0.057692 0.307692
MH 0.454545 0.090909 0 0.454545
H 0.574468 0.276596 0.031915 0.117021

Table 9. EPM for diff in 4 day

I D

L 0 1
ML 0.264151 0.735849
MH 1 0
H 1 0

Initial State Probability for difference in five days close value:
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π5 =
[

0.423868313 0.090535 0.037037 0.44856
]

Table 10. TPM for difference in 5 day close value

L ML MH H

L 0.184466 0.038835 0.009709 0.76699
ML 0.454545 0.090909 0.136364 0.318182
MH 0.444444 0.111111 0.111111 0.333333
H 0.648148 0.138889 0.037037 0.175926

Table 11. EPM for diff in 5 day

I D

L 0 1
ML 0.363636 0.636364
MH 1 0
H 1 0

Here N = No. of Hidden States = 4 = {L, ML, MH, H};
T = No. of Observations = 2 = {I, D}.
So we have m = NT = 16 combination of sequences. Using TPM, EPM, initial probability and joint probability

formula as stated in (1), (2) we calculate the probabilities for 16 combination of sequences and find the maximum
probability which gives the likelihood hidden state sequence as D, D, I, I for the difference in one day, two days, three
days, four days and five days closing value using HMM.

Probabilities for the observation on Hidden State using Viterbi Algorithm in Figure 2 are given below:

Figure 2. Probabilities for the observation for the difference in one day close value using the Viterbi Algorithm
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From the above figure, in the first column (i.e., in the Increasing state)V1(2) has the maximum value, in 2nd column
(i.e., in the Decreasing state) V2(2) has the maximum value, in 3rd column V3(2) has the maximum value and in the 4th

column V4(2) has the maximum value. Therefore the maximum values in the Viterbi path are

V1(2) = 0.2065, V2(2) = 0.08673, V3(2) = 0.03643, V4(2) = 0.008392.

So the best sequence for the difference in one day close value in the order of the first day is , the second day is ML, the
third day is ML and the fourth day is ML.

Figure 3. Probabilities for the observation for the difference in two days close value using the Viterbi Algorithm

From the Figure 3, in the first column (i.e., in the Increasing state) V1(2) has the maximum value, in 2nd column
(i.e., in the Decreasing state) V2(2) has the maximum value, in 3rd column V3(2) has the maximum value and in the 4th

column V4(2) has the maximum value. Therefore, the maximum value in the Viterbi path are

V1(2) = 0.333, V2(2) = 0.10835, V3(2) = 0.0206, V4(2) = 0.00392.

So the best sequence for the difference in two days close value in the order of the first day is ML, the second day is
ML, the third day is ML and the fourth day is ML.
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Figure 4. Probabilities for the observation for the difference in three days close value using the Viterbi Algorithm

From the Figure 4, in the first column (i.e., in the Increasing state) V1(1) has the maximum value, in 2nd column
(i.e., in the Decreasing state) V2(2) has the maximum value, in 3rd column V3(4) has the maximum value and in the 4th

column V4(4) has the maximum value. Therefore, the maximum value in the Viterbi path are

V1(1) = 0.31020, V2(2) = 0.05987, V3(4) = 0.02449, V4(4) = 0.002629.

So the best sequence for the difference in three days close value in the order of the first day is L, the second day is
ML, the third day is H and the fourth day is H.

Figure 5. Probabilities for the observation for the difference in four days close value using the Viterbi Algorithm

From the Figure 5, in the first columm (i.e., in the Increasing state) V1(1) has the maximum value, in 2nd column
(i.e., in the Decreasing state) V2 (1) has the maximum value, in 3rd column V3 (4) has the maximum value and in the 4th

column V4(4) has the maximum value. Therefore, the maximum value in the Viterbi path are
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V1(1) = 0.35246, V2(1) = 0.05533, V3(4) = 0.03925, V4(4) = 0.00459.

So the best sequence for the difference in four days close value in the order of the first day is I., the second day is
L, the third day is H and the fourth day is H.

Figure 6. Probabilities for the observation for the difference in five days close value using the Viterbi Algorithm

From the Figure 6, in the first column (i.c., in the Increasing state) V1(1) has the maximum value, in 2nd column
(i.e., in the Decreasing state) V2 (1) has the maximum value, in 3rd column V3(4) has the maximum value and in the 4d.

column V4(4) has the maximum value. Therefore, the maximum value in the Viterbi path are

V1(1) = 0.42387, V2(1) = 0.07819, V3(4) = 0.05997, V4(4) = 0.01055

So the best sequence for the difference in five days close value in the order of the first day is L, the second day is
L, the third day is I and the fourth day is II.

The optimum sequence of states obtained from the all five day’s differences using IIMM and Viterbi algorithm with
TPM and EPM is given below:
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However, using HMMwe can easily predict whether the next day will be increasing (I) or decreasing (D). By using
the Viterbi algorithm, we can provide the best route for the state in the order of the first day is L (low), the second day is L
(low), third day is H (high) and fourth day is H (high). Hence, the five day difference of TPM and EPM has the shortest
path. So the best optimum sequence is found from five day difference in close value.

6. Conclusion
In order to account for hidden states that may have an impact on precise forecasting, the HMM prediction method

generates starting state, transition probability, and emission probability. Here, the stock market’s four states were quickly
identified by the Hidden Markov model, which was also utilized to forecast future values. The higher performance of the
specific sequence has the highest value in the Optimum State Sequences. Predicting the ideal sequence is more accurate
with the suggested model. To make it simple to determine if the sequence’s level is increasing or decreasing for the next
day, hidden states and sequences have been created. Additionally, it was determined whether the amount of increase was
moderate high or high, and whether the level of decrease was moderate low or low. Investors with both long-term and
short-term goals will find great value in this strategy.
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