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1. Introduction

It was during 2004 that the concept of the concatenation model emerged [1, 2]. This model is formed by conjoining
the familiar nonlinear Schrodinger’s equation (NLSE), Lakshmanan-Porsezian-Daniel (LPD) equation, and Sasa-Satsuma
equation [3, 4]. This model itself later served as an independent equation to address the propagation dynamics of optical
solitons across trans-oceanic and trans-continental distances [5, 6]. Thereafter, another form of the concatenation model
was proposed [7, 8]. This is similarly formed from the three pre-existing models: the Schrédinger-Hirota equation, LPD
model, and the fifth-order NLSE [9, 10]. Having higher-order dispersion terms, this model is therefore referred to as the
dispersive concatenation model [11, 12].

There are several results that have emerged after extensive studies with the two models [13, 14]. They include
the retrieval of the full spectrum of soliton solutions to the models using a plethora of integration schemes, locating the
conservation laws, addressing the Internet bottleneck effect with spatio-temporal dispersion, studying the model for gap
solitons, the perturbed version of the concatenation model using semi-inverse variation. The numerical simulations of
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the model have also been studied with Kerr and power laws by the aid of the Laplace-Adomian decomposition method
(LADM). Several additional features have been covered, such as studying the model with multiplicative white noise and
so on. Later, the concatenation model was also studied with differential group delay, and its soliton solutions have been
recovered.

Similarly, the dispersive concatenation model was also covered analytically and numerically using a variety of
integration algorithms [7]. The LADM scheme has been lately implemented to address the soliton solutions to the
dispersive concatenation model. Very recently, the dispersive concatenation model was studied with polarization-mode
dispersion, and some preliminary results have been reported. The current paper revisits the model to recover the soliton
solutions with a completely different approach, namely the Sardar sub-equation algorithm. This would provide a fresher
perspective on the model from a totally different angle. Additionally, the paper not only identifies the solitons but also
delineates the essential parameter constraints for their existence. These constraints provide important insights into the
conditions necessary for soliton phenomena, enhancing our understanding of the model’s behavior. The results are
recovered and displayed after a quick introduction to the model.

1.1 Governing model

The dimensionless form of the scalar version of the dispersive concatenation model with Kerr law nonlinearity is
structured as [12—14]:

iqt"‘a%cx‘i‘b‘mzq_lsl [GICIXxx“I‘GZ'CIlzCIx
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Here, ¢(x,t) represents the complex-valued function that signifies the wave amplitude, with the independent
variables x and 7 denoting the spatial and temporal variables, respectively. The coefficient of a corresponds to the chromatic
dispersion (CD), while the coefficient of b accounts for the self-phase modulation (SPM) arising from the Kerr law of
nonlinearity. Additionally, i = v/—1 denotes the imaginary unit. The first five terms originate from the Schrodinger-Hirota
equation (SHE), whereas the coefficients of §; for j = 1, 2 stem from the Lakshmanan-Porsezian-Daniel (LPD) and Sasa-
Satsuma equation (SSE), respectively. It is this equation that will be split into two components, and the corresponding
governing mode will be derived for birefringent fibers. For pulse splitting purposes, setting g (x, #) = u(x, 1) +v(x, 1)
and neglecting the four-wave mixing (4WM) terms result in coupled-mode equations along the two components of a
birefringent fiber as follows [10, 11]:
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In equations (2) and (3), the components u (x, ¢) and v (x, ¢) represent the wave amplitudes of the split pulses arising
from birefringence. The first terms with coefficients i denote the linear temporal evolution along the two components of
the pulses. The second terms in (2) and (3), denoted by a\¥), are the coefficients of chromatic dispersion along the two

components of birefringent fibers. Then, b(lj ) and bg’ ) for Jj =1, 2, are the coefficients of self-phase modulation (SPM) and
cross-phase modulation (XPM) effects, respectively. Subsequently, 62({) and Gz(é) represent SPM and XPM for intermodal

dispersions, while o (’ )

O, anda o, enote an or second-order dispersions, res ectively. oreover, O. ' stands for wit
) and 6.7 denote SPM and XPM ft d-order dispersi pectively. M ) stands for SPM with

) and 65('3i> account for XPM with quintic nonlinearity. Further, (76({>, 66(%), 67({),

indicates fourth-order dispersions along the two components of a birefringent fiber. Additionally,

quintic form of nonlinearity, whereas o)
67(?, Gé{ ), and Géé) arise from the radlatlve effect of the solitons, originating from four-wave mixing (4WM) effect and
other sources of small-amplitude dispersive effects. Subsequently, Gg(j ) accounts for fifth-order dispersions along the
two components of birefringence. Additionally, Gl(é)l and Gfé)z represent SPM and XPM components stemming from
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third-order dispersions along the two components. Similarly, 0'1({ )1 denotes SPM coefficients due to inter-modal dispersion

along the two components, while 61({)2 and 61({% are the coefficients of XPM due to inter-modal dispersion. Finally, Gl(é)l,

Gl(é;, Gfg)l, O'g)z, 0'1(4{)1, 0'1(‘{;, (71(?1, and Gl(g)z are additional terms from soliton radiation along the two components, emerging
from multi-wave mixing and other sources. It is worth mentioning that the effect of 4WM arising from XPM is ignored
in the derivation of the model equations (2) and (3) from (1), aiming to maintain the coupled system’s simplicity without
additional nonlinear effects. However, apart from neglecting the 4WM effects, the remaining terms included are equally
important as they directly arise from the dispersive concatenation model given by (1).

To tackle the interconnected nature of systems (2) and (3), we adopt the assumption of a particular solution structure:

u(x, 1) =U; (§) ™), )
and

v(x, 1) =Us(§)e 0. (5)

This structure serves as a foundational framework for addressing the complexities inherent in both systems
simultaneously. By delineating a clear solution structure, we aim to provide a systematic approach that facilitates the
analysis and resolution of the coupled dynamics present in systems (2) and (3).

In this context, £, which we have designated as our primary wave variable, is formally delineated as

§=k(x—wvr). (©)

Here, the variables U, ({) (where j = 1, 2) serve as explicit representations of the amplitude component inherent in
the soliton solution, while v serves as a clear indicator of the soliton’s velocity. Moreover, the phase ¢ (x, ¢) is meticulously
characterized as

0 (x, 1) = —xx+ ot + 6p. (7

In this particular context, k¥ embodies the frequency attributed to the solitons, while @ corresponds to the wave
number, and 6y signifies the phase constant. Upon substituting equations (4) and (5) with equations (2) and (3) respectively,
and subsequently decomposing them into their constituent real and imaginary components, the resulting real parts yield
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This coupled system of equations can be straightforwardly decoupled under the implicit assumption that U, = A Uj.
As aresult, equations (8) and (9) can be reformulated as:
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Through a meticulous comparison of the coefficients belonging to the linearly independent functions within equations
(14) and (15), we can equate them to zero. This procedure allows us to derive the velocities associated with the two
components as well as the parametric constraints, leading to the following outcomes.

When the coefficients of U; are set to zero, the velocities along the two components are determined to be:

vV=—k ( M 4 53816l — k28 731(51(1)61(1)), (16)
and
v=—r (2 +55 oY 4?50l —3x5{7 (") (17)

By equating the velocities of the solitons along the two components as expressed in equations (16) and (17), we
obtain the parameter constraint:

20 4536 6V — 4k26V 6tV —3k5{V 6V = 24® 1 5357 6 — 425V 6P — 35 PP (18)

To ensure integrability, it is necessary to set the coefficients of certain functions to zero. This action leads to the
emergence of additional parameter constraints, the specifics of which are outlined as follows:
When the coefficients of U;> are set to zero, the resulting outcome is:
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2o}y +oy =220 + o) =0. (19)
When the coefficients of U I,U] 2 are set to zero, the consequence is:
1 3 (1 2 (1 2 (1 2 (1 2 (1 1 1 1 1 1
- 1(63( ) (—A 61(2% +32 01(0% +3A 61(3; —A 654% -2 01(5% — 101(22 + 361(02 + 301(3% — 01(4% - GI(SD
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When the coefficients of U;*U; are set to zero, the outcome is:
1 1 1 2 2 2
Mops+oi +A%0) = Aol + o) + A0l =0. 22)
When the coefficients of U1'3 are set to zero, the outcome is:
1 1 2 2
1261(5; + 61(53 = ’1261(51 + 61(5% =0. (23)
When the coefficients of U U 1/U1 " are set to zero, the result is:
1 1 1 1 1 1
1361(2% + ’1261(3% + }”261(4% + 161(2% + 01(33 + 61(4>1 =0, (24)
and
2 2 2 2 2 2
223+ 4 (Aol +A%0lf] + o)+ olpy) + o = 0. (25)
When the coefficients of U, 1(3) are set to zero, the outcome is:

2 (28" 0" — 5x8{" o)) + 5 =0, 26)
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and
2k (28170 — 5x8 07 ) + 875l = o0. @7)
When the coefficients of U12U](3) are set to zero, the outcome is:
ol +olf = 12afi +ofy =0 o
When the coefficients of Ul(s) are set to zero, the result is:

o' =a® =0. 29)

Through a comparative analysis of equations (14) and (15) and their consolidation into a unified equation, we can

deduce the following parametric limitations.

Upon comparing the coefficients of U1(4), we derive:

62(1)03(1) — 5K53(1)69(1) =2 (62(2) 0'3(2) — 5K'53(2) 69(2)) . (30)
Through a comparison of the coefficients of U12U1//, we arrive at:
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o 4105068 62500l 315V
=—A <a<2) +10K3 63(2) 69(2) — 61(262(2) 63(2) -3 K‘5l(2) 01(2>) . (32)

Through a comparison of the coefficients of U U{z we derive:
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The nonlinear ordinary differential equation that has been transformed and will be analyzed using the enhanced direct
algebraic technique is:
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This equation can be reformulated in a more concise structure as:
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= — —— WY b + [k (Ao + Aol + 22013, — Aol — Aoy + Aoy,
k28, o5
1 1 1 1 1 1 1 1 1 1 1 1 1
+ojg) + 013 —ojy — o3 — &1 (A2aly) ~ 226y + 2%l + 20l + off — oy + o)) + o)),
1 1 1 1 1 1 1 1
B K63E ) (1461(1;"‘1261(1%"'01(1)) _52( ) <7L465(3) 4"1265(; +65(1>>
3= )

ErEUE
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1

1 1 1 1 1 1 1
By == (k8" (—230{3) +22%0(3) + 24201y} + A%0(3) ~ 24013 + 2013} )
b O3
1 1 1 1 1 1 1
205 o5 -8 (Mo +270]) oy + 07} ).
a) —6K‘252<])63<1) - 31(51(1)61(1)
Bs = 1 1 ’
PO
1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 K53( ) (/1361(2; + 312050% + 1261(3% —A20i) + Ao + 361(0)1 + Gfsi - 61(4)> 5" (}”2@&2) + Mféz) +oy + ng1>>
6= ’
52(1>G3<1)
(39
provided 52<1)G3(1) #£0.
2. Sardar sub-equation method (SSEM)
In this method, to tackle Eq. (38), we adopt the assumption that the solution takes the following form:
N
$E) =Y M¥(&), A #O. (40)
n=0
Here, A, (where n =0, 1, ..., N) represents a constant to be determined subsequently. The integer N is established

utilizing the principle of homogeneous balance method, balancing the nonlinear term with the highest-order derivative in
Eq. (38). Additionally, the function ¥" (£) in Eq. (40) must fulfill the following equation:

W (E) = \/ma (&) W () + o, @1)

where 1; (where / =0, 1, 2) are constants.

Accordingly, depending on the specific values of the parameters 7, Eq. (41) admits various known solutions, outlined
as follows:

Casel ny=0.

If 1 > 0 and 1, # 0, then we get the bright and singular soliton solutions:

WT (§) ==/ —paM [y sechyy (VHE), M2 <0, (42)

and
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W5 (&) =% /pa™ /pyesch, (VAITE), 2 >0,

where

2 2

SeCth(\/mé) = pemg +qe_m§ and CSChﬂq(\/ﬁé) = pemg —qe‘\ﬂm .

nt

Casell ng = %E

‘1‘3i (&) = =+, /—nl/antanhpq ( —ng) ,

and

\p}(g):i,/_nl/zmcoth,,q( —Zlg),

where

pe\/mg 7qe_\/rTl§ pe\/TTIé +q g_\/TTl‘z;

and 12 > 0. If n; < 0, then one obtains the dark and singular soliton solutions:

tanhyg (VI115) = peVié 4 gevme and.cothpg (VINS) = peViis —gevVme

2.1 Application of the modified Sardar sub-equation method

(43)

(44)

(45)

(46)

(47)

Our analysis commenced with the application of the homogeneous balance method principle, balancing the nonlinear
term u(*) with the linear term > from Eq. (38). This yields N +4 = 5N, resulting in N = 1. Consequently, Eq. (40)

transforms into:

U1(8) =(ho+MY¥),

U’ &) =M \/(712‘1‘4+771‘I’2+n0),

"

U (§)=M 2m¥+ mY¥),

U = (6% + m) \/m¥ ()" + M (&) + o,

UW =2 P 1202 (1+m) P+ 211 (9 mo + 1) ¥+ m1 2 + 12 pang ).

(48)

(49)

(50)

(51

(52)
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After substituting Eqgs. (48-52) into Eq. (38) and considering Eq. (41), we arrive at:
By M (772 (%‘P“ +M‘I‘5) + 01 (A0P? + 41P%) + 10 (Ao +M‘P))
+ Bshi (loz 2m¥ + mP) +240A (2 mP + m¥?) + 4,7 (2 mY + 771‘1’3))
+ Bs A (2 )+ By (A0 45 A0 MW 10 A A28 4 10402 AW 45 Ay M+ 279
+By (A0’ +320° MW 434047 + A7) +B1 (Ao +MP)

HE A 12 (14 M) ¥+ 20 (9 Mo+ 1) W3+ (m % + 12 1mam0) W] = 0. (53)

By collecting and setting the coefficients of the independent functions W/ (&) to zero, we establish the following
system of algebraic equations (SAE) for the specified cases:

Casel ng=0and 1) =0.

Equation (53) simplifies to the following form:

By )L]2 (1’]211\115 +n111lP3) + 36113 (2 nz‘PS + nl‘P3) + Bs A (2 T]zlPB + nl‘P)

+B AP+ B AP A B M A (120 (14+m) ¥+ 20 (9 +1) WP+ 2 ¥ | =0. (54)

We derive the following SAE for the same W/, where j =1, 2, 3, 4, 5:

W (B4+2Bs) M M +B3s M+ (12102 (1+1m2)] =0,

¥t By +4Bem +B35 M%7 =0,

W By M+ BsmA2 +2mBs +4%By K2 201 (9m+1)] =0,

W2 By MPmi+2BshP M1 +344°B, =0,

W Bsm+k>n2=0. (55)
Solving the SAE (55) yields:

_ Bs B4 +2 Bg Bs
2 = 3k2 s
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— (5B4> — 2 B4Bs — 300 B3k*) F \/ (5 B42 — 2 B4Bg — 300 B3k?)> — 4 (300 B3k? — 24 Bg2 — 20BBs) B42

M= 2(300 Bsk® — 24 Bs2 — 20BsBa)

lu(x, )| lu(x, 1)

X

. (56)
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Figure 1. Profile of a bright soliton solution

Family1 A, =F _(B4+54—£6112) and Bs < 0.

Thus, we arrive at the bright and singular soliton solutions:
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u(x, 1) =F A1y/ —pqnl/msechpq (VMmk(x—vt))expli(—kx+ ot + 6)], M <O, (57

vix, 1) = FA M \/Wsechpq (VAT k(x—vie))expli(—kx+ ot +6)], 1M <0, (58)
and

u(x, 1) = FA \/mcschpq (ViTk(x—vi))expli(—kx+ o +6)], m2>0, (59)

v(x, 1) = FAM \/Wcschm (VATk(x—vi1))expli(—kx+ at +6p)], 12> 0. (60)

Family 2 A, = 7% and Bs < 0.

Therefore, we obtain the bright and singular soliton solutions:

w(x, 1) =F M \/msechpq (VATk(x—vi1))expli(—kx+ at +6y)], M <0, 61)

v(x, 1) = FA A \/Wsechm, (Vk(x—vi))expli(—kx+or+60)], m <0, (62)
and

u(x, 1) =FA \/WCSChpq (Vmkx—vie))exp[i(—kx+wr+6y)], n2>0, (63)

v(x, 1) = FAA \/mcschpq (Vik(x—vi))expli(—Kkx+ ot +60)], m>0. (64)

2
Case Il g = %Z—‘z and 1o = 0.

Equation (53) simplifies to the following form:
45 5 s 1k 5 3 319 2
By M"Y+ [By | m¥P’ +m¥ +ZTTT + Bg (2112l1J + mlP~)+Bz‘P 1A
2

+Bs 2m¥YP+ M) +BI YA+ 12 (1+m) P + 20 (9 + 1) W2 +4n, 2P| =0. (65)

We derive the following SAE for the same W/, where j =1, 3, 5:
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W By AM*+([By 4 2B m A2+ 12m (1+m) k% =0,

¥ [Bami+ BeMi+Ba) M7+ 2(Bsma+km(9m+1)) =0,

. 2492 2 2
¥ . Bs g M +4n, (B5 N+ By +k°4n ) =0. (66)
lu(x, 1) |u(x, D)
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Figure 2. Profile of a dark soliton solution
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Figure 3. Profile of a singular soliton solution

Solving the SAE (66) yields:

2 2
Family 1 Ao = 0, 4 = q:\/_ 2(Bs my+k 111(9172—&-1)), o = %% n1 <0andm, > 0.

By mi+ Be ni+B2
As a result, one gets the dark and singular soliton solutions:
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u(x, 1) =F A1 4 /—nl/antanhpq (1 / —Tk(x—vt)) expli(—Kkx+ ot +6p)],
vix, 1) =FA A /—771/21,'2 tanh,,, (, / —%k(x— v t)) expli(—kx+ ot + 6y)],

and

u(x, 1) =F A 4 /—nl/2n2cothpq <, / —T;]k(x—vt)) expli(—kx+ ot + 6y)],
v(x, 1) =TFA A 4 /—nl/ancothpq (, / @k(xvt)) expli(—Kkx+ ot + 6p)] .

2 2
Family 2 29 =0, 4 = :F\/— 412 (Bs ”Zzl;k am?)

In this case, the dark and singular soliton solutions appear as:

2
, Mo = %%,n1<0andn2>0.

ulx,t)=F A 1/—771/2nztanhpq( —nzlk(x—vt)> expli(—kx+ ot + 6p)],

vix, 1) =FA A | /—n1/2n2tanhpq ( 1721k(xvt)> exp i (—kx+ ot + 6p)],

and

u(x, 1) =F A 4 /7n1/2nzcothpq <1 / n;k(xvt)) expli(—xx+ ot + 6)],
v(x, 1) =F A 4 /—nl/znzcothpq <, / —?k(x—vt)) expli(—Kkx+ ot +6p)].

_ _ 2
Family 3 4 = 0, A = :F\/ By +2Bs My ¥/ [Ba + 2B > 4833712(1-%112)/(2’ o = ULI, M <0and n, > 0.

2 B3 4m

Consequently, the dark and singular soliton solutions shape up as:

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)
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u(x,t)=F A —nl/antanhpq ( —%k(x— v t)> expli(—xx+ ot +6y)], (75)

vix, ) =FA A4 —771/21,'2 tanh,,, ( —%k(x— v t)) expli(—kx+ ot + 6y)], (76)

and

u(x, 1) =F Al 4 /—771/2112 coth,y < —%k(x— v t)) expli(—xx+ ot + 6)], 77

v(x, 1) =TFA A 4 /—771/2nzcothpq (, / Tk(xvt)) expli(—Kkx+ ot + 6p)] . (78)

3. Results and discussion

In this section, we present and discuss the evolution of bright, dark, and singular soliton solutions for the complex-
valued solutions described by equations (57), (67), and (77), respectively. The analysis is based on the surface plots,
contour plots, and 2D plots provided in Figures 1-3, with the time variable t set at various intervals. The parameters used
for these simulations are , = -1, Ay =1, m=Lk=1,p=1,g=1,k=1,a" =1,a? =1, 51(1> =1, 51<2> =1,
52(1) =1, 52(2) =1, 53<1> =1, 53<2> =1, 61(1) =1, 61(2) =1, 63(1) =1and 63(2) = 1. Figure 1(a) presents the surface plot of
the bright soliton solution u (x, ¢) as described by equation (57). The plot shows the amplitude of the soliton as a function
of both space x and time 7. The soliton maintains a well-defined peak that travels through space over time, illustrating
the stable and localized nature of the bright soliton. The amplitude remains significant and does not disperse, which is
characteristic of a bright soliton. Figure 1(b) provides the contour plot of the same solution. This visualization allows us
to track the soliton’s trajectory more clearly, showing the soliton’s position and amplitude at various times. The contours
indicate the peak regions and how they evolve, confirming the persistence and non-dispersive properties of the bright
soliton. Figure 1(c) displays the 2D plot of the bright soliton solution at specific time intervals. This plot highlights the
soliton’s shape and amplitude at each selected time point. The 2D cross-sectional views confirm the soliton’s stability
and the consistent amplitude of the peak as it propagates through space. Figure 2(a) illustrates the surface plot of the dark
soliton solution u (x, t) as given by equation (67). Unlike the bright soliton, the dark soliton is characterized by a localized
drop in amplitude (a “dip”) against a continuous wave background. The surface plot shows the evolution of this dip as it
moves through space over time, maintaining its shape and depth. Figure 2(b) shows the contour plot of the dark soliton
solution. The contours clearly depict the soliton’s path and the depth of the dip. The plot confirms the soliton’s stability,
showing that the dip’s position and depth remain consistent over time, which is a hallmark of dark solitons. Figure 2(c)
presents the 2D plot of the dark soliton at different times. These cross-sectional views illustrate the characteristic dip in
the amplitude and its progression through space at the given time intervals. The dark soliton retains its shape and depth
consistently, verifying its non-dispersive nature. Figure 3(a) shows the surface plot of the singular soliton solution u (x, t)
as described by equation (77). The singular soliton is marked by a singularity or a sharp peak, which can be seen clearly in
the surface plot. The evolution of this singularity over time indicates that the soliton maintains its intensity and sharpness,
unlike typical solitons which have a smooth peak or dip. Figure 3(b) provides the contour plot of the singular soliton
solution. The contours highlight the extreme peak of the soliton and its movement through space. The plot suggests that
the singularity does not disperse and continues to propagate, illustrating the unique characteristics of singular solitons.
Figure 3(c) presents the 2D plot of the singular soliton solution at selected time intervals. These plots show the sharp,
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singular peak and its progression over time. The persistence of the singularity at each time point confirms the soliton’s
stable and non-dispersive nature despite its singularity. The figures and their respective subplots effectively demonstrate
the unique characteristics of bright, dark, and singular soliton solutions. Bright solitons exhibit a stable, localized peak
that propagates without dispersing. Dark solitons show a consistent, localized dip against a continuous wave background,
maintaining their shape and depth. Singular solitons are characterized by sharp, intense peaks that remain stable and
propagate through space. Each type of soliton solution exhibits its distinct properties, highlighting the diverse nature of
soliton behaviors in different contexts.

4. Conclusions

The current study delves into the exploration of soliton solutions within the dispersive concatenation model,
particularly focusing on the incorporation of the Sardar sub-equation approach. Through this method, the paper
successfully unveils a spectrum of soliton solutions, including bright, dark, and singular 1-solitons. These findings
are meticulously documented and illustrated within the paper, providing a comprehensive understanding of their
characteristics. Moreover, the paper goes beyond mere identification, presenting parameter constraints crucial for the
existence of these solitons. Such constraints offer valuable insights into the conditions under which these soliton
phenomena manifest, enriching our comprehension of the model’s behavior. However, this work serves as a stepping
stone for further investigation. It beckons the exploration of various avenues, such as the elucidation of conservation laws
and the identification of conserved quantities inherent within the model. Additionally, the model’s applicability extends
to diverse realms, including the examination of gap solitons and its relevance in magneto-optic waveguides and a plethora
of optoelectronic devices such as optical couplers, optical metamaterials, and photonic crystal fibers (PCF). Crucially,
future endeavors are directed towards adapting the model to dispersion-flattened fibers, unraveling new sets of solutions
and understanding their properties in this specific context. These forthcoming results hold significant promise and are
eagerly anticipated. Once attained, they will be seamlessly integrated with existing literature, enriching our understanding
of the model’s implications and applications [15-24].
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