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Abstract: In this paper, we apply a generalized variant of the concept of fixed point theory due to contraction mappings
on metric spaces to construct a general class of iterated function systems relative to the so-called φ-contraction mappings
on a metric space. In particular, we give a general framework to the Hutchinson method of constructing self-similar sets
as fixed points of suitable mappings issued from the φ-contractions on the metric space. The results may open a new
axis in the generalization of self-similar sets and associated self-similar functions. Moreover, our results may be extended
to general metric spaces with suitable assumptions. The theoretical results are applied for the computation of the fractal
dimension of a concrete example of the new self-similar sets.
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Notations
• N ≥ 1 being an integer designating the dimension of the Euclidean real space RN .
• ∥.∥ stands for the usual Euclidean norm on RN .
• d(., .) stands for the Euclidean distance associated to the norm ∥.∥.
• For x ∈ RN and r > 0, B(x, r) is the open ball of center x and radius r.
• R= [−∞, ∞].
• C N the set of all compact subsets in RN .
• δN(., .) the Hausdorff distance defined on C N .

1. Introduction and motivations
One important question in fractal analysis and geometry is the fractality of sets. To conclude about the fractality of

sets in the Taylor sense, we have to compare their Hausdorff and packing dimensions. This led researchers to construct
examples for which these dimensions coincide or not. In the sense of Taylor, we say that a set is fractal if its Hausdorff and
packing dimensions coincide. The fractal dimension is a tool to measure the roughness of sets in a non-smooth geometry.
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It therefore helps in exploring and exploiting the hidden properties of irregular and rough sets. The fractal dimension may
be also seen as a single index informing us about such roughness and/or the irregularity of sets. Recently, the concept of
fractal dimension has applications in many fields such as physics, biology, signal/image processing, computer vision, and
so on. These reasons confirm that the computation of the fractal dimension of sets is essential. However, theoretically,
such a computation is always difficult from the original definition of the Hausdorff and packing dimensions, or generally
the Carathéodory approach, even in the simple case of linear constructions. This led researchers to develop alternative
approaches to evaluate the fractal dimension of sets. One of the known concepts is the so-called self-similarity, which is a
special property that permits us to evaluate the dimension of a set by exploiting the properties of the similarities used in its
construction as an attractor of an iterated function system (IFS). A simple case is due to Cantor sets obtained as invariant
sets (fixed points) of suitable contractions acting on the power set of metric spaces. A main original result in this subject,
which relates the construction of the Cantor set to the dimension, is due to [1]. It states that the linear contractions used to
construct the Cantor set are themselves used to compute its fractal dimension. However, not all self-similar constructions
use linear IFS, there are indeed, nonlinear contractions, stochastic IFS, and so on. All these facts constitute reasonable
motivations that lead to the study of the fractal dimension of sets ([1–7]).

Abraham et al. [8] considered a weak contraction assumption to construct a generalized IFS and showed the existence
of a fixed point attractor of the system. BenMabrouk et al. in [9] showed that fractal dimensions may be goodmodelers for
nanomaterials oscillations. Besides, thesemodels are eventually nonlinear. The fractal models are combinedwithwavelets
to investigate the anisotropic behavior of nanomaterials. El-Nabulsi [10, 11] applied the concept of fractal dimension for
the investigation of the ocean Ekman transport dynamics based on product-like fractal measure and anisotropic continuum
media. Fractal dimensions are shown to affect the velocity profile. In addition, slow/fast waves are characterized via the
proposed model. (see also [12]. In [13], a nonlinear case dealing with spiral waves has been investigated via the fractal
dimensions. The impact of fractal dimensions is also investigated in [14] for the breaking and instabilities of the foam
drainage equation. The investigations showed a difference in thewave solution behavior from integer to fractal dimensions.
In [15], the authors showed that the fractal dimension concept is useful in materials science by investigating the quantum
effects in the metal oxide semiconductor. In [16], the concept of fractal dimensions was applied in fluid dynamics to
investigate the effects on the Rayleigh problem, the Burger’s Vortex, and the Kelvin-Helmholtz instability by using as
previously a product-like fractal measure. El-Nabulsi [17] applied the concept of fractal dimension to model seismic
waves by using the same concept of product-like fractal measure as previously. The model showed that effectively, the
fractal dimension has an impact on wave propagation. In particular, eventual ranges for the fractal dimension are estimated
to classify earthquakes into slow and fast waves. In [18], fractal dimensions are applied to study the thermal diffusion
flames by using the concept of non-integer dimensional space for complex fractal media.

Navascues [19] investigated a partial contractivity concept to show the validity of fixed points theory in some b-
metric spaces. The new weak concept is applied to the approximation of fractal functions corresponding to contractive
and non-contractive operators. In [20, 21], the concept of Rakotch contraction is used to derive an iterated function
system provided with the computation of dimensional results of the associated graph to the IFS. Verma et al. [22] applied
a weak contraction theory to obtain a generalized form of IFS already with the evaluation of its fractal dimension. Dalla,
Drakopoulos, and Prodromou [23], studied the fractal dimension in the sense of box-counting for a nonaffine fractal
functions system generalizing thus some known results for the affine case. In [24], the authors studied the quantization
dimension due to an infinite number of contracting similarities and an infinite probability vector. The authors showed that
for the associated fractal measure, its fractal dimension in the sense of Hausdorff coincides with its quantization dimension.
Furthermore, the stability of the infinite IFS is investigated. Verma [25] studied the Hausdorff dimension for some IFS
associated with infinitesimal similitudes and showed that the Hausdorff dimension of the self-similar attractor coincides
with the box dimension of the attractor. Verma et al. [26] investigated the problem of fractal interpolation functions
and fractal dimension of their graphs Bounds of the Hausdorff dimension of the graph are established with eventual
relation to the contractions used for the interpolation. In [27, 28], the concept of fractal dimension of the graph of fractal
measures in the sense of the quantization dimension is studied in the case of weighted iterated function systems and bi-
Lipschitz mappings, and recurrent IFS. Additionally, in [29], the case of inhomogeneous bi-Lipshitz IFS is investigated
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for the quantization dimension. Dubey and Verma studied an inhomogeneous case of directed attractors corresponding to
Mauldin-Williams graph dimension. Upper and lower bounds for the fractal dimension have been established.

From a simple geometric point of view, a definition of self-similar objects that may be familiar to the whole
community (even non-scientific) may be those objects that appear to own the ‘same’ or ‘similar’ shape or form when
zoomed out or in. Therefore, an alternative, simplified, and intuitive definition could be that self-similar objects are those
retaining their shapes independently of the zooming scale.

These ‘even resembling’ definitions show that mathematically, a self-similar object (set, function, measure, ...) to
be defined rigorously should be linked to its context or framework. Therefore, to be more precise mathematically, a
self-similar object may be defined as an object, which is exactly or approximately looking like a part of itself.

In nature, we recognize aspects of self-similarity around us. Trees show self-similarity, coastlines present statistical
self-similarity, the clouds and fog in the sky are types of self-similar objects, the pieces of ice, including crystals and their
microscopic structure, we, ourselves, grow older while maintaining a kind of self-similarity, and so on ([2, 4–6, 9]).

In mathematics, a special kind of self-similarity is related to fractals. In this context, many geometrical sets have been
investigated and understood, and thus applied by the next in many fields. We may cite the Koch snowflake, the Sierpinski
triangle and gasket, the Julia set, the Mandelbrot set, and the original Cantor set which may be considered as the basic
example. However, self-similar objects are generally different from fractals and may not be necessary fractals, such as the
line, the plane, or generally the usual Euclidean space which are self-similar but not fractal. One mathematical example
is the Mandelbrot set due to the father of fractals Benoit Mandelbrot. It is shown that such a set is locally self-similar on a
dense subset of points situated on its frontier, precisely, around the so-called Misiurewicz points. Such self-similarities are
surely non-linear. Moreover, many spaces may not be metric but instead have some weak structures such as pseudometric,
quasi-metric, or quasi-pseudometric. In these cases, we have to apply some weak forms of contractivity as in the present
case ([30]).

Cohen [31] used the concept of self-similar sets and their fractal dimension to establish an uncertainty principle on
Cantor-type sets in the sense of Bourgain-Dyatlov fractal uncertainty principle. In [32], the fractal uncertainty principle is
extended for special cases of fractal sets involving porosity lines. Betti [33] showed that the concepts of self-similarity and
fractal dimensions may be applied to the understanding of the famous Riemann Hypothesis on the distribution of prime
numbers by exploiting fractal geometry and algebraic geometry. In [34], the author introduced the notion of Fractal Verse
Theory as a novel conceptual framework combining many concepts from mathematics, physics, nature, and philosophy
to constitute a large look perceiving the whole universe. Moreover, in [35], a general framework of fractal mathematics
was introduced. Hohlfeld and Cohen [36] applied the concept of self-similar sets to study the frequency properties of
antennae. Besides, the authors concluded that some new families of practical designs may result from the self-similar
geometric insights. Gorman et al. [37] studied the concept of Chaudhuri, Sankaranarayanan, and Vardi regularity of
functions, and applied the fractal analysis techniques to establish a necessary and sufficient condition for the regularity of
some classes of functions according to their local affinity. Gorman and Schulz applied in [38, 39] the concept of fractal
dimensions such as Box-counting, Hausdorff to investigate the behavior of the fractal geometry of some automatic sets
known as Buchi automata.

In [40], Diatseris discussedmany variants of fractal dimensions and numerical estimators such as generalized entropy,
correlation sum, and extreme value theory. The proposed estimators are compared in different practical frameworks such
as dynamical systems, financial time series, and noised data. Mayor et al. [41] discussed the utility of fractal concepts
in the interpretation of Big Data such as the Complexity and Entropy in Physiological Signals. They found that fractal
dimensions may be good tools in the resampling data.

Kameyama [42] considered a pseudometric case to investigate the fractal geometry problems allowing the existence
of topological self-similar set structures. It is shown the possibility of topological self-similar sets without self-metrics
and with special contractions. Lapidus et al. [43] discussed many fractal dimensions and defined the concept of box-
counting zeta functions of sets allowing the development of a concept of complex dimensions of sets. In [44], pointwise
and distributional fractal tube formulas are established for fractal drums. The associated complex dimensions are defined
as poles of a fractal zeta function. The results are shown to include many self-similar classical cases such as the Sierpinski
gasket and self-similar fractal sprays. In [45], complex dimensions of nonlattice self-similar fractal strings are investigated
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in the framework of quasicrystals via Lagarias formula. Lapidus and Frankenhuijsen studied in [46] the fractality, self-
similarity, and complex dimensions of strings by comparison to the theory of varieties over finite fields, and from a
dynamical and geometric point of view. See also [47].

Having introduced briefly the concept of self-similarity, it is worth recalling that, in the majority of the classical
existing examples, the essential concept related to the construction of self-similar sets is the fixed point theory. It holds,
indeed, that self-similar sets are fixed points of suitable set-valued contractions defined on suitable metric spaces.

Details and backgrounds on these concepts, and some beautiful, amazing, and exciting applications of both concepts
of fractals and self-similar sets may be found in [1–5].

The next section is concerned with the preliminaries and general definitions to be applied in the rest of the paper.
Section 4 is devoted to our main results with their proofs. Section 5 concludes the paper.

2. Preliminaries
In this section, we recall the classical definition and/or construction of self-similar sets. The original construction is

due to Hutchinson [1], and is based on the application of the fixed point theory. It is next applied, especially, in the study
of fractal sets and fractal functions such as self-similar ones. An exhaustive list of references may be consulted in this
subject [3, 4].

Meanwhile, we recall before going on introducing and reviewing the basic preliminaries for our study, that the results
exposed in this paper may be extended naturally to metric spaces with suitable assumptions and modifications, such as
complete metric spaces.

Definition 1 A function f : RN −→ RN is said to be contractive or a Contraction on RN if there exists a constant c,
0 < c < 1 (known as the contraction ratio, or sometimes the Lipschitz constant), such that

∥ f (x)− f (y)∥ ≤ c∥x− y∥; ∀x, y ∈ RN .

Definition 2 For a finite set of self-maps S= (Si)1≤m (m ∈N fixed) onRN , a subset X ⊂RN is said to be S-invariant
if it satisfies X =

∪n
i=1 Si(X). The set X is called the self-similar set associated with S. The couple (X , S) is called an

iterated function system.
The following result due essentially to Hutchinson [1] deals with the existence, and uniqueness of S-invariant sets,

and is based on the application of the fixed point theory.
Proposition 1 [1] For any finite set of contractions S = (Si)1≤i≤m on RN , there exists a unique S-invariant subset

X ⊂ RN .
Definition 3 A function φ: [0, ∞)−→ [0, ∞) is said to be admissible iff
• it is nondecreasing,
• it is continuous on the right,
• φ(x)< x on [0, ∞).
We now introduce the concept of φ-contractions used in [48], where a general form of the classical Picard-Banach

contraction principle was established.
Definition 4 A function f : RN −→ RN is said to be a φ-contraction iff

d( f (x), f (y))≤ φ(d(x, y)), ∀x, y ∈ RN .

The following result is due to Browder [48], reformulated in the simple case of the Euclidean space RN .
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Proposition 2 [48] Let M ⊂ RN be non-empty compact, and T : M −→ M be φ-contractive. Then, T has a unique
fixed point.

Definition 5 Let E ⊂ RN and η > 0. We call an η-covering of E, any countable collection of balls {B(xi, ri)}i

satisfying

E ⊂
∪

i

B(xi, ri); xi ∈ E and 0 < ri < η , ∀ i.

We call an η-packing of E any countable collection of balls (B(xi, ri))i satisfying

∀ i, xi ∈ E, 0 < ri < η and ∀ i ̸= j, B(xi, ri)∩B(x j, r j) = /0.

The first versions of fractal dimensions are known as Hausdorff and packing dimensions. We recall in brief their
constructions. Let E ⊂ RN , and η > 0. For α > positive, let

H α
η (E) = inf∑

i
(2ri)

α ,

where the inf is taken over all η-covering {B(x j, r j)} j of E. It is a monotone function of the variable η . So it has a limit
as η ↓ 0,

H α(E) = lim
η↓00

H α
η (E) = sup

η>0
H α

η (E).

We know in fractal analysis or generally in measure theory thatH α is an outer metric measure onRN . Its restriction
on the Borel sets (H α -measurable sets) is called the Hausdorff measure with index α . It holds that for any set E, there
exists a critical value called the Hausdorff dimension of E, denoted by dimE, satisfying

H α(E) = 0 if α > dimE, and H α(E) = ∞ if α < dimE.

Similarly, the packing dimension is related to the packing measure. For α ≥ 0, let

P
α
η (E) = sup∑

i
(2ri)

α ,

where the sup is taken over all the η-packings of E. Let also

P
α
(E) = lim

η↓0
P

α
η (E) = inf

η>0
P

α
η (E),

and
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Pα(E) = inf { ∑
i

P
α
(Ei), E ⊆ ∪iEi }.

As in the Hausdorff case, Pα is an outer metric measure, which induces a measure on the Borel sets called the
packing measure. For any set E, Pα(E) has a cut-off value called the packing dimension of E, written DimE, satisfying

Pα(E) = ∞ if α < DimE and Pα(E) = 0 if α > DimE.

Moreover, there exists a cut-off value ∆(E) (called the logarithmic index of E) satisfying

P
α
(E) = ∞ if α < ∆(E) and P

α
(E) = 0 if α > ∆(E).

3. Main results
In the present work, we propose to develop some new classes of self-similar sets relative to the concept of φ-

contractions. To do this, consider a finite set of φ-contractions S= (Si)1≤m on RN as in Definition 4 above. We define as
in the classical case a sequence of set-valued maps Sk, k ≥ 0 by induction on k by setting for E ⊂ RN ,

S0(E) = E, S1(E) = S(E) =
n∪

i=1

Si(E), and Sk+1(E) = S(Sk(E)), ∀k. (1)

We thus obtain the new or the extended definition of self-similar sets to the φ-S-self-similar sets as follows.
Definition 6 A subset F ⊂ RN is said to be φ-S-invariant if it satisfies S(F) = F .
Our first result deals with the existence, and uniqueness ofφ-S-invariant sets and generalizes the results of Proposition

1.
Theorem 1 Let S = (Si)1≤i≤m be a finite set of φ-contractions on RN . There exists a unique non-empty compact F

in RN which is φ-S-invariant. Moreover,
i. F ̸= /0.
ii. F is compact.
iii. F =

∩
k≥0

Sk(A), ∀A ⊂ RN , A ̸= /0 and compact, with S(A)⊂ A.

Proof. Consider the set C N equipped with the well-known Hausdorff distance defined by

H(A, B) = inf
{

η > 0; A ⊂ B(η), and B ⊂ A(η)
}
,

where, for η > 0, A(η) is the η-neighborhood of A defined by

A(η) =
{

x ∈ RN ; d(x, A) = inf
y∈A

d(x, y)≤ η
}
,
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and similarly B(η). It is well-known that H is a metric on C N , and that (C N , H) is a complete metric space. Consider
next the set-valued function S: C N −→ C N defined as in (1). Let next ε > maxi H(Si(A), Si(B)). We may write

∀i, Si(A)⊂ Si(B)(ε), and Si(B)⊂ Si(A)(ε).

Therefore,

∀i, Si(A)⊂
(
∪
j
S j(B)

)
(ε), and Si(B)⊂

(
∪
j
S j(A)

)
(ε),

which leads to

∪
i
Si(A)⊂

(
∪
j
S j(B)

)
(ε), and ∪

i
Si(B)⊂

(
∪
j
S j(A)

)
(ε),

or equivalently,

S(A)⊂ S(B)(ε), and S(B)⊂ S(A)(ε).

As a consequence

H(S(A), S(B))≤ ε, ∀ε > max
i

H(Si(A), Si(B)).

As a result,

H(S(A), S(B))≤ max
i

H(Si(A), Si(B)).

Let now η > φ(H(A, B)) and t ∈ Si(A). Whenever A ⊂ B(η), we get t ∈ Si(B(η)). Therefore, there exists yt ∈ B(η)

such that t = Si(yt). For yt , there exists y0 ∈ B such that d(yt , y0)≤ η . As a result,

d(t, Si(y0)) = d(Si(yt), Si(y0))≤ φ(d(yt , y0))≤ η .

Similarly, for t ∈ Si(B). Consequently,

H(Si(A), Si(B))≤ η , ∀η > φ(H(A, B)),

which reads that

Volume 5 Issue 4|2024| 4191 Contemporary Mathematics



H(Si(A), Si(B))≤ φ(H(A, B)), ∀i.

As a result,

max
i

H(Si(A), Si(B))≤ φ(H(A, B)).

Consequently,

H(S(A), S(B))≤ φ(H(A, B)),

which reads finally that S is φ-contractive on (C N , H). So, there exists a unique compact subset F of RN , such that,

S(F) = F =
m∪

i=1

Si(F).

The setF is non-empty as it contains the fixed points of any finite composition Si1 ◦Si2 ◦· · ·◦Sik of k (∈N) contractions
from the set S= (Si)1≤m. It remains now to prove the last point. So, let A ∈ C N be as stated in the theorem. Consider the
(decreasing) sequence of sets (Ak = Sk(A))k, and write

E =
∩
k

Ak (= lim
k→∞

Ak).

It is straightforward that the real-valued sequence (H(Ak, E))k is decreasing to 0, which means that (Ak)k converges
to E in (C N , H). On the other hand, observe that Ak+1 = S(Ak). Therefore, E = S(E). Hence,

F = E =
∩
k≥0

Sk(A).

Definition 7 The φ-S-invariant set F in Definition 6 and Theorem 1 is said to the φ-S-self-similar set associated to
the set of φ-contractions S = (Si)1≤m. The pair (S, F) is called a φ-iterated function system.

The next result deals with a type of Carathéodory dimension of the φ-S-self-similar set F . To investigate such a
problem, we will introduce firstly the φ-Carathéodory measure of sets. Original definitions and backgrounds on such a
measure and dimension may be found in [7].

For a subset E ⊂ RN , and α ∈ R, write

Σα
φ (E) = lim

η→0

(
inf

{
∑

i
(φ(ri))

α ; (B(xi, ri))i is an η-covering of E

})
.
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It is straightforward that Σα
φ is an outer measure on RN . For the simple choice φ(x) = ax, with some a > 0, we come

back to the classical case of the Hausdorff measure.
By the same way, we introduce a packing measure as follows. For α ≥ 0, write

Θα
φ (E) = lim

η→0

({
sup∑

i
(2ri)

α ; (B(xi, ri))i is an η-packing of E

})
.

This is a pre-measure as it lacks the sub-additivity property. To get a measure, we set

Θα
φ (E) = inf

{
∑

i
Θα

φ (Ei); E ⊆ ∪
i
Ei

}
.

We get here a metric outer measure on RN . As previously, for the simple choice φ(x) = ax, with some a > 0, we
come back to the classical case of the packing measure.

The following proposition gives a general variant of the well-known Hausdorff and packing dimensions of sets, as
well as the logarithmic index.

Lemma 1 For any admissible function φ , and any subset E ⊂ RN , there exists unique cut-off values αE , βE ∈ R
such that

1. Σα
φ (E) = 0, ∀α > αE , and Σα

φ (E) = ∞, ∀α < αE .
2. Θα

φ (E) = 0, ∀α > βE , and Θα
φ (E) = ∞, ∀α < βE .

The proof is easy and follows similar techniques as in [1, 4].
Definition 8 For any admissible function φ , and any subset E ⊂ RN , we call the cut-off values
1. αE : the φ-Hausdorff-dimension of the set E, and denoted dimφ(E).
2. βE : the φ-packing-dimension of the set E, and denoted Dimφ(E).
We may see easily that such a dimension satisfies some common properties with the concept of dimension in general,

especially Carathéodory, Hausdorff, packing, and capacity dimensions of sets. More precisely, we have the following
lemma.

Proposition 3 For any admissible function φ , the following assertions hold.
1. 0 ≤ dimφ(A)≤ N and 0 ≤ Dimφ(A)≤ N, ∀A ⊂ RN .
2. dimφ(A)≤ dimφ(B) and Dimφ(A)≤ Dimφ(B), ∀A ⊂ B ⊂ RN .
3. dimφ(∪

n
An) = max

n
(dimφ(An)) and Dimφ(∪

n
An) = max

n
(Dimφ(An)), ∀(An)n ⊂ RN .

4. dimφ(A)≤ Dimφ(A), ∀A ⊂ RN .
Proof. We will develop the proofs for the case of dimφ . The remaining case may be deduced by similar techniques.
1. Is obvious.
2. For η > 0 and any η-covering (B(xi, ri))i of B, with 0 < ri < η , this is obviously an η-covering of A ⊂ B.

Therefore,

Σα
φ, η(A)≥ ∑

i
(φ(ri))

α .

Taking the infimum on all these coverings, we get

Σα
φ , η(A)≥ Σα

φ, η(B).
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Σα
φ (A)≥ Σα

φ (B).

Consequently,

Σα
φ (A) = 0, ∀α > dimφ(B),

which reads that

dimφ(A)≤ α, ∀α > dimφ(B),

which is equivalent to

dimφ(A)≤ dimφ(B),

3. On one side, observe that

A j ⊂ ∪
n

An), ∀ j.

Hence, Assertion 2 yields that

dimφ(A j)≤ dimφ(∪
n

An), ∀ j.

As a result,

max
j
(dimφ(A j))≤ dimφ(∪

n
An).

On the other side, consider, for each n, an η-covering (B(xi, n, ri, n))i of An satisfying

Σα
φ, η(An)≤ ∑

i
(φ(ri, n))

α ≤ Σα
φ, η(An)+

η
2n .

Then, the whole set (B(xi, n, ri, n))i, n is an η-covering for the whole union ∪
n

An. Therefore, for η > 0 such that
ri, n < η , ∀i, n, we get

Σα
φ, η

(
∪
n

An

)
≤ ∑

n
∑

i
(φ(ri, n))

α ≤ ∑
n

(
Σα

φ , η(An)+η
)
.
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Letting η → 0, we get

Σα
φ

(
∪
n

An

)
≤ ∑

n
Σα

φ (An).

Consequently, for α > max
n

(dimφ(An)), we get

Σα
φ

(
∪
n

An

)
= 0,

which reads that

dimφ

(
∪
n

An

)
≤ α, ∀α > max

n
(dimφ(An)),

which is equivalent to

dimφ

(
∪
n

An

)
≤ max

n
(dimφ(An)).

4. Using the well-known Besicovitch covering theorem, we show that there exists a constant C ∈]0, +∞[ satisfying
for any E ⊆ RN ,

Σα
φ (E)≤CΘα

φ (E).

As a result,

Σα
φ (E) = 0, ∀α > Dimφ(E),

which reads that

dimφ(E)≤ α, ∀α > Dimφ(E),

or equivalently,

dimφ(E)≤ Dimφ(E).

The second main result of this paper deals with the characterization of the φ-S-self-similar sets introduced previously
by means of their φ-dimension. This gives a general form of the Hutchinson theorem about classical self-similar sets.
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Theorem 2 Let φ be an admissible function, S = (Si)1≤m a set of φ-contractions on RN , and F the φ-S-self-similar
set associated to S. Denote also Λ(φ) = sup

t ̸=0

φ(t)
t . Then,

dimφ(F) = Dimφ(F) =− log(m)

log(Λ(φ))
.

Proof. Denote s =− log(m)
log(Λ(φ)) . We shall prove that

0 < Σs
φ(F)< ∞.

To do this, write for k ∈ N, Ik = {1, 2, ..., m}k, and for a multi-index i = (i1, ..., ik) ∈ Ik, we extend the notation of a
single index to the multi-one by writing Fi = Si1 ◦ ...◦Sik(F). We immediately observe that

F =
∪

(i1, ..., ik)∈Jk

Fi1...ik .

By letting ri = |Fi| the diameter of Fi, we may write |Fi| ≤ φ(|F |). Therefore,

∑
i

φ(ri)
s ≤ ∑

i
φ(|F |)s,

which leads to Σs
φ(F)< ∞. Similarly, we prove that Σs

φ(F)> 0.
The case dealing with Dimφ may be treated by similar techniques.

Example 1 Take φ(x) =
1
3

x and S1(x) =
1
3

x, and S2(x) =
1
3

x+
2
3
, we come back to the well-known triadic Cantor

set as the self-similar (invariant) set associated to (S1, S2). We see easily that for i = 1, 2,

|Si(x)−Si(y)|= φ(|x− y|), ∀x, y.

Furthermore, we have here m = 2 and Λ(φ) =
1
3
. Moreover, Σα

φ = Hα the well-known Hausdorff measure, while
Θα

φ = Pα the well-known packing measure. From Theorem 2, we deduce that

dimφ(F) = Dimφ(F) =
log2
log3

,

which is effectively the Hausdorff dimension of the triadic Cantor set.

Example 2 Take φ(x) =
2
3

x and S1(x) =
1
3

x2, and S2(x) =
1
3

x2 +
2
3
. We may write easily that for i = 1, 2,

|Si(x)−Si(y)|= φ(|x− y|), ∀x, y.
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It holds that the pair of φ-contractions (S1, S2) possesses an invariant self-similar set F (which resembles the Cantor

set). Furthermore, we have for this example, m = 2 and Λ(φ) =
2
3
. From Theorem 2, we deduce that

dimφ(F) = Dimφ(F) =
log2

log3− log2
.

4. Conclusion
In this paper, we used a general concept of contractivity relative to a gauge function leading to some general form

of invariant self-similar sets generalizing the result of Hutchinson [1]. This concept is then applied to a general variant
of Carathéodory’s measure and dimension. Our results fall with the classic notions of Hausdorff measure and dimension
for the special choice of the gauge function. Furthermore, the new variant is more adaptable to nonlinear cases, where the
classical variants are difficult to handle.
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