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Abstract: The present study describes the effects of different parameters on heat and mass transfer phenomena in fluid 
flow across a wedge. A non-Newtonian chemically reactive Powell-Eyring nanofluid model is considered for analysis. 
The governing equations for the boundary layer regime are derived by applying the principles of mass, momentum, and 
energy conservation. Using similarity transformation, the partial differential equations (PDEs), with boundary conditions 
are converted into ordinary differential equations (ODEs). With prescribed boundary conditions in the free stream and at 
the wall, these equations are simplified into an ordinary differential equations system. This simplification is attained using 
appropriate scaling of similarity transformations which produce a number of important dimensionless control parameters. 
The computational solution to the nonlinear coupled boundary value problem is obtained using the bvp4c numerical tool 
in MATLAB. The effects of the various physical parameters on the energy, velocity and mass profiles are investigated 
through graphs and tables. Also, Nusselt number, skin friction coefficient, and Sherwood number are explored. Validation 
with previous studies is included.
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Nomenclature
Symbol

Cp   Specific heat [J·kg-1·K-1]
C    Nanoparticles concentration [kg·m-3]
qr   Radiative heat flux [W·m-2]
DB   Brownian diffusivity coefficient [m2s-1]
DT   Thermophoretic diffusion coefficient [m2s-1]
α		 	 	 Thermal diffusivity [m2s-1]
ρ		 	 	 Fluid density [kg·m-3]
μ		 	 	 Dynamic viscosity [kg·m-1s-1]
θ		 	 	 Kinematic viscosity of fluid [m2s-1]
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ρf    Nanofluid density [kg·m-3]
ρp   Nanoparticles density [kg·m-3]
T    Temperature [K]
Nb   Brownian motion coefficient
Nt   Thermophoresis parameter
Rd   Radiation parameter
Ec   Eckert number
Pr   Prandtl number
M   Hartmann number
Le   Lewis number
λ1   Powell-Eyring material constant
ε    Powell-Eyring parameter
K1   Chemical reaction parameter
Gc   Mass Grashof number
Gr   Thermal Grashof number
δ    Source/Sink parameter
η    Similarity transformation parameter
φ    Nondimensional concentration
θ    Nondimensional temperature
τ    Dimensionless heat capacity ratio

Subscripts

w   Fluid condition at wall
∞   Fluid condition at infinity

1. Introduction
The significance of non-Newtonian fluid flow in engineering and industry has drawn a lot of attention in recent 

years. Non-Newtonian fluids with heat and mass transfer are widely used in the processing of food, making paper, and 
lubricating processes. Therefore, researchers have developed a variety of non-Newtonian fluid models like Casson, 
Maxwell, Sisko, Jeffrey, Powell Eyring, Williamson. Recently, many researchers have put their focus on Powell-Eyring 
fluid model because of its vital function in numerous scientific and technological domains. Krishna et al. [1] examined 
the unstable flow of a Powell-Eyring fluid via an inclined stretched sheet. Akbar [2] has quoted many applications of 
Powell-Eyring model. Gireesha et al. [3] investigated the nano particle behavior in Powell-Eyring fluid flow in three 
dimensions and got significant results. Shuguang et al. [4] explored the thermal outcomes of Eyring Powell material with 
decomposition of dusty particles. This family of boundary layer flows is associated with the two-dimensional wedge 
conFigureuration. Several chemical engineering systems include non-Newtonian flows from wedge bodies which have 
been described in detail. Kandasamy et al. [5] examined the effects of viscosity and thermophoresis on MHD flow through 
a porous wedge. Later, the effects of viscosity on MHD convective flow over a non-isothermal wedge, which varies with 
temperature, were demonstrated by Pal et al. [6]. Many researchers [7-10] carried out their studies considering the flow 
across moving wedge and derived significant results. 

“Enhancement of heat transfer is essential in improving performances and compactness of electronic devices. Usual 
cooling agents (water, oil, etc.) have relatively small thermal conductivities, and therefore heat transfer is not very efficient. 
Thus, to augment thermal characteristics very small size particles (nanoparticles) were added to fluids forming the so-
called nanofluids. These suspensions of nanoparticles in fluids have physical and chemical properties depending on the 
concentration and the shape of particles. It is observed that adding a little amount of nanoparticles to a base fluid increases 
the thermal conductivity of the fluid significantly”. Macha et al. [11] examined the effect of buoyant forces on boundary 
layer flow of a viscoelastic nanofluid across a wedge. The fluid properties of the nanofluids themselves influence their flow 
across a wedge-shaped slip surface, as pointed out by Das et al. [12]. The radiated magnetized flow of Maxwell nanoliquid 
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over stretching surface with Soret and Dufour effects was explained by Shuguang et al. [13]. Khan et al. [14] applied 
Cattaneo-Christov heat and mass flux theory in the flow of Maxwell nanofluid and gyrotactic microorganisms towards a 
spinning disk. Numerous branches of science and engineering can benefit from an understanding of convective flow with 
heat and mass transfer under the influence of magnetic field and chemical reactions. This phenomenon is significant for 
the nuclear reactor cooling process, the chemical and petroleum industries, and packed-bed catalytic reactors. Madhu et al. 
[15] highlighted the heat and mass in Power-law nanofluid. Hayat et al. [16-18] examined the various phenomena of flow 
considering Powell-Eyring model with different boundary conditions. The MHD Falker-Skan fluid flow was explained 
by Ghiasi et al. [19]. Peristaltic transport of a Ree-Eyring fluid with heat transmission was explained by Shuguang 
et al. [20]. Pantokratoras et al. [21] investigated the Falkner-Skan flow with variable viscosity and nonlinear thermal 
radiation. Furthermore, Hamid et al. [22] computed numerical results for heat transfer in Williamson fluid flow driven 
by wedge-geometry. Eyring-Powell nanofluid flow across a wedge with thermal radiation was investigated by Raju et al. 
[23]. Analysis of transport processes and their interaction with chemical reaction has the greatest contributions to many 
areas of chemical science. The effect of chemical reaction on different geometry of the problem has been investigated 
by many authors. Das et al. [24] studied the effect of mass transfer flow past an impulsively started infinite vertical plate 
with heat flux and chemical reaction. Dadhich et al. [25] elaborated the heat and mass transmission in Magneto-Mixed 
Convective Sisko Nanofluid over a Wedge with Viscous Dissipation. Also, Agarwal et al. [26] extended the study of 
entropy generation chemically reactive bioconvective Powell-Eyring nanofluid over a riga plate.

From above cited literature, it is evident that no investigation has been carried out to examine the heat and mass 
transfer analysis of chemically reactive Powell-Eyring nanofluid flow over a wedge. Boundary layer flow over a wedge 
has become a trending subject in fluid mechanics nowadays due to its thermal engineering applications, for example, 
thermal insulation heat exchangers, geothermal systems, crude oil extraction, the storage of nuclear waste, etc. So, in the 
current study an attempt is made to bridge this gap. In this analysis, the governing equations for the boundary layer regime 
are derived by applying the principles of mass, momentum, and energy conservation. Using similarity transformation, 
the partial differential equations (PDEs), with boundary conditions are converted into ordinary differential equations 
(ODEs). With prescribed boundary conditions in the free stream and at the wall, these equations are simplified into an 
ordinary differential equations system. Numerical simulation is obtained using bvp4c solver in MATLAB. The effects 
of the various physical parameters on the energy, velocity and mass profiles are investigated through graphs and tables. 
Also, Nusselt number, skin friction coefficient, and Sherwood number are explored. Validation with previous studies is 
included.

2. Mathematical formulation

y, v

Concentration boundary layer
Thermal boundary layer
Momentum boundary layer

y = 0, u = 0, v = 0, T = Tw, C = Cw

x, u

1

1
2

1
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β π

β

Ω =

=
+

,  ,  0,  ,  my u u Px v T T C C∞ ∞ ∞→∞ = = → → →

2
Ω

Figure 1. Schematic diagram of current analysis
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The regime under consideration comprises steady, incompressible, two-dimensional mixed convective flow of the 
Powell Eyring nanofluid over a wedge. It is assumed that velocity of the possible flow away from boundary layer is u∞. The 
temperature Tw and concentration at the wedge are fixed and higher than the ambient concentration Cw and temperature 
(C∞, T∞), respectively. The physical model is depicted in Figure 1.

The expression of the Cauchy stress tensor τ for Powell-Eyring fluid is given by

1

1

1 1sinhV V
c

τ µ
β

−  = ∇ + ∇ 
 

(1)

where τ is shear stress, μ is the dynamic viscosity, V is the fluid velocity, β1 and c are the fluid parameters of the Powell- 

Eyring model. The second order approximation for 1 1sinh V
c

−  ∇ 
 

 is as follows:

3
1 1 1 1 1 1sinh ;  1

6
V V V V

c c c c
−    ∇ ≅ ∇ − ∇ ∇   
   

 (2)

Taking the assumptions stated above into account, the continuity, momentum, energy and mass equations [27] are 
given by:
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The boundary conditions prescribed at the wall and the edge of the boundary layer are:

0,  0,  ,   at 0,  ,  0,  ,   as . m
w wu v T T C C y u u Px v T T C C y∞ ∞ ∞= = = = = = = → → → →∞ (7)

Here u and v are the velocity components in x and y directions respectively, T and C are the temperature and concen-
tration variables resp., B0 is the intensity of magnetic field, μ is the fluid viscosity, ρ is the fluid density, k is the thermal 
conductivity, β is the thermal expansion coefficient β* is the solutal expansion coefficient, Q is the heat source, g is the 
gravitational acceleration,	σ is the electrical conductivity, k1 is the chemical reaction rate on the species concentration, 
Ω wedge angle parameter, β1 and c are the fluid characteristics (Powell Eyring model). Free stream velocity is u∞ = Pxm 

where 2

22
m

β
β

=
−

 is the Hartree pressure gradient which corresponds to 2β π
Ω

=  for total wedge angle Ω and P is a pos-

itive number.
To reduce the set of partial differential equations to ordinary differential equations, the following similarity 

,

.

,

,

.
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transformations are used [28, 29]:
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where a prime denotes the differentiation with respect to η.
Incorporating the above scaling variables (8) into equations (4) to (7), the following nonlinear ordinary differential 

equations are emerged:
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The dimensionless boundary conditions are:
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Following are the governing parameters involved in the above equations (9-11):
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3. Coefficients of heat and mass transport
The pertinent quantities of engineering interest like Skin friction coefficient (Cf ), local Nusselt number ( )xuN  and 

local Sherwood number (Shx) are defined as follows:
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After applying similarity transformation, the following expressions describe local skin friction, heat transfer rate, 
and mass transfer rate:
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4. Solution methodology
An analytical solution of boundary value problem defined by eqns. (7)-(9) is difficult due to the strong coupling, 

nonlinearity and multi-degree terms. Therefore, the governing equations (7)-(9) and boundary conditions (10, 11) are 
solved numerically using the bvp4c algorithm in MATLAB. The numerical solution is found using this package by fixing 
the convergence criteria to 0.000001. The bvp4c solver implements a numerical method called 3-stage Lobatto IIIa 
collocation. This method belongs to the finite difference discretization family of techniques [30]. To use the bvp4c solver, 
the nonlinear ordinary differential equations and boundary conditions need to be reformulated as first order equations and 
the basic syntax used is sol = bvp4c (@OdeBVP, @OdeBC, solinit). The “solinit” function contains the initial mesh points 
and initial guesses at these points. Multiple solutions can be obtained by providing additional initial guesses in the solinit 
function. The reduced system is formulated as:
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The corresponding boundary conditions are:

(18)1 2 4 6 2 4 6(0) 0,  (0) 0,  (0) 1 0,  (0) 1 0,  (1) 1 0,  (1) 0,  (1) 0.y y y y y y y= = − = − = − = = =

5. Result and discussion
The effect of each pertinent parameter involved in the study on fluid velocity f '(η), temperature θ(η) and concentration 

φ(η), is highlighted and discussed in this section. Comprehensive results are obtained and are presented in Tables 1-3 and 
Figures 2-17.

Figures 2-4 portray the effect of Hartmann number M on f ', θ	and φ profiles. It can be seen from Figure 2, the fluid 
velocity drops as the value of M increases. It is due to the Lorentz force which is produced by the induced magnetic field 
and subsequently retards the motion. In the fluid flow regime, the resistive force generates extra heat as M increases, hence 
the boost in temperature and concentration is observed. Figures 5-6 depict that there is a negative correlation between Pr 
and fluid velocity which is true practically also. Similar behavior is observed for temperature as well. Increasing value 
of Pr enhances the viscous force and reduces the thermal conductance of the fluid, resulting a deduction in the velocity 
and temperature; the opposite behavior is observed in the concentration profile. As Pr increases, thermal conductivity of 
fluid decreases, causing a decrease in thermal boundary layer thickness, and source term also contributes to the rise of 
concentration which can be observed from Figure 7. The impact of chemical reaction parameter K1 is discussed by Figures 
8-9. It is observed that an increase in K1 decreases the concentration, whereas the temperature of the fluid increases. It 
is due to the heat produced by the chemical reaction taking place in the fluid flow domain. Figures 10-11 indicate the 
effect of radiation parameter Rd on temperature and concentration profiles. The increasing values of Rd strengthens the 
thermal layer which results in an increment in temperature and a reduction in concentration. To analyze the effect of 

wedge angle on f ' and θ, it is pertinent to mention that the Hartree pressure gradient 2

22
m

β
β

=
−

 corresponds to 2β π
Ω

=  

for total wedge angle Ω. Figures 12-13 illustrate that as the wedge angle increases, the fluid velocity is enhanced but the 
temperature diminishes. This is due to the fact that an increase in wedge angle is related to an increase in fluid pressure. 
As thermophoresis parameters Nt improves, temperature and concentration profiles increase as shown in Figures 14-15. 
It is due to the movement of particles from a hot surface to cool region. The temperature profile also upgrades when 
the Brownian motion parameter Nb is increased, as demonstrated in Figure16. Because with the rising values of Nb, the 
intensity of the movement of the nanoparticles increases which leads to increment in kinetic energy of the particles and 
hence enhance the temperature field. Figure 17 represents the impact of thermal Grashof number Gr on the velocity profile 
and a positive correlation can be seen. Since Gr signifies the relative effects of the thermal buoyancy force to the viscous 
hydrodynamic force in the boundary layer so as anticipated, velocity increases due to the boost in thermal buoyancy force.
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Figure 13. θ	vs m
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Figure 14. θ vs Nt
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Figure 15. φ	vs	Nt
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Figure 16. θ	vs Nb
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The numerical results for the rate of heat transfer are compared with the established results in Table 1 and are found 
in good agreement with the existing literature which validates the current study also. The impact of Lewis number Le on 
f ''(0), -θ'(0) and -φ'(0) is indicated in Table 2. It shows that f ''(0) declines with increasing Le, but -θ'(0) and -φ'(0) are 
reduced. Table 3 illustrates the behavior of skin friction coefficient, local Nusselt number, and local Sherwood number 
with the change of various physical parameters.

Table 1. The values of Pr for Newtonian fluids when comparing different values of -θ'(0), ε = 0, Lε = 0, M = 0, Nt = 0, Nb = 0, λ1 = 0, Gr = 0, Gc = 0, m 
= 1, K1 = 0

Pr Magyari et al. [26] Abbas et al. [27] Present study

1 -0.9547 -0.9551 -0.9555

3 -1.8691 -1.8121 -1.8523

5 -2.5001 -2.5577 -2.5428

10 -3.6604 -3.6868 -3.6876

Table 2. Effects of Le on (a) f ''(0), (b) -θ'(0), (c) -φ'(0) when ε = 0.5, Pr = 1.5, M = 0.1, Nt = 0.1, Nb = 0.2, λ1 = 0.5, Gr = 0.5, Gc = 0.5, m = 0.5, K1 = 0.5

Le f ''(0) -θ'(0) -φ'(0)

0.1 0.2798 0.7832 -0.1535

2.0 0.0376 0.6258 -1.1111

5.0 0.0611 0.5496 -1.8538

7.0 0.0625 0.4897 -2.2144

Table 3. Variation of 
1
2

xe fR C , ( )
1

2
x xu eN R

−

 and ( )
1

2
xx eSh R

−

 with various physical parameters

Ω ε Gr K1 M
1
2

xe fR C ( )
1

2
x xu eN R

−

( )
1

2
xx eSh R

−

0 0.7787 0.3584 2.1474

6
π 1.0625 04897 2.2144

2
π 2.8429 0.8631 2.0899

0 0.1039 0.4874 2.2168

0.2 0.0858 0.4884 2.2157

0.4 0.0698 0.4893 2.2148

0 0.6126 0.3640 2.1536

1.0 0.7691 0.4219 2.2950

2.0 3.2438 0.6938 2.6329

0 0.0895 0.5421 1.6564

0.2 0.0880 0.5179 1.8960

0.5 0.0858 0.4884 2.2157

0 0.1879 0.5404 2.2200

0.5 0.6582 0.3121 2.2024

1.0 2.2806 0.1476 2.1931
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6. Conclusions
In the current study, a mathematical model is developed to carry out the theoretical analysis for heat and mass transfer 

in MHD flow of the Powell Eyring nanofluid over a wedge in the presence chemical reaction and thermal radiation along 
with convective surface boundary condition. The major outcomes are summarized as follows:

• The higher values of pressure gradient parameter lead to enhance the fluid velocity and reduce the temperature.
• Increasing values of magnetic field retards the fluid velocity and heat transfer rate.
• Fluid velocity and temperature both are inversely proportional to Prandtl number.
• The velocity of fluid is more pronounced for higher values of thermal Grashof number.
• By increasing the chemical reaction parameter, the temperature goes up, but concentration shows the opposite 

trend. Same phenomena are observed with increasing values of radiation parameter.
• Fluid temperature boosts with an increase in thermophoresis and Brownian motion parameters.
The present work can be further extended to investigate the effects of inclined magnetic fields, viscous dissipation, 

and unsteady flow over curved stretching surfaces like cone and riga plate.
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