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Abstract: A SVEIR epidemic model with a delay in diagnosis is studied in a constant and variable environment. The
mathematical analysis shows that the dynamics of the model in the constant environment are completely determined by
the magnitude of the delay-induced reproduction numberRα . We established that ifRα < 1, the disease-free equilibrium
is globally asymptotically stable, and when Rα > 1 the endemic equilibrium is globally asymptotically stable. In the
variable environment, the model undergoes a transcritical bifurcation for Rα = 1 leading to changes in the stability of
the equilibrium points. The analytical effect of the delays in epidemic diagnosis is investigated. A minimum diagnosis
rate αmin has been determined to face or control the disease effectively. Finally, numerical illustrations were presented to
support the theoretical results.
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1. Introduction
Infectious diseases include all diseases caused by the transmission of a pathogenic agent such as bacteria, viruses,

parasites and champions. They are currently the leading cause of death worldwide. According to the WHO, infectious
diseases are responsible for about 13 million deaths every year and are now the leading cause of death among children and
young adults (see [1]). A number ofmeasures have been taken to eradicate infectious diseases, including improved hygiene
conditions, better nutrition, vaccination and isolation. Mathematical models are an essential tool for understanding the
dynamics of infectious diseases. They are used to prevent and control the epidemic progression in a community (see [2]).
Several mathematical models were proposed and studied in order to understand the dynamics of infectious diseases and
to control them (see [3–21]). Among these mathematical models, the SVEIR type model is one of the models that is most
often used. It is used in modeling diseases such as measles, tuberculosis, influenza, hepatitis B, Covid-19. For this type
of model, the dynamics of the spread of the epidemic occurs according to five compartments (see [10, 12, 14, 15, 22–24]).

In [12], Miled and Amer proposed a SVEIR model of measles epidemic in which they examined the influence of
the susceptible population that has been vaccinated and the rate of infection when susceptible individuals interact with
infected individuals. Using an SVEIR model, Nkamba et al. (see [14]) studied the impact of vaccination in the control of
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poliomyelitis disease. In [15], a SVEIR model for streptococcal pneumonia with a saturated incidence of infection was
formulated and studied by Opara et al. The authors showed that vaccination coverage must be higher than the critical
proportion of vaccination to eradicate streptococcal pneumonia disease in the community. A SVEIR model with two
delays was formulated by Zhang et al. (see [23]). The authors analyzed the impact of these delay parameters on the
dynamic behaviour of the system. Recently, several authors have used SVEIRmodels to assess the influence of incomplete
vaccination on epidemics such as hepatitis B in [24], tuberculosis in [22], and HIV in [10].

During COVID-19 pandemic, it was established that more infected were undiagnosed due to the lacks of diagnostic
reagents and the long waiting time for diagnosis. This situation had a great impact on the spreading of this disease.
Therefore, it becomes important to diagnose and identify the infected in time and then treat the confirmed case.

In this work, we formulate a SVEIR epidemiological model with delay in diagnosis in a changing environment. This
model treats diseases with total immunity, such as meningitis, chickenpox, etc. The infectious class I is divided into two
classes, namely I1 for individuals diagnosed in time and I2 for those who received a delayed diagnosis. This work is
organized as follows: in section 2, we formulate the model. Section 3, is devoted to the study of the dynamics of model
without a changing environment. In section 4, we derive the analytical effects of the delay in diagnosis and we provide
sensitivity analysis results. In section 5, the model in a variable environment is presented. We end by a conclusion in
section 6.

2. Model formulation
The total population at time t denoted by N is subdivided into six compartments, namely, susceptible individuals

(S), Vaccinated (V ), undetected non-symptomatic (Latent) (E), infected individuals with timely diagnosis (I1), infected
individuals with delay in diagnosis (I2) and recovered individuals (R). The flowchart of the model is given by Figure 1
below.

Figure 1. Transfer diagram

The state of infection is determined by the complex interaction between disease transmission, vaccinations, recoveries
and different mortality rates. In fact, this model takes into account the impact of mortality without having an explicit
variable for deaths, but individuals in each category (S,V, E, I1, I2, R) can die of natural causes, so we add a rate µ which
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characterises natural mortality to each equation µS, µV, µE, µI1, µI2, and µR. In addition, infected individuals may die
from the disease, with a rate δ1 for those who received a rapid diagnosis and a rate δ2 for those who received a delayed
diagnosis. The dynamic of the model is given by following the differential equation system:



dS
dt = Λ+θV −β (εI1 + I2)S− (ξ +µ)S,

dV
dt = ξ S−ωβ (εI1 + I2)V − (θ +µ)V,

dE
dt = β (εI1 + I2)S+ωβ (εI1 + I2)V − (µ + k)E,

dI1
dt = αkE − (µ + τ1 +δ1)I1,

dI2
dt = (1−α)kE − (µ + τ2 +δ2)I2,

dR
dt = τ1I1 + τ2I2 −µR,

dα
dt = r,

(1)

where r is the speed of environmental change. From the last equation of system (1), we derive thatα(t) = rt+α0 (α0 is the
initial value), which represents the possible directional environmental change. The susceptible compartment is increased
through the recruitment of individuals, either by immigration or birth into the population at a constant rate Λ and the
natural mortality rate is µ . Susceptible individuals are vaccinated at a rate ξ , and the protection provided by the vaccine
wanes over time at the rate θ . The disease transmission rate is β and ε (0 < ε < 1) is the reduction in infection rate due to
timely diagnosis. The vaccine offered to individuals is thought to be imperfect (i.e., it does not offer total protection against
the disease), the vaccinated individuals may become infected again, but with a lower level than those in the susceptible
compartment. Therefore, the transmission rate β is estimated by a scaling factor (1−ω), where ω (0 ≤ ω ≤ 1) is the
viability of the vaccine and ω = 0 implies that a vaccine provides 100% assurance against the disease, while ω = 1
indicates that a vaccine does not secure individuals. Latent individuals become infected with rate k and a fraction of α(t)
of these individuals receive timely diagnosis and the remaining fraction (1−α(t)) are diagnosed with delay. Mortality
rates due to disease in compartments I1 and I2 are δ1 and δ2 respectively, with δ1 < δ2. Infected individuals with timely
diagnosis recover at rate τ1 and infected individuals with delayed diagnosis recover at rate τ2 , with τ2 < τ1.

3. Analysis of the model in a constant environment
In a constant environment (i.e r = 0), system (1) is reduced to the following system:
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

dS
dt = Λ+θV −β (εI1 + I2)S− (ξ +µ)S,

dV
dt = ξ S−ωβ (εI1 + I2)V − (θ +µ)V,

dE
dt = β (εI1 + I2)S+ωβ (εI1 + I2)V − (µ + k)E,

dI1
dt = αkE − (µ + τ1 +δ1)I1,

dI2
dt = (1−α)kE − (µ + τ2 +δ2)I2,

dR
dt = τ1I1 + τ2I2 −µR,

(2)

with initial conditions (S(0), V (0), E(0), I1(0), I2(0), R(0)) ∈ R6
+. For model (2) to be epidemiologically realistic, it

is necessary to prove that all variables remain positive for all time. Clearly
dS
dt

∣∣∣
S=0

≥ 0,
dV
dt

∣∣∣
V=0

≥ 0,
dE
dt

∣∣∣
E=0

≥ 0,
dI1

dt

∣∣∣
I1=0

≥ 0,
dI2

dt

∣∣∣
I2=0

≥ 0 and
dR
dt

∣∣∣
R=0

≥ 0 within R6
+. Thus, Proposition 2.1 of [25] implies that R6

+ is positively
invariant.

Let N = S+V +E + I1 + I2 be the total population. Thus, by summing all equations of (2), we obtain

dN
dt

= Λ−µN − (τ1 +δ1)I1 − (τ2 +δ2)I2.

Thus,

dN
dt

≤ Λ−µN,

and by the standard comparison theorem (see [26]) we derive that

N(t)≤ Λ
µ
−
(

Λ
µ
−N(0)

)
e−µt .

In particular, if N(0)≤ Λ
µ , then N(t)≤ Λ

µ for all t > 0.
Hence, the domain

D =

{
(S(t), V (t), E(t), I1(t), I2(t), R(t)) ∈ R6

+: N(t)≤ Λ
µ

}

is positively invariant.
Theorem 1 For every initial value in D , solutions of system (2) exists for all time t > 0.
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Proof. The right-hand-side of system (2) is locally Lipschitz because it is class C 1, hence the local existence of
solutions follows. The global existence of the solutions is due to the fact that D is positively invariant and attracting all
the solutions.

3.1 Global dynamic of the disease-free equilibrium

Since the recovered human population R does not appear in the remaining equations of system (2), it is then sufficient
to consider the following system



dS
dt = Λ+θV −β (εI1 + I2)S− (ξ +µ)S,

dV
dt = ξ S−ωβ (εI1 + I2)V − (θ +µ)V,

dE
dt = β (εI1 + I2)S+ωβ (εI1 + I2)V − (µ + k)E,

dI1
dt = αkE − (µ + τ1 +δ1)I1,

dI2
dt = (1−α)kE − (µ + τ2 +δ2)I2,

(3)

with initial conditions

(S(0), V (0), E(0), I1(0), I2(0)) ∈ R5
+.

The disease-free equilibrium E0 is given by

E0 = (S0, V0, 0, 0, 0) ,

where

S0 =
Λ(θ +µ)

µ(µ +θ +ξ )
and V0 =

ξ Λ
µ(µ +θ +ξ )

.

Following the method of Driesche and Watmough (see [27]) the delay-induced reproduction number is given by

Rα =
βΛk (θ +µ +ωξ ) [εα (µ + τ2 +δ2)+(1−α)(µ + τ1 +δ1)]

µ (µ + k)(µ +θ +ξ )(µ + τ1 +δ1)(µ + τ2 +δ2)
.

The following result hold.
Theorem 2 If Rα < 1, the disease-free equilibrium E0 is locally asymptotically stable.
Proof. Consider
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g1 =
dS
dt

, g2 =
dV
dt

, g3 =
dE
dt

, g4 =
dI1

dt
and g5 =

dI2

dt
.

By linearising system (3) around the equilibrium point E0, we obtain the system

(dS
dt

,
dV
dt

,
dE
dt

,
dI1

dt
,

dI2

dt

)′

= J (E0)(S, V, E, I1, I2)
′
,

where J(E0) is the Jacobian matrix evaluated at E0. Clearly, the matrix J(S, V, E, I1, I2) is given by

J (S, V, E, I1, I2) =



∂g1
∂S

∂g1
∂V

∂g1
∂E

∂g1
∂ I1

∂g1
∂ I2

∂g2
∂S

∂g2
∂V

∂g2
∂E

∂g2
∂ I1

∂g2
∂ I2

∂g3
∂S

∂g3
∂V

∂g3
∂E

∂g3
∂ I1

∂g3
∂ I2

∂g4
∂S

∂g4
∂V

∂g4
∂E

∂g4
∂ I1

∂q4
∂ I2

∂g5
∂S

∂g5
∂V

∂g5
∂E

∂g5
∂ I1

∂g5
∂ I2


,

and then, J(E0) is given by:

J(E0) =



−(µ +ξ ) θ 0 −εβS0 −βS0

ξ −(µ +θ) 0 −ωεβV0 −ωβV0

0 0 −(µ + k) εβY1 βY1

0 0 αk −Y2 0

0 0 (1−α)k 0 −Y3


,

where

Y1 = S0 +ωV0, Y2 = µ + τ1 +δ1 and Y3 = µ + τ2 +δ2,

and this give us the characteristic polynomial

P(λ ) =(λ +µ)(λ +µ +θ +ξ )(λ 3 +a1λ 2 +a2λ +a3)

where
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a1 =µ + k+µ + τ1 +δ1 +µ + τ2 +δ2,

a2 =(µ + k)(µ + τ1 +δ1 +µ + τ2 +δ2)+(µ + τ1 +δ1)(µ + τ2 +δ2)

− kβ (S0 +ωV0)(1−α + εα),

a3 =(µ + k)(µ + τ1 +δ1)(µ + τ2 +δ2)(1−Rα).

The Hurwitz matrices associated with the polynomial λ 3 +a1λ 2 +a2λ +a3 are :

H1 = a1, H2 =

(
a1 1
a3 a2

)
and H3 =

a1 1 0
a3 a2 a1

0 0 a3

 .

Since Rα < 1, thus

βk(S0 +ωV0)<
(µ + k)(µ + τ1 +δ1)(µ + τ2 +δ2)

[(1−α)(µ + τ1 +δ1)+ εα(µ + τ2 +δ2)]
, (4)

that is

− kβ (S0 +ωV0)(1−α + εα)>

−(µ + k)(µ + τ1 +δ1)(µ + τ2 +δ2)(1−α + εα)

[(1−α)(µ + τ1 +δ1)+ εα(µ + τ2 +δ2)]
.

We obtain

a2 >
1

(1−α)(µ + τ1 +δ1)+ εα(µ + τ2 +δ2)

[
(1−α)(2µ + k

+ τ2 +δ2)(µ + τ1 +δ1)
2 + εα(µ + τ2 +δ2)

2(2µ + k+ τ1 +δ1)
]
,

that is a2 > 0.
Further,
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a1a2 −a3 =(µ + k)2[µ + τ1 +δ1 +µ + τ2 +δ2]+ (2µ + k+ τ2

+δ2)(µ + τ1 +δ1)
2 +(µ + τ2 +δ2)

2(2µ + k+ τ1 +δ1)

+(µ + k)(µ + τ1 +δ1)(µ + τ2 +δ2)(Rα +2)− (µ + k

+µ + τ1 +δ1 +µ + τ2 +δ2)kβ (S0 +ωV0)(1−α + εα).

Since Rα < 1, by using (4) we get

− (µ + k+µ + τ1 +δ1 +µ + τ2 +δ2)kβ (S0 +ωV0)(1−α + εα)>

1
[(1−α)(µ + τ1 +δ1)+ εα(µ + τ2 +δ2)]

[
− (µ + k+µ + τ1 +δ1

+µ + τ2 +δ2)(µ + k)(µ + τ1 +δ1)(µ + τ2 +δ2)(1−α + εα)
]
.

Then,

a1a2 −a3 >
(1−α)(µ + τ1 +δ1)

2

(1−α)(µ + τ1 +δ1)+ εα(µ + τ2 +δ2)

[
(µ + k)2 +(µ + k)(µ + τ1 +δ1)

+(µ + τ1 +δ1)(µ + τ2 +δ2)+(µ + τ2 +δ2)
2 +(µ + k)(µ + τ2 +δ2)(Rα +1)

]

+
εα(µ + τ2 +δ2)

2

(1−α)(µ + τ1 +δ1)+ εα(µ + τ2 +δ2)

[
(µ + k)2 +(µ + τ1 +δ1)(µ + τ2 +δ2)

+(µ + k)(µ + τ2 +δ2)+(µ + τ1 +δ1)
2 +(µ + k)(µ + τ1 +δ1)(Rα +1)

]
.

Thus,

a1a2 −a3 > 0.

Therefore, we have
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detH1 = a1 > 0, detH2 = a1a2 −a3 > 0 and

detH3 = a3(a1a2 −a3)> 0 if Rα < 1.

Thus, according to the Routh-Hurwitz criterion (see [28]), the roots of the characteristic polynomial are negative if
Rα < 1. Hence, the disease-free equilibrium E0 is locally asymptotically stable if Rα < 1.

To establish the global stability of disease-free equilibrium E0, we follow the method discussed by Chavez et al. in
[29] and details are reproduced below.

Suppose that a model can be written as following:


dX
dt = F(X , Z)

dY
dt = G(X , Z) with G(X , 0) = 0,

(5)

where X ∈ Rn1 denotes the uninfected individuals and Z ∈ Rn2 denotes the infected individuals, n1 and n2 are positive
integers. Let E0 = (X0, 0) be the disease free equilibrium of the system (5). Consider the following two assumptions as:

(C1) For dX
dt = F(X , 0), X0 is globally asymptotically stable.

(C2) G(X , Z) = DY G(X0, 0)Z − Ĝ(X , Z), Ĝ(X , Z) ≥ 0 for (X , Z) ∈ D , where DZG(X0, 0) is an M-matrix (stable
matrix with non-negative off diagonal elements) and D is bounded invariant region.

If the model (5) satisfies the above two conditions then the following Lemma 1 holds.
Lemma 1 [29] The disease-free equilibrium E0 = (X0, 0) of the model (5) is globally asymptotically stable for

R0 < 1 provided the assumptions (C1) and (C2) are satisfied.
Following the method of Castillo-Chavez et al. (see [29]) we rewrite system (3) as follows.


dX
dt = F(X , Z),

dZ
dt = G(X , Z),

(6)

where X = (S, V )
′ and Z = (E, I1, I2)

′ ,

F(X , Z) =
(

Λ+θV −β (εI1 + I2)S− (ξ +µ)S, ξ S−ωβ (εI1 + I2)V − (θ +µ)V
)′

,

G(X , Z) =
(

β (εI1 + I2)(S+ωV )− (µ + k)E, αkE − (µ + τ1 +δ1)I1, (1−α)kE − (µ + τ2 +δ2)I2

)′

.

Here, ′ denotes the transpose. Clearly G(X , 0) = (0, 0, 0)
′ and the disease-free equilibrium of system (3) is given by

E0 = (X0, 0) with X0 = (S0, V0). X0 is globally asymptotically stable for dX
dt = F(X , 0) as X → (S0, V0) whenever t → ∞.

Further,
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B =
∂G
∂Z

(X0, 0) =


−(µ + k) εβ (S0 +ωV0) β (S0 +ωV0)

αk −(µ + τ1 +δ1) 0

(1−α)k 0 −(µ + τ2 +δ2)

 ,

is an M-matrix (the off-diagonal elements of B are non-negative). Then,

Ĝ(X , Z) =BZ −G(X , Z)

=

β (εI1 + I2)
(

Λ
µ − (S+V )+(1−ω)V

)
0
0

 .

Since S+V ≤ Λ
µ and 1−ω ≥ 0, thus Ĝ(X , Z)≥ 0. So, according to Lemma 1 we have the following result.

Theorem 3 The disease-free equilibrium E0 of system (3) is globally asymptotically stable in D if Rα < 1.

3.2 Global dynamic of the endemic equilibrium

In this subsection we show the stability result of the endemic equilibrium.
Theorem 4 System (3) has a unique endemic equilibrium wheneverRα > 1, and no endemic equilibrium otherwise.
Proof. Denote by E∗ = (S∗, V ∗, E∗, I∗1 , I∗2 ) the endemic equilibrium of system (3). Thus, E∗ solves the following

system



Λ+θV ∗−β (εI∗1 + I∗2 )S
∗− (ξ +µ)S∗ = 0,

ξ S∗−ωβ (εI∗1 + I∗2 )V
∗− (θ +µ)V ∗ = 0,

β (εI∗1 + I∗2 )S
∗+ωβ (εI∗1 + I∗2 )V

∗− (µ + k)E∗ = 0,

αkE∗− (µ + τ1 +δ1)I∗1 = 0,

(1−α)kE∗− (µ + τ2 +δ2)I∗2 = 0,

(7)

that is,
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

S∗ = Λ+θV ∗

µ+ξ+β (εI∗1+I∗2 )
,

V ∗ = ξ S∗

µ+θ+ωβ (εI∗1+I∗2 )
,

β (εI∗1 + I∗2 )S
∗+ωβ (εI∗1 + I∗2 )V

∗− (µ + k)E∗ = 0,

I∗1 = αkE∗
µ+τ1+δ1

,

I∗2 = (1−α)kE∗

µ+τ2+δ2
.

(8)

Setting d1 = µ + τ1 +δ1, d2 = µ + τ2 +δ2 and A = k(εαd2+(1−α)d1)
d1d2

we get



S∗ = Λ(µ+θ+ωβAE∗)
µ(µ+ξ+θ)+β (µ+θ+ω(µ+ξ ))AE∗+ωβ 2A2(E∗)2 ,

V ∗ = ξ Λ
µ(µ+ξ+θ)+β (µ+θ+ω(µ+ξ ))AE∗+ωβ 2A2(E∗)2 ,

β (εI∗1 + I∗2 )S
∗+ωβ (εI∗1 + I∗2 )V

∗− (µ + k)E∗ = 0,

I∗1 = αkE∗
d1

,

I∗2 = (1−α)kE∗

d2
.

(9)

It follows from the third equation of (9) that E∗ solves the equation

m2(E∗)3 +m1(E∗)2 +m0E∗ = 0. (10)

where,

m2 =−ωβ 2A2(µ + k),

m1 =ωΛβ 2A2 −βA(µ + k)(µ +θ +ω(µ +ξ ),

m0 =βAΛ(µ +θ +ωξ )−µ(µ + k)(µ +ξ +θ)

=µ(µ + k)(µ +ξ +θ)(Rα −1).

Equation (10) give us E∗ = 0 or
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m2(E∗)2 +m1(E∗)+m0 = 0. (11)

The solution E∗ = 0 gives the disease-free equilibrium E0 defined above. Since, Rα > 1, thus m0 > 0 and equation
(11) has a unique positive solution given by

E∗ =
−m1 −

√
m2

1 −4m2m0

2m2
.

If Rα ≤ 1 then m0 ≤ 0, so the model has no positive solution.
In order to establish the local stability of the endemic equilibrium E∗ we use the theory of the central variety as

discussed by Chavez and Song [22], and their result is given as follows
Lemma 2 [22] Consider the following system of ODEs with a parameter β

dx
dt

= q(x, β ), q: Rn ×R→ Rn and q ∈ C2 (Rn ×R) , (12)

with 0 is an equilibrium of this system and q(0, β ) = 0 for all β . Assume
P1: Dxq(0, 0) =

(
∂qp
∂x j

(0, 0)
)
is the linearization matrix of the system (12) around the equilibrium 0 with β evaluated

at 0. Zero is a simple eigenvalue of Dxq(0, 0) and all other eigenvalues of Dxq(0, 0) have negative real parts.
P2: Matrix Dxq(0, 0) has a non-negative right eigenvector l and a left eigenvector v corresponding to the zero

eigenvalue.
Let qp be the p-th component of q and

a =
n

∑
p, i, j=1

vplil j
∂ 2qp

∂xi∂x j
(0, 0)

b =
n

∑
p, i=1

qpli
∂ 2qp

∂xi∂β
(0, 0).

The local dynamics of the system (12) around 0 is totally determined by a and b.
(i) a > 0, b > 0. When β < 0 with |β | ≪ 1, 0 is locally asymptotically stable, and there exists a positive unstable

equilibrium; when 0 < β ≪ 1, 0 is unstable and there exists a negative and locally asymptotically stable equilibrium.
(ii) a < 0, b < 0. When β < 0 with |β | ≪ 1, 0 is unstable; when 0 < β ≪ 1, 0 is locally asymptotically stable, and

there exists a positive unstable equilibrium.
(iii) a > 0, b < 0. When β < 0 with |β | ≪ 1, 0 is unstable, and there exists a locally asymptotically stable negative

equilibrium; when 0 < β ≪ 1, 0 is stable, and a positive unstable equilibrium appears.
(iv) a < 0, b > 0. When β changes from negative to positive, 0 changes its stability from stable to unstable.

Corresponding a negative unstable equilibrium becomes positive and locally asymptotically stable.
We set S = x1, V = x2, E = x3, I1 = x4 and I2 = x5. Using vector notation W = (S, V, E, I1, I2)

′
, system (3) can be

re-written in the form
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dW
dt

= qp = (q1, q2, q3, q4, q5)
′
,

that is



dx1
dt = Λ+θx2 −β (εx4 + x5)x1: = q1,

dx2
dt = ξ x1 −ωβ (εx1 + x5)x2 − (θ +µ)x2: = q2,

dx3
dt = β (εx4 + x5)x1 +ωβ (εx4 + x5)x2 − (µ + k)x3: = q3,

dx4
dt = αkx3 − (µ + τ1 +δ1)x4: = q4,

dx5
dt = (1−α)kx3 − (µ + τ2 +δ2)x5: = q5.

(13)

By linearising system (13) around the equilibrium point E0, we obtain the system

(dS
dt

,
dV
dt

,
dE
dt

,
dI1

dt
,

dI2

dt

)′

= J(E0)(S, V, E, I1, I2)
′
,

where J(E0) is the Jacobian matrix evaluated at E0. Clearly, the matrix J(S, V, E, I1, I2) is given by

J (S, V, E, I1, I2) =



∂q1
∂S

∂q1
∂V

∂q1
∂E

∂q1
∂ I1

∂q1
∂ I2

∂q2
∂S

∂q2
∂V

∂q2
∂E

∂q2
∂ I1

∂q2
∂ I2

∂q3
∂S

∂q3
∂V

∂q3
∂E

∂q3
∂ I1

∂q3
∂ I2

∂q4
∂S

∂q4
∂V

∂q4
∂E

∂q4
∂ I1

∂q4
∂ I2

∂q5
∂S

∂q5
∂V

∂q5
∂E

∂q5
∂ I1

∂q5
∂ I2


,

and then, J(E0) is given by:
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J(E0) =



−(µ +ξ ) θ 0 −εβS0 −βS0

ξ −(µ +θ) 0 −ωεβV0 −ωβV0

0 0 −(µ + k) εβY1 βY1

0 0 αk −Y2 0

0 0 (1−α)k 0 −Y3


,

where

Y1 = S0 +ωV0, Y2 = µ + τ1 +δ1 and Y3 = µ + τ2 +δ2.

If β is the bifurcation point and if we consider the case when Rα = 1 and then solve for β , we obtain

β = β ∗ =
(µ + k)(µ + τ1 +δ1)(µ + τ2 +δ2)

k(S0 +ωV0) [εα(µ + τ2 +δ2)+(1−α)(µ + τ1 +δ1)]
.

The Jacobian matrix J(E0)with β = β ∗ has a simple zero eigenvalue, hence we can use the center manifold theory in
the analysis of the dynamics of system (13) near β = β ∗. The Jacobian matrix J(E0) near β = β ∗ has a right eigenvector
associated with the zero eigenvalue given by l = (l1, l2, l3, l4, l5)

′
.

Thus,



−(µ +ξ ) θ 0 −εβ ∗S0 −β ∗S0

ξ −(µ +θ) 0 −ωεβ ∗V0 −ωβ ∗V0

0 0 −(µ + k) εβ ∗Y1 β ∗Y1

0 0 αk −Y2 0

0 0 (1−α)k 0 −Y3





l1

l2

l3

l4

l5


=



0

0

0

0

0


,

which gives
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

−(µ +ξ )l1 +θ l2 − εβ ∗S0l4 −β ∗S0l5 = 0,

ξ l1 − (µ +θ)l2 − εωβ ∗V0l4 −ωβ ∗V0l5 = 0,

−(µ + k)l3 + εβ ∗(S0 +ωV0)l4 +β ∗(S0 +ωV0)l5 = 0,

αkl3 − (µ + τ1 +δ1)l4 = 0,

(1−α)kl3 − (µ + τ2 +δ2)l5 = 0.

(14)

After solving system (14) we get

l1 =−
(

εαk
µ + τ1 +δ1

+
(1−α)k

µ + τ2 +δ2

)(
(µ +θ)β ∗S0 +ωθβ ∗V0

µ(µ +θ +ξ )

)
< 0,

l2 =−
(

εαk
µ + τ1 +δ1

+
(1−α)k

µ + τ2 +δ2

)(
ωβ ∗V0(µ +ξ )+β ∗ξ S0

µ(µ +θ +ξ )

)
< 0,

l3 > 0, l4 =
αk

µ + τ1 +δ1
l3 > 0, l5 =

(1−α)k
µ + τ2 +δ2

l3 > 0.

Let v = (v1, v2, v3, v4, v5)
′
be the left eigenvector of the Jacobian matrix J(E0) associated with the zero eigenvalue

at β = β ∗.
Thus,



−(µ +ξ ) ξ 0 0 0

θ −(µ +θ) 0 0 0

0 0 −(µ + k) αk (1−α)k

−εβ ∗S0 −εωβ ∗V0 εβ ∗Y1 −Y2 0

−β ∗S0 −ωβ ∗V0 β ∗Y1 0 −Y3





v1

v2

v3

v4

v5


=



0

0

0

0

0


,

which gives
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

−(µ +ξ )v1 +ξ v2 = 0,

θv1 − (µ +θ)v2 = 0,

−(µ + k)v3 +αkv4 +(1−α)kv5 = 0,

−εβ ∗S0v1 − εωβ ∗V0v2 + εβ ∗(S0 +ωV0)v3 − (µ + τ1 +δ1)v4 = 0,

−β ∗S0v1 −ωβ ∗V0v2 +β ∗(S0 +ωV0)v3 − (µ + τ2 +δ2)v5 = 0.

(15)

After solving system (15) we get

v1 = v2 = 0, v3 > 0,

v4 =
εβ ∗(S0 +ωV0)

µ + τ1 +δ1
v3 > 0,

v5 =
β ∗(S0 +ωV0)

µ + τ2 +δ2
v3 > 0.

As in [22], we now calculate the values of a and b defined by

a =
5

∑
p, i, j=1

vplil j
∂ 2qp

∂xi∂x j
(E0), b =

5

∑
p, i=1

vpli
∂ 2qp

∂xi∂β ∗ (E0),

where qp the p-th component of q.
From system (13), we have

∂ 2q3

∂x1∂x4
(E0) =

∂ 2q3

∂x4∂x1
(E0) = εβ ∗,

∂ 2q3

∂x1∂x5
(E0) =

∂ 2q3

∂x5∂x1
(E0) = β ∗,

∂ 2q3

∂x2∂x4
(E0) =

∂ 2q3

∂x4∂x2
(E0) = εωβ ∗,

∂ 2q3

∂x2∂x5
(E0) =

∂ 2q3

∂x5∂x2
(E0) = ωβ ∗.
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It follows that

a = v3

5

∑
p, i, j=1

lil j
∂ 2q3

∂xi∂x j
(E0)

= v3 (2l1l4β ∗ε +2l1l5β ∗+2l2l4ωβ ∗ε +2l2l5ωβ ∗)

= 2β ∗v3l1 (εl4 + l5)+2β ∗v3ωl2 (εl4 + l5)

= 2v3β ∗ (l1 +ωl2)(εl4 + l5) .

Further,

∂ 2q3

∂x4∂β ∗ (E0) = ε(S0 +ωV0),
∂ 2q3

∂x5∂β ∗ (E0) = S0 +ωV0.

Hence,

b =v3

5

∑
p, i=1

li
∂ 2q3

∂xi∂β ∗ (E0)

=v3 (εl4(S0 +ωV0)+ l5(S0 +ωV0))

=v3 (εl4 + l5)(S0 +ωV0) .

Clearly a < 0 and b > 0. Now by applying condition (iv) of Lemma 2 we have the following result.
Theorem 5 The endemic equilibrium E∗ = (S∗, V ∗, E∗, I∗1 , I∗2 ) is locally asymptotically stable for Rα ≥ 1.
We now demonstrate the global stability of the endemic equilibrium E∗ of model (3).
Theorem 6 The unique endemic equilibrium E∗ is globaly asymptoticaly stable whenever Rα > 1.
Proof. Consider the following Lyapunov function

L =
(

S−S∗−S∗ ln
S
S∗

)
+
(

V −V ∗−V ∗ ln
V
V ∗

)
+
(

E −E∗−E∗ ln
E
E∗

)

+ c1

(
I1 − I∗1 − I∗1 ln

I1

I∗1

)
+ c2

(
I2 − I∗2 − I∗2 ln

I2

I∗2

)
,

where c1 and c2 are positives. The positive equilibrium E∗ satisfies the following equations
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Λ = (µ +ξ )S∗+β (εI∗1 + I∗2 )S
∗−θV ∗,

(µ +θ)V ∗ = ξ S∗−ωβ (εI∗1 + I∗2 )V
∗,

(µ + k)E∗ = β (εI∗1 + I∗2 )S
∗+ωβ (εI∗1 + I∗2 )V

∗,

(µ + τ1 +δ1)I∗1 = αkE∗,

(µ + τ2 +δ2)I∗2 = (1−α)kE∗. (16)

Differentiating L with respect to time yields

dL

dt
=
(

1− S∗

S

)
Ṡ+
(

1− V ∗

V

)
V̇ +

(
1− E∗

E

)
Ė + c1

(
1− I∗1

I1

)
İ1

+ c2

(
1− I∗2

I2

)
İ2

=
(

1− S∗

S

)(
(µ +ξ )S∗+β (εI∗1 + I∗2 )S

∗−θV ∗+θV

−β (εI1 + I2)S− (µ +ξ )S
)
+
(

1− V ∗

V

)(
ξ S−ωβ (εI1 + I2)V

−ξ
S∗V
V ∗ +ωβ (εI∗1 + I∗2 )V

)
+
(

1− E∗

E

)(
β (εI1 + I2)(S+ωV )

−β (εI∗1 + I∗2 )
S∗E
E∗ −ωβ (εI∗1 + I∗2 )

V ∗E
E∗

)
+ c1

(
1− I∗1

I1

)(
αkE

−αk
E∗I1

I∗1

)
+ c2

(
1− I∗2

I2

)(
(1−α)kE − (1−α)k

E∗I2

I∗2

)
.

After a bit of algebra, we obtain
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dL

dt
=− (µ +ξ )

(S−S∗)2

S
+ εβ I∗1 S∗

(
1− I1S

I∗1 S∗
− S∗

S
+

I1

I∗1

)

+β I∗2 S∗
(

1− I2S
I∗2 S∗

− S∗

S
+

I2

I∗2

)
+θV ∗

( V
V ∗ −1− S∗V

SV ∗

+
S∗

S

)
+ξ S∗

(
1+

S
S∗

− V
V ∗ −

SV ∗

S∗V

)
+ εωβ I∗1V ∗

( V
V ∗

− I1V
I∗1V ∗ −1+

I1

I∗1

)
+ωβ I∗2V ∗

( V
V ∗ −

I2V
I∗2V ∗ −1+

I2

I∗2

)

+ εβ I∗1 S∗
(

1+
I1S
I∗1 S∗

− E
E∗ −

I1SE∗

I∗1 S∗E

)
+β I∗2 S∗

(
1+

I2S
I∗2 S∗

− E
E∗ −

I2SE∗

I∗2 S∗E

)
+ εωβ I∗1V ∗

(
1+

I1V
I∗1V ∗ −

E
E∗ −

I1E∗V
I∗1 EV ∗

)

+ωβ I∗2V ∗
(

1+
I2V
I∗2V ∗ −

E
E∗ −

I2E∗V
I∗2 EV ∗

)
+ c1αkE∗

(
1+

E
E∗

− I1

I∗1
− EI∗1

E∗I1

)
+ c2(1−α)kE∗

(
1+

E
E∗ −

I2

I∗2
− EI∗2

E∗I2

)
. (17)

We now introduce the new variables

x =
S
S∗

, y =
V
V ∗ , z =

E
E∗ , u =

I1

I∗1
and n =

I2

I∗2
.

Thus,

dL

dt
=(µ +ξ )

(
2− x− 1

x

)
S∗+ εβ I∗1 S∗

(
1−ux− 1

x
+u
)

+β I∗2 S∗
(

1− xn− 1
x
+n
)
+θV ∗

(
y−1− y

x
+

1
x

)

+ξ S∗
(

1+ x− y− x
y

)
+ εωβ I∗1V ∗

(
y−uy−1+u

)

+ωβ I∗2V ∗
(

y−ny−1+n
)
+βεI1S∗

(
1+ xu− z− xu

z

)
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+β I2S∗
(

1+ xn− z− xn
z

)
+ωβεI∗1V ∗

(
1+ yu− z− yu

z

)

+ωβ I∗2V ∗
(

1+ yn− z− yn
z

)
+ c1αkE∗

(
1+ z−u− z

u

)

+ c2(1−α)kE∗
(

1+ z−n− z
n

)

=(µ +ξ )S∗
(

2− x− 1
x

)
+
(

εβ I∗1 S∗+β I∗2 S∗−θV ∗+ξ S∗

− εωβ I∗1V ∗−ωβ I∗2V ∗+βεI∗1 S∗+β I∗2 S∗+ωβεI∗1V ∗

+ωβ I∗2V ∗+ c1αkE∗+ c2(1−α)kE∗
)
+u
(

εβ I∗1 S∗

+ εωβ I∗1V ∗− c1αkE∗
)
+n
(

β I∗2 S∗+ωβ I∗2V ∗

− c1(1−α)kE∗
)
+ y
(

θV ∗−ξ S∗+ωβεI∗1V ∗+ωβ I∗2V ∗
)

−β I∗1 S∗−β I∗2 S∗−ωβεI∗1V ∗−ωβ I∗2V ∗+ c1αkE∗

+ c2(1−α)kE∗− 1
x

βεI∗1 S∗− 1
x

β I∗2 S∗− y
x

θV ∗− x
y

ξ S∗

+ xξ S∗+
1
x

θV ∗− xu
z

βεI∗1 S∗− xn
z

β I∗2 S∗− yu
z

ωβεI∗1V ∗

− yn
z

ωβ I∗2V ∗− c1
z
u

αkE∗− c2(1−α)
z
n

kE∗. (18)

We set in equation (18)

c1 =
εβ I∗1 (S

∗+ωV ∗)

αkE∗ and c2 =
β I∗2 (S

∗+ωV ∗)

(1−α)kE∗ .

Using (16) and replacing c1 and c2 by their expressions in (18), we obtain
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dL

dt
=µS∗

(
2− x− 1

x

)
+
(

2− x− 1
x

)(
θV ∗+ωβεI∗1V ∗+ωβ I∗2V ∗

)

− x
y

(
θV ∗+ωβεI∗1V ∗+ωβ I∗2V ∗

)
+ x
(

θV ∗+ωβεI∗1V ∗

+ωβ I∗2V ∗
)
+2ωβεI∗1V ∗+2ωβ I∗2V ∗− y

x
θV ∗+

1
x

θV ∗

− yu
z

ωβεI∗1V ∗− yn
z

ωβ I∗2V ∗− z
u

ωβεI∗1V ∗− z
n

ωβ I∗2V ∗−µV ∗y,

and with a rearrangement we get

dL

dt
=µS∗

(
2− x− 1

x

)
+θV ∗

(
2− y

x
− x

y

)
+ εβ I∗1 S∗

(
3− 1

x
− xu

z

− z
u

)
+β I∗2 S∗

(
3− 1

x
− xn

z
− z

n

)
+ωβεI∗1V ∗

(
4− 1

x
− x

y

− yu
z
− z

u

)
+ωβ I∗2V ∗

(
4− 1

x
− x

y
− yn

z
− z

n

)
−µV ∗y.

Since the arithmetic mean exceeds the geometric mean, the following inequalities hold:

(
2− x− 1

x

)
≤ 0,

(
2− y

x
− x

y

)
≤ 0,

(
3− 1

x
− xu

z
− z

u

)
≤ 0,

(
3− 1

x
− xn

z
− z

n

)
≤ 0,

(
4− 1

x
− x

y
− yu

z
− z

u

)
≤ 0 and

(
4− 1

x
− x

y
− yn

z
− z

n

)
≤ 0.

That is,

dL

dt
≤ 0.

Moreover, we observe that dL
dt = 0 if and only if (S, V, E, I1, I2) = (S∗, V ∗, E∗, I∗1 , I∗2 ). Therefore, {E∗} represent

the largest compact invariant set in {(S, V, E, I1, I2) ∈ R5
+ | dL

dt = 0} . Thus, by LaSalle’s invariant principle (see [30]),
E∗ is globally asymptotically stable for Rα > 1.
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4. Effect of delays in diagnosis and sensitivity analysis results
4.1 Analytical effect of delays in diagnosis

When the disease is timely diagnosed, thus the basic reproduction number is given by

R0 =
βΛkε (θ +µ +ωξ )

µ (µ + k)(µ +θ +ξ )(µ + τ1 +δ1)
. (19)

Assume that R0 > 1 and we want to establish the influence of the delay in the diagnostic by following the idea of
Hsu Schmitz (see [31] ).

Differentiating Rα with respect to α , gives us

∂Rα
∂α

=
−kβΛ(θ +µ +ωξ ) [µ(1− ε)+(τ1 − ετ2)+(δ1 − εδ2)]

µ(µ + k)(µ +θ +ξ )(µ + τ1 +δ1)(µ + τ2 +δ2)
.

Since τ1 > τ2, thus ∂Rα
∂α < 0 if ε < ε∗ = δ1+τ1+µ

δ2+τ2+µ .

This indicates that improving the proportion of timely diagnosis of the disease can decrease the delay-induced
reproduction number if ε < ε∗.

Setting Rα = 1 and solving for α gives us the threshold of timely diagnosis by

αmin =
(µ + τ1 +δ1)

[
βΛk(θ +µ +ωξ )−µ(µ + k)(µ + τ2 +δ2)

]
βΛk(µ +θ +ωξ ) [µ + τ1 +δ1 − ε(µ + τ2 +δ2)]

.

If the proportion of timely diagnosis is larger than αmin, then the final size of infected components will decrease.

4.2 Sensitivity analysis results

Here, we provide sensitivity analysis of model (3). This is done to identify the most influential parameters of model.
In this subsection, the values of the parameters chosen for the numerical simulations are presented in Table 1.

Table 1. Parameter values

Symbol Value (per year) Ref.

Λ 5 [32]
ω 0.90 [33]
θ 0.067 [34]
ξ 0.95 [35]
β 0.2 Assumed
µ 0.15 [36]
α 0.5 Assumed
δ1 0.5 Assumed
δ2 0.2 Assumed
τ1 0.5 Assumed
τ2 0.3 Assumed
k 0.5 Assumed
ε 0.3 Assumed
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The scatter plots of each parameter against the delay-induced reproduction number. Figure 2 shows a scatter plot of
the sensitivity analysis for each parameter. The plots describe qualitatively the influence of the corresponding parameters
on Rα . We observe that the delay-induced reproduction number increase significantly with the increase of the rate of
infection reduction due to timely diagnosis ε . It also increase with the rate of infection of latent individuals k and the
contact rate β .

It decreases slightly with the increase of the other parameters.

Figure 2. Scatter plots sensitivity analysis of parameters

Figure 3 is a representation of the partial correlation coefficients for each parameter of model (3). The PCC is
provided to illustrate the correlation between the parameters and the delay-induced reproduction number. A positive
value indicates a positive correlation, and a negative value indicates a negative correlation.

We observe that the parameters ε , k and β are positively correlated and the others negatively correlated.
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Figure 3. Partial correlation coefficient plot of model parameters

5. Changing environment: Existence of bifurcations
We establish how the speed of environmental change can regulate the dynamics of model (1). We use the bifurcation

software Matcont to plot one-parameter bifurcation diagram in the planes α − I1 and α − I2 for model (1). Clearly, in
model (1), α(t) increases continuously over time when r > 0, and continuously decreases when r < 0.
The delay-induced reproduction number Rα = 1 is a threshold in the sens that disease is persistent if Rα > 1 and extinct
if Rα < 1 in model (1). In Figure 4, we choose Λ = 2, µ = 0.2, ε = 0.3, τ1 = 0.5, τ2 = 0.3, θ = 0.3, δ1 = 0.5, δ2 =

0.2, k = 0.5, ω = 0.03, ξ = 0.03, β = 0.2. We obtain a bifurcation at point αBP = 0.58. This provide that if 0 < α < αBP,
then system (1) has a stable disease-free equilibrium point E0. When α = αBP the system (1) undergoes a transcritical
bifurcation and the disease-free equilibrium E0 becomes unstable and a stable endemic equilibrium occurs if αBP < α .

In Figure 5, we choose Λ = 2, µ = 0.2, ε = 0.3, τ1 = 0.5, τ2 = 0.3, θ = 0.3, δ1 = 0.5, δ2 = 0.2, k = 0.5, ω =

0.3, ξ = 0.3, β = 0.2. We obtain a bifurcation at αBP = 0.41. This provide that if 0 < α < αBP, then system (1) has
a stable disease-free equilibrium point E0. When α = αBP the system (1) undergoes a transcritical bifurcation and the
disease-free equilibrium E0 becomes unstable, and a stable endemic equilibrium occurs if αBP < α .
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Figure 4. Bifurcation diagram of model (1) in the plane α − I1 obtained using matcont. For αBP = 0.58, there is a BP branching point or bifurcation
indicating a change in the stability of the equilibrium points

Figure 5. Bifurcation diagram of model (1) in the plane α − I2 obtained using matcont. For αBP = 0.41, there is a BP branching point or bifurcation
indicating a change in the stability of the equilibrium points

6. Conclusion
In this in-depth study, we explored the dynamics of an SVEIR model to understand the impact of diagnostic delays

on the spread of an epidemic in constant and variable environments. Our results highlight several key aspects of infectious
disease behavior and control under different diagnostic and environmental conditions.
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Firstly, in a constant environment, we established the conditions for stable disease-free equilibrium and endemic
equilibrium. We have shown that the global behavior of the epidemic is intrinsically linked to the size of the reproduction
number induced by the delayRα . IfRα < 1, the disease-free equilibrium is globally asymptotically stable and the disease
tends to disappear from the population, and if Rα > 1, the endemic equilibrium is globally asymptotically stable and the
disease persists in the population. The minimum diagnostic effort noted αmin required to control the disease is calculated
and is equal to

αmin =
(µ + τ1 +δ1)

[
βΛk(θ +µ +ωξ )−µ(µ + k)(µ + τ2 +δ2)

]
βΛk(µ +θ +ωξ ) [µ + τ1 +δ1 − ε(µ + τ2 +δ2)]

.

This threshold is an important measure for public health interventions, as it provides a clear target for the level of
diagnostic effort required to effectively manage and eradicate the disease.

The sensitivity analysis revealed that the parameters with the most significant impact on the model are the reduction
rate of infection due to timely diagnosis ε , the infection rate of latent individuals k and the contact rate β . Knowledge of
the most influential parameters is essential for prioritizing resources and efforts in the epidemic control, as it allows focus
on the factors that have the greatest influence on the spread of the disease.

In a variable environment, the existence of bifurcations is carried out in the planes α − I1 and α − I2 with α as
the bifurcation parameter. It is shown that the model undergoes a BP transcritical bifurcation for values α = 0.58 and
α = 0.41 in the planes α − I1 and α − I2 respectively. Identifying these bifurcation points is important because it indicates
the critical thresholds at which the system undergoes qualitative changes in its behavior, moving from one epidemic regime
to another.

This work provides a detailedmathematical framework for understanding the effects of diagnostic delays on epidemic
dynamics. The conclusions drawn from this study have important implications for public health policies, particularly in
optimizing diagnostic efforts and resource allocation to control and prevent the spread of infectious diseases.

Future research could build on these findings by incorporating more complex environmental factors and exploring
the impact of other types of delays and interventions in epidemic modeling.
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