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Abstract: In this paper, we introduce a generalization of the k-generalized Fibonacci sequence, called the (a, b; k)-nacci 
sequence, where a and b are real numbers and k ≥ 2 is an integer. The (a, b; k)-nacci sequence { } 0( ,  )n nT a b ∞

=
 is defined 

recursively as follows:
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We also provide some identities involving the sum of the (a, b; k)-nacci terms and investigate the sums of the 
squares of the (a, b; k)-nacci numbers.
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1. Introduction
The Fibonacci sequence, a well-known sequence of integers in mathematics, has intriguing properties and 

applications that extend far beyond mathematics, influencing various scientific and artistic fields (e.g., [1-3]). It is 
defined recursively as follows:

0 1 1 20,  1,  and  for 2.n n nF F F F F n− −= = = + ≥

We denote the nth Fibonacci number as Fn. The first few terms are 0, 1, 1, 2, 3, 5, 8, 13, ..., which can be found in 
Sloane [4] as sequences A000045.

Another intriguing sequence of integers, closely linked to the Fibonacci sequence, is the Lucas sequence. It is 
defined recursively as follows:

0 1 1 2 2,  1,  and  for 2.n n nL L L L L n− −= = = + ≥
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We call Ln the nth Lucas number. The first few terms are 2, 1, 3, 4, 7, 11, 18, 29, …, which can be found in Sloane [4] 
as sequences A000032.

The Fibonacci and Lucas sequences have inspired a rich variety of generalizations, including Pell numbers, 
generalized Fibonacci numbers, generalized Lucas numbers, generalized Tribonacci sequence, and k-generalized 
Fibonacci sequences [5-15, 17].

Bueno [7] explored the generalized Tribonacci sequence, denoted by { } 0n nS ∞

=
, defined as 1 2 3n n n nS S S S− − −= + + , for 

positive integer n ≥ 3. Unlike the standard Fibonacci sequence, the initial values S0, S1 and S2 are any arbitrary numbers, 
with not all zero. Bueno utilized limits to establish some properties of this sequence.

Howard and Cooper [16] investigated the k-generalized Fibonacci sequence. For positive integer k, the k-generalized 
Fibonacci sequence, say { } 0n nG ∞

=
, is defined as
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They established several identities, including a formula for the sum of the squares of the Gn terms and congruences 
involving these numbers. This k-generalized Fibonacci sequence serves as a prominent example among various 
Fibonacci number generalizations. It is also known as the k-step Fibonacci sequence, the Fibonacci k-sequence, 
or simply the k-nacci sequence. Notably, when k = 2, we recover the standard Fibonacci sequence; k = 3 gives the 
Tribonacci sequence; and k = 4 yields the Tetranacci sequence, and so on.

This paper introduces a novel generalization of the k-generalized Fibonacci sequence, known as the (a, b; k)-
nacci sequence. Unlike the k-generalized Fibonacci sequence, the (a, b; k)-nacci sequence incorporates additional 
parameters for increased flexibility. We define the (a, b; k)-nacci sequence recursively. The first k terms are specified by 
the parameters a and b, and subsequent terms are obtained by summing the preceding k terms. Additionally, we explore 
some identities and derive a formula for the sums of the squares within the (a, b; k)-nacci sequence.

2. Main results
This section introduces a generalization of the k-generalized Fibonacci sequence. We extend the definition by 

incorporating additional parameters, allowing for increased flexibility. We then delve into some of the properties of this 
generalized sequence.

Definition 2.1 For any real numbers a, b and integer k ≥ 2 the (a, b; k)-nacci sequence { } 0( ,  )n nT a b ∞

=
 is defined by
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We call Tn(a, b) the (a, b; k)-nacci number and shorten it as Tn = Tn(a, b).
Note that if a = 0 and b = 1, then the (a, b; k)-nacci sequence is the k-generalized Fibonacci sequence. In particular, 

the (0, 1; 2)-nacci sequence is the Fibonacci sequence, and the (2, 1; 2)-nacci sequence is the Lucas sequence.
Throughout this paper, let a, b be real numbers and let k ≥ 2 be an integer. Now we present some identities for the (a, 

b; k)-nacci sequence { } 0n nT ∞

=
.

Theorem 2.2 Let { } 0n nT ∞

=
 be the (a, b; k)-nacci sequence. Then
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(i) Let n ≥ k + 1 be an integer. Then 1n k− ≥  and by Definition 2.1 we have
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Subtracting (1) from (2) we obtain 1 1 1n n n n kT T T T− − − −− −= , and this implies that 1 12n n n kT T T− − −= − .
(ii) Let 2 1n k≥ −  be an integer. Using (i), we have
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Adding up these equations term by term, we have 11 1
1 1

2 2kk m
n n k n k mm

T T T−− −
− + − −=

= −∑ , which completes the proof.
The following corollary follow immediately.
Corollary 2.3 Let { } 0n nT ∞

=
 be the (a, b; k)-nacci sequence. Then, for all integer 2 1n k≥ − ,
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Theorem 2.4 Let { } 0n nT ∞

=
 be the (a, b; k)-nacci sequence. Then, for 0,  1,  ,  1n k= … − ,

( )2 ( 2) 1 2 .n n
k nT k a b+ = − + +

Proof. We proceed by induction on n. Clearly, the result is true for n = 0. Now, assume the result is true for some 
integer r with 0 2r k≤ ≤ − . Using Theorem 2.2 (i), induction hypothesis, and Definition 2.1, then
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Therefore, the result holds for n = r + 1 and the proof is complete.
Corollary 2.5 Let { } 0n nT ∞

=
 be the (a, b; k)-nacci sequence. Then,

( ) ( )2 2 ( 2) 2 2 1 .k k
kT k a b= − + + −
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Proof. By Theorem 2.4, we have ( )2 ( 2) 1 2 .n n
k nT k a b+ = − + + . Then
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From the equality 1

0
2 2 1k n k

n

−

=
= −∑  and using Definition 2.1, we get the result.

Theorem 2.6 Let { } 0n nT ∞

=
 be the (a, b; k)-nacci sequence. Then, for 0,  1,  ,  1n k= … − ,
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result is true for n = 0 Now, assume the result is true for some integer r with 0 2r k≤ ≤ − . Using Theorem 2.2 (i), 
induction hypothesis, and Theorem 2.4, then
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Therefore, the result holds for n = r + 1, and the proof is complete.
Corollary 2.7 Let { } 0n nT ∞

=
 be the (a, b; k)-nacci sequence. Then,

( )( ) ( )1 1 1 1
3 2 2 ( 2) 2 1 2 2 2 .k k k k k

kT k k a k b− + − += − − + + + − −

Proof. The proof is straightforward by using Theorem 2.2 (i), Theorem 2.6 and Theorem 2.4.
Theorem 2.8 Let { } 0n nT ∞

=
 be the (a, b; k)-nacci sequence and 1n k≥ −  be an integer.
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Proof.
(i) Let k = 2. For j = 1, 2, ..., n, we have 1 1j j jT T T+ −= − , and multiplying both sides by Tj, we get 2
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Now we have
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Note that in the last equality we use the fact that Ti = a for all 0 ≤ i ≤ k – 2, see Definition 2.1.
Then
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The proof is complete.
Note that if a = 0 and b = 1, then we obtain identity for the k-generalized Fibonacci sequence, for any positive 

integer n ≥ k – 1,
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If k = 3, a = 1 and b = 2, then we obtain known equality for the Tribonacci sequence, for any positive integer n ≥ 2
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If k = 2, a = 0 and b = 1, then we obtain known equality for the Fibonacci sequence, for any positive integer n,

2
1

0
.

n

i n n
i

F F F +
=

=∑

Acknowledgements
This research was supported by International SciKU Branding (ISB), and the Department of Mathematics, Faculty 

of Science Kasetsart University, Bangkok, Thailand. The authors would like to thank the reviewers for their valuable 
suggestions.

Conflict of interest
There is no conflict of interest for this study. 



Contemporary Mathematics 5782 | Utsanee Leerawat, et al.

References
[1] Caldarola F, d’Atri G, Maiolo M, Pirillo G. New algebraic and geometric constructs arising from fibonacci 

numbers. Soft Computing. 2020; 24(23): 17497-17508.
[2] Koshy T. Fibonacci and Lucas Numbers with Applications. Wiley Interscience Publication; 2001.
[3] Stakhov A. Fibonacci matrices, a generalization of the “Cassini formula” and a  new coding theory. Chos, Solitons 

& Fractals. 2006; 30: 56-66.
[4] Sloane NJA. The on-line encyclopedia of integer sequences. Notices of the AMS. 2008; 50(8): 912-915.
[5] Adam M, Assimakis N. k-step Fibonacci sequences and Fibonacci matrices. Journal of Discrete Mathematical 

Sciences and Cryptography. 2017; 20(5): 1183-1206.
[6] Bravo JJ, Gómez CA, Herrera JL. k-Fibonacci numbers close to a power of 2. Quaestiones Mathematicae. 2020; 

44(12): 1681-1690.
[7] Bueno ACF. A note on generalized Tribonacci sequence. Notes on Number Theory and Discrete Mathematics. 

2015; 21(1): 67-69.
[8]  Dresden GPB, Du Z. A simplified binet formula for k-generalized Fibonacci numbers. Journal of Integer 

Sequences. 2014; 17(4): 14.4.7.
[9] Edson M, Lewis S, Yayenie O. The k-periodic Fiboonacci sequence and extended binets formula. Integers. 2011; 

11(6): 639-652.
[10] Edson M, Yayenie O. A new generation of Fiboonacci sequence and extended binets formula. Integers. 2009; 9(6): 

639-654.
[11] Falcon S, Plaza A. On k-Fibonacci numbers of arithmetic indexes. Applied Mathematics and Computation. 2009; 

208: 180-185.
[12] Nagaraja KM, Dhanya P. Identities on generalized Fibonacci and Lucas numbers. Notes on Number Theory and 

Discrete Mathematics. 2020; 26(3): 189-202.
[13] Panario D, Sahin M, Wan Q. A family of Fibonacci-like conditional sequences. Integers. 2013; 13(A78): 1-14.
[14] Soykan Y. On generalized Third-Order Pell numbers. Asian Journal of Advanced Research and Reports. 2019; 

6(1): 1-18.
[15]  Trojovský P. On some combinations of k-nacci numbers. Chaos, Solitons & Fractals. 2016; 85: 135-137.
[16] Howard FT, Cooper C. Some identities for r-Fibonacci numbers. The Fibonacci Quarterly. 2011; 49(3): 231-242.
[17]  Yang J, Zhang Z. Some identities of the generalized Fibonacci and Lucas sequences. Applied Mathematics and 

Computation. 2018; 339: 451-458.


