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Abstract: The concept of single-valued neutrosophic soft filters plays a crucial role in the study of topological spaces.
Extensive research has led to several generalizations of these filters, highlighting their significance in neutrosophic theory.
This paper introduces a novel approach to single-valued neutrosophic soft filters, along with the idea of single-valued
neutrosophic soft quasi-coincident neighborhood spaces, which are characterized by a unique interaction between the
filters and quasi-coincident neighborhood structures. Additionally, we explore advanced neutrosophic theories, focusing
on the properties and convergence of single-valued neutrosophic soft filters in soft topological spaces. Finally, we
demonstrate the existence of product fuzzy soft filters.
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Abbreviation
n-set neutrosophic set
svn-set single-valued neutrosophic set
svns-set single-valued neutrosophic soft set
svnst single-valued neutrosophic soft topology
svnsts single-valued neutrosophic soft topological spaces
svns-filter single-valued neutrosophic soft filter
(;E,/_\E) the collection of all single-valued neutrosophic soft set

svnsqne-system  single-valued neutrosophic soft quasi-coincident neighborhood system
svnsqne-spaces  single-valued neutrosophic soft quasi-coincident neighborhood spaces

1. Introduction

The concept of a filter on a set is a fundamental notion in topology and plays a significant role in the study of
topological structures. The foundational theory of filters is discussed comprehensively in [1], while several applications
of filter convergence in topological spaces are presented in [2]. The notion of a fuzzy filter was introduced by Hohle
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and Sostak in [3], although similar concepts, with slight variations, had appeared earlier in works such as [4—7]. Recent
research has expanded to generalized filters [8—10], exploring their applications in broader contexts. Hohle and Sostak
also examined the convergence of fuzzy topological spaces via neighborhood systems of a point in [3]. This paper aims to
introduce and explore the concept of fuzzy soft filters, demonstrate some of their properties, and analyze their convergence
in fuzzy soft topological spaces. Additionally, the existence of product fuzzy soft filters is established.

Majietal. [11, 12] extensively explored decision-making problems alongside introducing several new definitions of
soft sets. Dey et al. [13, 14] investigated generalized neutrosophic soft multi-attribute group decision-making using the
TOPSIS method, as well as neutrosophic soft multi-attribute decision-making based on grey relational projection. The
concept of soft sets and soft groups was originally introduced by Aktas and Cagman [15]. Subsequent developments in
fuzzy soft sets were carried out by Feng et al. [16], Chen etal. [17], Alietal. [18], Sunetal. [19], Yang et al. [20], Kharal
and Ahmed [21], and Ahmed and Khara [22]. Shabir and Naz [23] provided definitions for soft sets that incorporated
separation axioms. The first application of fuzzy soft topology, based on Chang’s fuzzy topology [24], was introduced
by Tanay and Kandemir [25], who developed key concepts in this area. Pazar Varol and Aygiin [26] later defined fuzzy
soft topology in the context of Lowen’s framework, while Aygiinoglu et al. [27] extended these ideas by defining fuzzy
soft topology based on Sostak’s work. Additionally, Saber et al. [28] studied single-valued neutrosophic soft topological
spaces (¥, Y, TH, ) (referred to as svnst-spaces), contributing to the ongoing development of neutrosophic soft
topologies.

Smarandache introduced the concept of neutrosophic sets [29], which paved the way for subsequent research on
single-valued neutrosophic sets (svas) and neutrosophic sets (ns) by Wang et al. [30] and Salama et al. [31, 32]. Numerous
applications of neutrosophic sets have been explored by various researchers [33—-37].

Saber et al. conducted extensive studies in this area, including investigations on Single-Valued Neutrosophic Primal
Theory, Single-Valued Neutrosophic Ideals in Sostak’s Sense, Single-Valued Neutrosophic Soft Uniform Spaces, as
well as the connectedness and stratification of single-valued neutrosophic topological spaces [38—41] The theory of
neutrosophic sets is a well-established generalization of fuzzy sets, intuitionistic fuzzy sets, and rough sets, providing
a valuable mathematical framework for dealing with uncertainty. This paper introduces the concept of single-valued
neutrosophic soft filters, extending previous work by Ridvan et al. [42] and Abbas et al. [43].

Building on this foundation, we explore soft filters by introducing the notions of single-valued neutrosophic soft
filters and investigating their convergence properties. Additionally, we study single-valued neutrosophic soft quasi-
coincident neighbourhood spaces, highlighting key properties and examining the convergence of neutrosophic soft filters
in neutrosophic soft topological spaces.

A neutrosophic set is a powerful and generalized formal framework that extends the classical set, fuzzy set, interval-
valued fuzzy set, intuitionistic fuzzy set, and interval intuitionistic fuzzy set, particularly from a philosophical perspective.
This framework has diverse applications. For instance, in Geographical Information Systems (GIS), it helps model spatial
regions with indeterminate boundaries under conditions of uncertainty (see [44]). Additionally, neutrosophic sets are
useful in control engineering, such as in achieving average consensus in multi-agent systems, particularly in scenarios
with uncertain topologies, multiple time-varying delays, and random noisy environments (see [45]).

In the analysis, £ denotes an initial universe, E is the set of all parameters for X is the set of all svn-soft set on £

—_~—

(where I = [0, 1]) and Iy = (0, 1]. (£, E) designates the cluster of all svn-soft set on £.

A svns-soft set fy € (£, E) is called a single-valued neutrosophic soft point (svn-soft point) if A = {e} C E and
fa(e) is a svn-sofi point in £ i.e., there exists x € £ such that 7y, () (x) =1, Qy, (o) (X) =5, O, (o) (X) =k, 1, 5, k € o with
t+s+k<3and 7, ) (y) =0, 0, () (¥) = 1, Op, (o) (v) = 1 for any x # y it is denoted by ¢ " * and the set of all svn-soft

o~ e~

points in £ is denoted by P, (£, E). Let fa, pp € (£, E). Then, f4 is called single-valued neutrosophic soft quasi-
coincident (svnsg-coincident) with pp, denoted by fa g pp if there exist e € E and x € £ s.t. 7y, (o) (X) + Ty 0y (x) > 1,
O, () (X) + () (X) S 1, 0, () (X) + Opp(e) () < 1. IF fa is not svnsg-coincident with pp, that is denoted by fi G ps.
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2. Preliminaries

This section provides an in-depth exploration of the fundamental concepts and methods used in neutrosophic
and single-valued neutrosophic (SVN) set theories, laying the foundation for the later development of single-valued
neutrosophic soft quasi-coincident neighborhood spaces. As usual, I* denotes the family of all single-valued neutrosophic
sets (abbreviated as SVNS) on £.

Definition 1 [29]. Let £ # ¢. A neutrosophic set (for short, ns) R on £ demarcated as:

R={{x, m,(x), @ (x), 0,(x)) | x € £, T, (x), &, (x), O (x) €]70, 17},

representing the degree of membership where (o, (x)), the degree of falsity membership; (o, (x)) degree of indeterminacy
and 7, (x) degree of nonmembership; V z € £ to the set £.

Definition 2 Let £ # ¢ and R;, Ry € I* be in the form R, = {(x, My, (X), O (x), O (x)) | x € £} and Ry =
{(x, m,, (x), & (%), O, (x)) | x € £} on £, then

(1) RN Ry is an svn-set [46],ifV x € £,

(Rl ﬁRz)(x) = min{ERl (x)v TER2 (x)}a aR3 (x) = max{aR] (x)7 akz (x)}a

O,

1, (1) = max{o,, (x), o, (x)}.

(2) R1 NR, is an svn-set [46],ifVx € £
(R UR)(3) = max{, (x), 7, (1)}, 0, (1) = max{at, (), o, ()},
Oy, (x) = min{ oy (x), oy (x)}.

R3 Ry

(3) Ry C R, [47] for all x € £ defined as:

an (x) < Tch (x)7 aRl (x) = aR2 (x)7 GRl (x) > GRZ (x>

(4) The complement of the set R [30] (R“) defined as next

Definition 3 [28] f4 is a svn-sofi set on £ where, f : E — I%; i.e., f, = f(e) is a svn-set on £, for every e € E and
fle)=(0, 1, 1),ife ¢ E.

The svn-set f(e) is termed as an element of the svn-soft set f4. Thus, a svn-soft set fr on £ can be represented by the
set of ordered pairs:

(1, E)={(e. f(e)) | €, fle) €1} = { (e, (m,(e), a,(e), o,(e))) | e € E, fle) €1,
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where 0, : E — I (0, is called as a nonmembership function), 7, : E — I (¢, is called as a membership function), and
o, :E— 1 (o, is called as indeterminacy function) of svn-soft set

A svn-soft set f on £ is named as a null svn-sofi sets (®), if iy, (e) =0, 07, (e) =1and o, (e) = 1,Ve € E.

A svn-soft set f on £ is called absolute svn-sofi set (E), if &, (e)=1, o, (e) =0and oy, (e) =0, forany e € E.

Definition 4 [28] A mapping 7%, 7%, 7° : E — I*: ) is termed to be single-valued neutrosophic soft topology
(svnst) on £, if it meets the following criteria, for every e € E:
(7)) TX(®) = FF(E) = 1 and T*(®) = Z4(E) = 7,°(®) = T2 (E) =0,
(72) T (fa l‘lps) > T (fa) N T (p), T2 (falips) < 7% (fa) vV 7% (pB)s
T (faT1ps) < T2 (fa)V 7 (P), me ps € (£, E),
¢ (Uierlfali) = Nier ZF(UfalD)s 7 (Uier(fali) < Vier e ([al),
7 Uierlfali) < Vier Z.° ([fali), vav ps € (£, E).

The quadruple (£, 7%, 7%, J°) is said to be a svust-spaces. Representing the degree of openness (.7,7(f4)), the
degree of indeterminacy (.7, (f4)), and the degree of non-openness (.7,° (f4)); of a svns-set with respect to that parameter
e € E. Occasionally, we will write 77%C for (", J%, 7°), and it will be no ambiguity.

(%) 7,

3. Single-valued neutrosophic soft filters

Within the field of mathematical harmony, Single-Valued Neutrosophic Soft Filters are the result of the combination
of neutrosophic logic with soft set theory. These filters provide an integrative structure to deal with uncertainty by serving
as crucial bridges between the fields of soft computing and neutrosophic research. Precisely defined, these svn-soft
filters reveal their core, from compatibility conditions controlling intersection operations to basic characteristics capturing
limit conditions. A central theorem emphasizes the group interaction by giving an orderly approach to combine separate
filters into an integrated unit. Through our study of this mathematical setting, the svn-soft filters not only reveal their
complexities but also open up fresh prospects for the construction of single-valued neutrosophic soft topologies, showing
their important impact on precisely and effectively understanding uncertainty.

We begin it with the following:

—

Definition 5 A mapping .Z7%, .Z%, F° : E — I E) is termed to be svn-soft filter on £, if it meets the following
criteria, for every e € E:

(F1) ZF (D) =0, F4(D) =1, .Z5(®) =1 and FF(E) =1, FX(E) =0, ZZ(E) =0,

(F2) ZE(far1ps) > FE(fa) A FE(ps). FE(faNPs) < FE(fa) V- F(ps).

FI(faNps) < FE(fa)V F2(Ps).Y fi. ps € (€. E),

(F3)If fa € pa, then FT (fa) < FF(pp), . (fa) = F . (p8), F7 (fa) = F7 (Pb)-

If ZF%° and F ;"% are svn-soft filters on £, then “.#F*° is finer than .7 ;"*° or (.Z;"*C is coarser than .#[%°)”
denoted by FF*° C F£™* if and only if

FE(fa) S FFT(fa), FE(fa) = Fr(fa), F2(fa) = F(fa),

e~

forany e € E, fy € (£, E). Occasionally, we will write 7% for (F7%, F*, %°), and it will be no ambiguity.
The central belongings of svn-soft filters are deliberated in the next suggestions:
Theorem 1 Suppose that {(F[*%)g;, j € I'} is an family of svn-soft filter on a set £, then, the mapping .7 "*% =

—_~—

Mjer (F % )E; 1 E — I( E) defined, for every e € E, f4 € (£, E) by:

FE(fa) = N(FD)e(fn), FE(fa) = N (F])elfa), FE(fa) = N (FT)e(fa),

jer jer jer
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is a svn-soft filter on £.
Proof. To prove this theorem, the following conditions must be proved:
(F1)

FEH®) = \(FFe(®@) =0, ZHP) = \/ (F1)e(®@) =1, (@) = \/ (F0)(®) =1,
jer jer jer

and

(F2) for all f4, pp € (£, E), we have

FEINNFE ) = N (FP)e(fa) A N (F])e(pB)

jer jer

< ANUAFDefa) AN(F])e(PB))

jer

< N\ (FP)e(faNpp)

jer
=7, (falps)

FEIV FEpp) =\ (FP)e(fa)V \ (F)e(pB)
jer jer

>\ (FP)e(fa)V (Ff)e(PB))

jer

=V (FF)elfa) N(F])e(P8))

jer

> N\ (F5)e(faTps)

jer

:yea(fA I_IpB)
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FE )V T (Ps) =\ (F7)e(fa)V V (F])e(ps)

jer jer

>\ (F7)e(f)V (F7)e(PB))

jer

>\ (F7)e(fa) N(FF)e(p5))

jer

= N\ (F7)e(fa M pB)
jer

:yeg(fA HPB)~

(F3) If fa C pg, then

(F1)e(fa) < (F])ep) (F)e(fa) Z (F[)e(PB), (F])e(fa) Z (F7)e(PB),
for every e € E, j €I, and hence

FE(fa) = N(FDe(fa) < N(F])elpr) = F (p5)
jer jer

T = N (FP)e(fa) 2V (F])e(pp) = F (Ps)

jer jer

FE(fa) =\ (F)e(fa) 2 \/ (F7)elpB) = F2 ()

jer jer

By proving the three conditions, we have proven the above theorem.
From a svan-soft filter f4 :: E — I'*: £)_we can obtain a single-valued neutrosophic soft topology 7z on £ as follows:
Theorem 2 Taken that .#7%° be a svn-soft filter on £ and amap 7%, 7%, T7 :E —1 (£, E) defined by

(yg)e(fA)_{ FE), I fa £ O,

1, if fy =,
o if o
<9;>e<fA>{ Iy
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a0 f %
(T)elfa) :{ KR

then, (£, (77%%)g) is a svnst-spaces.
Proof. It is straightforward and thus, it is omitted. O
Consider the map ¥ : £ — 2~ between two sets, and the map @ : E — F between two parameters.

—~—

Theorem 3 Let O : (£, E) — (£, F) be a mapping and .#%° be a svn-soft filter on £. Then, we can define the
mapping

9o (FF%)(pp) = FF* (8, (ps)), Ve € E ps € (2, F),

so that ¥y (#F*°) is a svn-soft filter on 2.
Proof. To prove this theorem, the following conditions must be proved:
(F1)

and

(F2) For every fa, pp € (2, F), we obtain

B (FE)(fa) N O (FE)(PB) =T (B (£4)) AFE (D (p5))
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B (FI)fa)V B9 (F)(Pr) =F (0 (fa))V FE (D (PB))

Bo(F2)(fa)V 0p(FE)(P5) =7 (85" (1)) V- (34 (pB))

(F3) If f4 C pp, then

Bo(FE)(fa) = FE(0g (fa)) = T2 (95" (Pr)) = 9p(F) (Pa),
B¢ (F)(fa) = FE (04 (fa)) 2 T2 (9, (p8)) = V() (p8)-

By proving the three conditions, we have proven the above theorem. O

Suppose that .#[%® and .Z#;"* are two svn-soft filters on £ and 2~ correspondingly, and ¥ : (Tf,\/E) — (5’\,77) a
mapping. Then, 9 is called svn-soft filter map.

Theorem 4 Make that {(.#7%°)g, j € I'} a family of svn-soft filters on £ fulfills the next case:

(O)If (fa); € (FF¥9)E)° for each j € T, so we get Mjer, (fa); # @ for any finite subset [y of T'.

J
If we defined a mappings

— — —

Ujer,?f:E—)I(‘{’ E), I_Ijerflq :E—)I(£’ E>, ﬂjeryja ZE—>I(£’ E>,

asnext: foralle € E
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= Jj€lo
jer

<|_|(9\jﬂ)> (05) = VLA (F7)e((pB))) | P8 =Mjery (P8}, if (p5); € (F])E)°,

, otherwise,

(oAl e i) - =lljer, it if . T o’
(I_Ijer(ﬁf‘))e(pB) _ /\{jé{_o(ef/ e((pB);) : pB =Mjery (pB);}, if (PB); € (<J] )E)

1, otherwise,

AV (Z9)el(P))) : o = Mjery (Ps),}, if (P8); € (ZF)E)°,
(I_Ijer(ﬁ'jq))e (pB) = | jely

, otherwise,
where the supermom \/ is taken for any finite index subset I'g of I" such that pg = Mjer, (p5),. Then || (F7*°)g is the
jer
coarsest svn-soft filter finer than (% }“"G) g forevery jeT.
Proof. Initially; we will show that 7% = | | (F[%%)g, [such that, " = || (F[)e, 7% =Njer(F [ )e, H° =
jer jer
Mjer(:F7 )] is a sva-soft filter on £.

(F1) Obviously, 7 (®) =0, %(D) =1, #°(®) =1and HZ(E) =1, #%(E) =0, #°(E) =0V, e €E.
(F2) For any finite index subsets G and N of I" such that

Ty = MieG(m, )i, oty = |_|(afA)i7 Ofy = |_|(QfA)i7
icG icG

Topp = rlneN(ﬂ"PB)n» Qpy = ﬂnEN(aPB)m Opp = rlnEN(GPB)nv

we have

far1pg = [Miec(fa)i M Maen(PB)n]

Furthermore, for all m € GNN, put f4 M pp = Muecun (hc)m, C = AN B, where

T fa)m> if ne G—(GNN),
The)m = § pg)ms ifmeN—(GNN),
T NV Wpg),»  iEMEGNN,

A fam: if meG—(GNN),
Xhe)m = O o) iftmeN— (GQN),

Volume 5 Issue 4|2024| 6445 Contemporary Mathematics



O(fam> if me G—(GNN),
Othc)n =\ Olps)m> if meN—(GNN),
G(fA)m UG(pB)mu ifme Gﬂ]\’7

which means that

AT (fanps) = N\ (FDmlhc)n > N(FEilfa)in )\ (F)u(P8)n,

meGNN icG neN

%a(fA I_IPB) < \/ (yea)m(hC)m < \/(yea)i(fA)i\/ \/ (fea)n(pB)n;

meGNN icG neN

AL (fanpg) <\ (T m(hc)m <\ (F)i(fa)iV ] (F)n(PB)n-

meGNN i€G neN

Therefore,
A (fapp) = A (fa) NAT (p), A% (faTps) < H(fa) V7% (PB),
A (fam1pp) < A7 (fa) VA (P).-

(F3) Take that f4 T pp, according the definition of 77, there exists a finite index set G with

Ty, =Micg(my, )iy Qp, = |_|(afA)i7 Ofy = |_|(6fA)i7
ieG ieG

therefore

HE(fa) = N FDi((fa)i), 5 (fa) <V (F2)il(fa)i),

i€G i€G

AL (fa) <\ (F)il(fa)i)-

i€G

On the other hand, since pp = f1 L pg = Micc((fa)i L p5), then we obtain
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() = N(FOi((fa)itps) = N(FDi((fa)i),

i€G i€G

2% (ps) < \[(Zi((f)inps) < \/ (F2)i((fa)i),

i€G i€G

AL (o) < \/ (ZF2)i((fa)iNps) <V (Z2)i((fa)i)-

i€G i€G
Hence, S (pp) > T (fa), 7% (fa) < A% (f4) and H2° (pg) < H2°(fa). Now, we will show that
A (fa) 2 (FE)j(fa), A (fa) S (FE)j(fa), A (fa) < (F2)i(fa),

for each j € I from the next:
If (,ﬂ'en)j(fA) =0, (ﬁe )j(fA) =1, (ﬁe")j(fA) =1, then it is trivial.
If (ZF)j(fa) >0, (FZ);(fa) <1, (F2);(fa) < 1, then for f4 = faME, we obtain

S (fa) 2 (FE) () NFDHE) = (FF)i(fa),
T (f4) < (ZL) () V(FE)IE) = (F2)(fa),
S (fa) S (F2)i(fa)V (FO)E) = (FC)(fr).

If 97 1 (F7%°)g for each j € I', we will show that 9F*® 2 7*°. By the definition of 7, there exists a finite
index set G with fy = M;ec(fa); so that

AT (fa) = N (FDi(fa)i), A5 (fa) <V (Zi((fa)i),

i€G i€G

A0 (fa) <\ (F2)il(fa)i)-

i€G

On the other hand, since ¢7*° J (F[*°) for each i € G, then we have

G (fa) = NGT((f)) = N(FD)i((fa)i),

i€G i€G

G (fa) < V9200 < V(ZHi((fa)i),

i€G i€G
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G2 (fa) <NV 22 ((fa)i) < \V (F2)il(fa)i)-

icG i€G

Thus, G7(fa) = A (fa), 97 (fa) < A (fa) and G2 (fa) < A% (fa)- a

—_~

Theorem 5 Let O : (£, E) — (£, F) be a mapping and .77*° be a svn-soft filter on .2". Then, we can define the

—

mapping ¥, ' (FF*®) : E — 1 £) for all g € F by:

T B ; &
h ‘<3“;’><fA>:{ VIZE e 0= 05 (o). 1 002

aa r— 91 ; b
ﬁ(;l(ya)(fA) _ { {\{f/lg (pB) A= ﬂq) (pB)}7 II: Zgiga

MZ () 2 fa = 05" ()}, if pp# &,
1, if pB:(I)7

so that 15‘(;1 (F7™%9) is a svn-soft filter on £.

Proof. (F1) It is clear that 9, (F7)(®) = 0, U, (F)(®@) = 1, ¥, (F2)(®) = 1 and O, (FF)(E) = 1,
By (FE)E) =0, 0, (FZ)(E)=0forallg € F.
(F2) It is proved from that:

3, (ZE) () A 0y () (pm) = (VAT (en) o = 05 o)} ) A (VAZE(he) < ps = 95" ()} )
=\ A{FF (@) N FE(he) :a Mg = B (2p) 185 (he)}
<\A{FF(zpNhe) : fanps =By ' (2p) 10, ' (he)}
<Oy ' (FF)(faTpp),

3, (ZE )V 0, (F)(Ps) = (ALFE ) fa = 05 @)} ) V (NEFEhe) : o =0, (k)
= N{F{ @)V FE(he) : falps =By ' (2p)U By ' (he)}
> N{F&(@pMhe) < faMps =y " (2p) 11 By ' (he)}

>0, ' (F&)(fallps),
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9, (T )V 0, (FE)on) = (T2 @) fa = 05 @)} ) v (AFShe) : pw = B (he)})
= NF2 (@) v FE(he) : faips =05 (p) U By (h))
> N{FZ(@pNhe): faNps =D, (2p) 11 B, " (he)}

>3, (F7)(faT1ps).

(F3) If fa C ps, then

Theorem 6 Let {(F[*®)g;, j € I'} be a family of svn-soft filters on £, E; are parameter sets and £ = EFEJ-. Let
j
£; = [1 £; be the product space. h; : £ — £;, ¢; : E — E; are the projection maps for each j € I"and (hy); : (£, E) —
jer

(£j, E;). Then, we can define a maps F* : E — [& ) 7% E — [EE) 20 . F — [£F) py:

jeG

FE(fa) = V{ AFDepn)y): fa = Ww(%‘»((w»)} it (ow)y € ((Z)x,)

0, otherwise,

jeG jeG

FE(f) = /\{ Y (FPepe)): fa= <ﬁ<p1>j<<p3>,~>}, if (pn); < ((F0E,)

1, otherwise,

jeG

o {jgv(;(f;’)e((pm) fa= 1 <ﬁ;1>j<<p3>,->}, it (pw); € ((F)s,)

1, otherwise,

where the supermom V/ is taken for any finite index subset G of I" such that 7y, = Mea(ig")((om);)? % = X (1) ((08);)

jeG

and oy, =0 | (") ((08),)" Then (1) For each f4 € (£, E), we obtain

JjeG
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FE(fa) =\ (5" )i(F e, (fa), ZE(fa) = \ (g (F Ve, (fa),

jer jer

yec(ff\) = /\(ﬁ;])j(yjq)ej(fA)'

jer

P S N

(2) #7™*° is the coarsest svn-soft filter on £ for which each projection map (), : (£, E) — (£}, E;) is a svn-soft
filter mapping.

(3) 8¢ : (x, H7F*°) — (£, FL*°) is a svn-soft filter mapping if and only if for each j € I', we have (hgp); 0 &y :
(x, A7) = (£, (F]*)E;) is a svn-soft filter mapping.

Proof. (1) From Theorem 5, each (ﬁ;l );j((F[%%)E;) is a svn-sofi filter on £;. Firstly, we will show that '\e/r(ﬁal)j
((F]%9)E;) exists, that is, it satisfies the condition (C) of Theorem 4. '

(©) If (fa); € ("), (FF2®)g)° ¥ j € T, there exists (pg); € (2. F) with (f4); = (Fi5");((ps);) such that
(FT)e;((PB)j) >0, (F7)e;((PB);) < 1and (F7).;((pp);) < 1. It implies that (pp); # P, that is, there exists k; € £;
with 7). (Kj) > 0, &y, (Kk;) < 1 and 6y, . (k;) < 1. For every finite index subset G of I', put

K:{ ﬁf‘(Ki), if k; € £; foreveryi € G,

17 (x)), if k€ £; forevery j €T —G.

Then, we have

A1) = 1) ) = A (oo () > 0

O\ (£):() = O\, (- K)=a (k) <1
MU0 = %y 151000, () = O (o), (K1) < 1

O (1) (x) = ngcmal),«pwa)j(’f) = OV (g (K1) < -

We will show that #7%° = \/ (ﬁ;l)j(ﬁ 7%9) By the definition of ﬁgjf"" there exists a finite index set G € I with
jer
Tfa = nﬂiec(@l)i(PB)i’ G = a.EG(ﬁal)j(PB)i and o7, = G.El_|6<hal)i(PB)i such that

FL() 2 N(Z50)iPoe)D)s FE(fa) <\ (Z )i (Po(e))i)
i€G i€G

FZ(f4) < NV (Zg1)i((Po(e))i):

i€G

putting 7z, = ﬂ(ht;l)i<p3>i, Or,) = Oc(@l)i(pg)i and 0(;,), = G(h(;l)i<p3)i for each i € G, then for
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Tfa = Tie(n)i = PFriico (g )i (FF)pie)(08))
Ufa = O (i = Pyl )i(F) o) (PB):)’

Ofa = Olica(fa)i = Olicalip )i((Z) ge)(PB)I)’

we have

Hence,

jer jer jer
For every finite index set L C I' with 7, = 7, (7,),5 ®he = 04, (1), @0d One = Oy, (1), W have

\ (") (FF)e; (he) > N\ i )i (FF)e, ((fa)r),

jer IeL

A Fig")i(F8)es(he) <\ (g )i F)er (),

jer leL

A gD {(F)e () <\ (g )i (T e, ((fa)r),

jer leL

—~

and there exists (pp); € (£, E;) with (fa); = (ﬁ;l)l((pg)l) such that
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A" (FE)e,(f)1) = NFF) o) (0B))

leL leL

\ (g (F e ((F4)1) < NV (F) o) (0B))

leL leL

\ (i) i (Z e ((£4)1) < (F)g(e) ((PB):)-

leL leL

On the other hand, for 7, = 7, _, (1)), = ﬂnleL(h(;l)l((me, The = Oy, (f4), = auzeL(ﬁal)z((Ps)z) and Op. = @y, (1), =

O e (g (o)) W hVE

(F5)(he) = N\ (T o) ((08)1), (ZE)(he) <\ () pe) ((PB)1)

leL leL

(F2)(he) < N (F) o) ((PB)1)-
leL

Then,
(h(;1>j(y;r)€j - ,?57 (h(gl)j(yjq)é’j - ‘g.eav (ﬁ;])j(y]q)ej - 3;07
and thus,
(hil)j(y}t)ej = yeﬂv (h;])j(yjq)Ej = yeaﬂ (h(;l)j(yja)ej = yeo-'

(2) From (1) above, Theorem 4, and Theorem 5, we get that .#F%° is a svn-soft filter on £. For each j € T', and

(pB);j € (£j, Ej), and by the definition of .#7*°, we then have
FE (") i(PB)j) = (F gt (PB)), T ((Hig")(P8) ) < (F ) gte) (PB),)),

T (Rg")(8) ) < (FF) i) ((PB);)-

Hence, (hg);: (£, FF*°) — (£}, ﬂg]_‘m) is a svn-soft filter mapping.
Let (hg);: (£, 9F*°) = (£, yg/"“’) svn-soft filter mapping for each j € T, that is,

GI (") i((8) ) = (F () ((PB) 1), G2 ((Hy")j((PB) ;) < (F ) (e ((PB),);

G ((h")i(PB);) < (FF)g(e)((PB);),
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for all finite index set G with 7y, = ﬂmt_ec((h;)i(%m, oy, = auiea((ﬁal)i(l)g)i) and oy, = Guiec((ha')i(PB)i)’ and thus,

G (f2) = NG (g il (ps

i€G

G (fa) <\ 42 (g )i(pB

))) = N\ (FF) g ((PB)1),

i€G

))) <V (F) o) (PB))

i€G i€eG
G2 (fa) <\ 92 (7, )i(p8)i) < V (F2)e) (PB):)
i€G i€G

which implies that

GI(fa) = FI(fa), 97 (fa) < T2 (fa), 92 (fa) < F2(fa),

—_~—

for each f4 € (£, E).

(3) Necessity of the composition condition is clear since the composition of svn-soft filter mappings is a svn-soft
filter mapping.

Conversely, let 8 : (x, H7*°) — (£, FF*°) is just a svn-soft mapping. For every finite index set G with
T = Treg((tig itpm) ¥ = Piea(ig itpm) 2 Oha = Oy (g i(pmyy) Since for each j € T, we have ((fg) 0 8p) :
(x, %) = (£, (F]%)E;) is a svn-soft filter mapping and

(FF)p(e)((PB) ;) < AT (85 ((hg")i((PB))))),

It follows that

Hence, we have
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AT (851)(fa) = N\ AT (85 ) (g )il(8)))) = N\ (FTF) o) (PB):),

i€G i€G

(85 )(fa) <\ 278 ) (g )i((P8)))) <V (F) gt ((PB)1);

icG icG

A2 (85 ) (1)) <V 278, ) (g il(ps)))) < V (F2) (e (pB)1)-

i€G i€cG

It implies .7 (8, " (fa) = FF(fa), #,5(8, " (fa)) < FE(fa) and K2 (8, (fa)) < FZ(fa) for all fu € (£, E).
Therefore 0y : (¥, S7*°) — (£, FF*C) is a svn-soft filter mapping. O
Definition 6 Let {(F*)g;, j € T'} be a family of svn-sofi filters on £;, j € 'and £ = [] £;, E = [] E; are product

jer jer
sets, i : £ — £, @; : E — E; are the projection mappings. The product of svn-soft filters is the coarsest svn-soft filter on

£ for which all (hy); : (£, FF*°) — (£, (FT*)E;), j €T, are svn-sofi filter mappings.

4. Single-valued neutrosophic soft quasi-coincident neighborhood spaces

Within the field of mathematical harmony, single-valued neutrosophic soft filters (svns-filters) are the result of
the combination of neutrosophic logic with soft set theory. The focus now switches to single-valued neutrosophic
soft quasi-coincident neighborhood Spaces (svnsqcn-Spaces), a domain distinguished by its special interaction between
single-valued neutrosophic sets and quasi-coincident neighborhood structures, as we continue our exploration of advanced
neutrosophic theories.

We begin it with the following:

—

Definition 7 A mapping .Z", F%, Z° : E — I'*: E) is called svns-filter on £, if it meets the following criteria, V
eck:

(F1) FF(®) =0, FH®) =1, FZ(®) =1 and FF(E) =1, FHE) =0, FZ(E) =0,

(F2) ZL(faNps) = FT(fa) NFE(PB), F(faTp) < FX(fa)V F 7 ps), F(faNps) < F7(fa)V F7 (PB),
V fa, pp € (£, E),

(F3)If fa € pp, then F[T(fa) < FT(pp), F(fa) = F(Pp), FO (fa) 2 FZ (P).

If ZF%C and .Z;7%° are svns-filters on £, then .Z[F*° is finer than .7 ;%% or (F}"*C is coarser than .Z[*°) denoted
by FF*0 C .F£"* if and only if

FE(fa) < FE(fa), FE(fa) 2 FE4(fa), FE(fa) =2 F2° (fa),

—_~—

for each e € E, f4 € (£, E). Occasionally, we will write #7%° for (7", #%, #°), and it will be no ambiguity.
The central belongings of svn-soft filters are deliberated in the next suggestions:
Theorem 7 Suppos that { (33 T%9)E;, j €'} is a familyollection of svn-soft filter on a set £, then, the mapping

T4 =Njer(FT*)g; - E L EE) defined, for every e € E, f4 € (£, E) by:

yen(ff\) = /\(d@\]’_r)e(fA)’ yea(fA) = \/(yjq)e(ff\)v yec(fA) = \/(g\jc)t’(ff\)’

jer jer jer
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is a svn-soft filter on £.

Proof. To prove this theorem, the following conditions must be proved:
(F1)

FE®) = N\(F])e(®) =0, FH(@) = \/ (F])e(®) = 1, 7 (@)

and

(F2) for all f4, pp € (£, E), we have

yeﬂ(fA) /\yen(p3> = /\ (y}r)e(fA) N /\ (ﬂ'}r)g(pB) < /\ ((yjﬂ)é(f/i) N (y}r)é(pB))

jer jer jer

< N (FF)e(faTps) = FE(f2T1pB),
jer

FEUDV FEP8) =\ (F])e(fa)V N (F)e(pp) = \/ (F])e(fa) V (F])e(pB))

jer jer jer

>\ (TP NFePr) = N\ (F)e(faNps) = F2(faT pB),

jer jer

TV FE(8) =\ (F7)e(fa)V N (FP)e(pp) =\ (FF)e(fa) V (F7)e(pB))

jer jer jer

>\ (D)) NFP)elpB) = N\ (FF)e(faNps) = F2 (fallps).

jer jer
(F3) If f4 C pp, then

(F1)e(fa) < (F)epB), (F])e(fa) Z (F)e(PB), (F])e(fa) 2 (F7)e(PB),

for every e € E, j € I, and hence

FE(fa) = N (FD)efn) < N(F)e(ps) = Z7 (P5)

jer jer
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T = N (FP)e(fa) 2V (F])e(pp) = F (Ps)

jer jer

FE(fa) =\ (F)e(fa) = \/ (F7)elpB) = 72 ()

jer jer

By proving the three conditions, we have proven the above theorem.

From a svn-sofi filter F : E — I'*: E), we can obtain a svast (7%, 7%, 7°) on £ as follows:

O

Theorem 8 let Z£%° be a svn-soft filter on £ and a mappins F% : E — £ B), 7% E — [ E) 79 F — [ E)

defined by

yﬂ' f a,)
<9£>e<fA>:{ #2602

FE(fa), if fa # P,
0, if f4=a,

FE(fa), if fa # P,
if fa=9,

then, (£, (Z7%%)g) is a svnst-spaces.
Proof. The proof of this theory is clear, it is omitted.

O

Consider the map O : £ — 2 between two sets, and the map ¢ : E — F between two parameters.
Theorem 9 Let Oy : (£, E) — (£, F) be a mapping and .#7%° be a svn-soft filter on £. Then, we can define the

mapping

—_~—

ﬂ(P(g‘TE(XG)(pB) :ﬁeﬂac(ﬁqyl(pl?))v Ve GEPB S (‘Z/Va F)v

e

so that ¥y (F[F*°) is a svn-soft filter on 2.
Proof. To prove this theorem, the following conditions must be proved:

(F1)

and
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(F2) For every fu, pg € (£, F), we obtain

Bg (FE)(fa) N O (FE)(PB) =T (B (£4)) AFE (D (p5))

<FF (' (f2) 10, (pB))

=F(8 " (falpp))
=0e(F")(falLipp)
>09(F2)(faT1pB):

B (F2)(fa) V B (F7) (5) =F (05 () V F (84 (PB))

>F8 (9, (f2) U, ' (ps))
=F2(0," (faUps))

=0 (Z.)(faUps)
>0p(F7) (a1 PB)-

(F3) If fa C pg, then
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B¢ (FE)fa) = FE(0g ' (fa)) < FE (D (pB)) = Vo (F ) (PB),
Op(FE)fa) = FE(05 ! (fa) = FE(9 " () = Oo (F) (),
B0 (F0)(fa) = FE (05 (fa)) = F2 (0, (p8)) = V() (p5)-

By proving the three conditions, we have proven the above theorem. O

—_—~

Suppose that ZF*° and .FZ;"*° are two svn-soft filters on £ and 2~ correspondingly, and ¥y : (£, E) = (27, F) a
mapping. Then, B is called svn-soft filter map.
Theorem 10 Let {(#7%°)g, j € I'} be a family of svns-filters on £ satisfying the following condition:

(O)If (fa); € ((F[*°)E)° for each j €T, then we obtain Mjer, (fa); # @ for evyry subset [y of T'.

—

If we defined a mapping \/ jer ZF, Ajer FJs Njer F7  E — 1% E) s next:

VEA (ZDeps)) 5= A (Po);}. if (ps); € (FP)e)"
(\/(%’)) (os)={ o

jer 0, otherwise,

(A(%XO (08) = /\{jé/ro(f}")e((l)s)j)iPBZje/\rO(PB)j}, if (8); € (F)E)°,

1, otherwise,

= jelp jelp
, otherwise,

—_—

jer

NV (F7)e((ps)j):ps= A (p8)j}, if (ps)j € (F7)E)°,
)| (pB)

where the supermom V/ is taken for any finite index subset I'g of I such that pg = A (pg);. Then V (F7*9)g is the
j€To jer
coarsest svns-filter finer than (F7*®)g for every j €T

Proof. Initially; we will show that

is a svn-soft filter on £.
(F1) It’s evident that, V, e € E.

AT (D) =0, (D) =1, H# (D) = land #F(E) = 1, #,*(E) =0, #,°(E) =0.

(F2) For any two G and N finite index subsets of I" such that
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wr, = N\ (7)i o =\ ()i, o7, =\ (o),

i€G i€G i€G

Topp = /\ (an)n’ Opp = \/ (aPB)n’ Opp = \/ (GPB>"7

neN neN neN

we have

faripg = [\ ()71 \\ (p8)a]

i€cG nenN

Furthermore, for allm € GNN, put f4Mpg= A (hc)m, C =ANB, where

meGUN

T fa)m> ifne G—(GNN),
he)m =  T(pp)m> ifmeN—(GNN),

T fm NV Tpp)y  IfmEGNN,

a(fA)m’ lfl/ner(Gﬂ]\f)7
Olhc) = Xpg)ms ifmeN—(GNN),

a(fA)m U a(PB)ma lfm € GﬂN,

O(fam> ifmeG—(GNN),
O(hc)m = 3 O(pg)m> ifmeN—(GNN),

O(f)m YO(pp)s  IfmEGNN,

which means that

AF(fanps) = N (FEmhe)m = NFDi(fa)i N N\ (FE)n(0B)n,

meGNN i€eG neN

A fanps) <\ (FEmhc)m < N (F2)i(fa)iV N (FE)n(PB)ns

meGNN i€G neN

A2 (falpp) < \/ (F ) m(hc)m < \/(yec)i(fA)iV \/ (F)n(PB)n-

meGNN i€eG nenN

Therefore,
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A (faTpg) > A (fa) N (pB), % (falpg) < A% (fa) V A% (pB),

A (faT1pB) < A (fa) VI (D).

(F3) Take that f4 C pp, according the definition of .7#, there exists a finite index set G with

gy = /\(ﬂfA)h op = \/(afA)i7 Of = \/(GfA)iv

icG icG icG
therefore

A (fa) = N(FD)i((fa)): A5 (fa) < N (FENi((fa)i), 7 (£a) < N (Fil (fa))-

i€G i€G i€G
On the contrary, since pg = faUpg = A ((fa)iUps), then
i€G
A7 (ps) = N\ (FD)i((fa)ivips) = N\ (F)i((fa)),

icG icG

A% (ps) <\ (F2)i((£a)iTps) < \ (FE)i((fa)i),

icG icG

A2 (ps) < \/ (F2)i((f4)iNpe) < \ (F)i((fa)i)-

icG i€G
Hence, S (pp) > 7 (fa), 7% (fa) < A% (fa) and F° (pg) < H.°(f4). Now, we will show that
A (fa) = (FE)j(fa), 7 (fa) < (F)j(fa), A (fa) < (F7)j(fa),

for each j € I from the next:
If (ZF)i(fa) =0, (FX)j(fa) =1, (F2);(fa) =1, thenit is trivial.
I (ZF);(fa) >0, (F2);(fa) < 1, (F2);(fa) < 1, then for f4 = f4ME, we obtain

AT (fa) = (FF)i(fa) NFE)(E) = (FF)j(fa),
S (fa) S (FO)j(fa)V (FO)HE) = (F2)(fa),
S (fa) S (FO)j(fa)V (FO)E) = (FC)(fa)-
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If97*° 1 (7 ;”m)  for each j € T, we will show that 47%° J 77*°. By the definition of 77, there exists a finite

index set G with fy = A (f4); so that
i€G

AT (fa) = NFDi(fa)i), A% (fa) < NV (ZOi((fa)i), 2 (fa) <\ (F2)i(fa)i)-

i€G i€G i€G

On the contrary, since 47%° J (F %) for each i € G, then we have

4) > NGE((fa)i) = N\ (FD)i((fa)i),

ieG i€G

4) < V92 ((f)i) <V (Fil(fa)i)s

i€G i€G

1) <\ 92 ((fa)i) <\ (F2)i((fa)i)-

i€G i€G
Thus, 97 (fa) = A" (fa), 97 (fa) < A% (fa) and G2 (fa) < A7 (fa)- O
Definition 8 A single-valued neutrosophic soft quasi-coincident neighborhood system (svnsqc-system) on £ is a set

Q™ = { nrasak " €P s k(£ E)} of maps Qs Qs Qi E — I E) such that V fy, pp € (£, E),
(Nl) ( I s, ko QO: s, ko QG[ s, k) iS SVIlS-ﬁlter 0n£

(Nz)( 1 vk) (fA)>O ( I vk) (fA)<1 ( t sk) (fA)<limpliese;S7kqu>
(N3)

(QZ o k)e(fa) = \/ /\ (Q:? o k)e(PB) | 5

x k
& " " q pg, peCfa & aps

(Qsz s K)e(fa) = /\ \/ (ng; s k)e(PB) |

15 k k
€ "% q pp, BTS2 _eth q PB

(Q s, e(fa) = /\ \/ (ng 5. k)e(PB)

15 k k
e "% q pg, pBCfa _€th q PB

The quadruple (£, Q", Q%, Q) is said to be svnsgcn-Spaces.

[( o Ve(fa), (Q% s e(fa), (QF o e (fA)} can be interpreted as the degree to which f4 is a svasqen of € ***

we will wrlte Q™9 for (Q” Q% Q°), and it will be no ambiguity.
An N-map between svnsqcn- spaces (£, Q7%°) and (x, Q;"*?) isamap ¥y : (£, Q1) — (x, Q;"*°) such that
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(@) ) 2 (@ 1 )y ),

( Z 5, k)e(ﬁ(gl(fA)) < (Q*a L s, k)(P(e) (fA))

(P(e)lg(x)

QT+ 1), (B (1) < QU2 )y ()

1, s, k)
(P( )ﬂ(x) (e)

—_~— —_~

forall fy € (x, F),e € E and forall &k ¥ € P 1(£, E).

Theorem 11 Let (£, 77, 7%, 7°)beasvnst-space and e} * k €P, s (£, E). Define amap QZ, 5 ks Q:f‘ s ks "t sk

—

E — 5 E) g

y” t57 ) C s if ;Sk )
(erk) (f) { (\)/{ (pB) q PB pB_fA} ; tesk QfA
I 1 ex qu,

MZ%(pg) = ¢k " g pp, ps C fa}, it €05 g fa,
(ka)(f) {1’ i e K f

MNZC (o) : € " qps, prC fal}, if €5 q fa,
(Q/sk) (f) { 1, ife;’s’kcij.

Then,
(1) QQMG = {Q ?fa: AR ke P s (£, E)} is a svn-soft quasi-coincident neighborhood system on £,
Q) Iftr<t,s>s "and k > K fort, s, k, t', s', k' €I, then

Q) < Q70 ). )y Q50 () = Q7 ), )y QL)) = (@77 ), (fa):

Proof. To establish (1), it is necessary to verify all conditions (N1) through (N3).
We begin by confirming (N1). Conditions (F1) and (F3) are straightforward and can be verified easily.
For (F2), assume that there exist fa, pp € (£, E) such that:

)

(Q 1) (aTps) 2 (Q ). (fa) AQ 1) (PB),
(Q7% ) (faMps) £ Q7 ). (fa) v (Q5 ) (pn),

Q7 o). (famp) £ Q5 4). () V (Q 1), (pn).
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= t, s, k

According to the definition of (Q g t r),(fa), thereis an (fa), € (£, E) withey ™ " q (fa),, (fa), C fa such that

Q% . £aMps) 2 TH((£) ) AQF ). (pa)
Q750 (aMps) £ 7))V Q7' ). (po),

Q7" .Afap) £ T2 (1)) V (Q7"0)(pa).

—_~—

Once more, according to the definition of (Qiiff)e(pg), there exists (pg), € (£, E) with ey * k

such that

q(ps),, (PB), C ps

Q%) (fanps) 2 TF((fa)) AT (Pe),): QL) (falps) £ T ((fa)))V Z%((pB),):
Q7% 1) (anps) £ T2((fa),) v T2 ((ps), ).
Since ¢ g [(pg), 11 (fa),], [(PB), 1 (fa),] E [paT1 fa] , we have
Q%) (famps) = T ((fa), M (pe),) = T ((fa)) A T ().,
(Q7% ) (faNps) < ZX((fa), N1 (Pe),) < T4 () V 72 ((pB),),

(Q s 0. (fanps) < Z°((fa), M (pB),) < Z2((f2),)V Z°((ps),)-

mxcr

This leads to a contradiction. Therefore, (F2) is valid and consequently, « 18 svns-filter on £.

Regarding (N2), it follows easily from the definition.
Now concerning (N3), for every fy € (£, E) with e} © kg PB, P C fa, we have

T (ps) < NMQ .0 (pm) 16" ¥ g ps} < (Q77 ). (P5) < (Q7 ). (),
7(ps) 2 VAQG. v v (pn) | & K put = Q4. (Pw) = Q5. (),

7% (ps) >\/{Q,/ v0(pB) €y g pp }>(Quk) (PB)Z(Quk) (fa)-

Therefore,
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Q7 0).(fa) = V 7. (pp)

s.

sk X
& " qpg, psCTSA

Tr gr
< \/ /\ (Qer', s, k/)e(pB) < (Qe" 5, k)e(fA)7
. R Y x
&5 ¥ g pg, PC s e§v""k q PB
(Qz o 6).(fa) = A 7.%(ps)
& F g pp, ppCfa
T4 Te
> A Vo Qv w)e(ps) | 2 Q). (fa),
/o) y *
ok qPB, PBCfa e;-' sk qpB
95
(Q s k). (fa) = A 7.2 (ps)
& ¥ qps. peC i
70 7°
> /\ \/ (Qe’/" s, k/)e(pB) > (th s, k)e (fA)-
. Y y *
& qps. psChy | e ¥ qpp
This means that
Tgr Tgr
(Q 1) (fa) = V A Qv w)ePB) |
X ; ) y
&5 ¥ g pg, PC /s eﬁv’s’k qps
79 7
(erg i) (fa) = /\ \/ (Qe"‘ v w)e(pB) |
GO k q P8, PBESA _evtvl’ o ¥ qPB ' ]
T g9
(Q s 1) (fa) = A V Q. v w)e(PB)
X : rod y
& k q P8, PBESA _e;’ s, K qPB ]
Hence, (1) is fulfilled.

Now (2), fort <t',s>s and k > k' witht, s, k, ', s, k' €I, fa € (£, E), since

—_— —_—

{pp€ (£, E)| > qpp, ppC fa} C{hc € (£, E):e:>* g hc, hc C fa},
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then we have

(Q,s O (fa) <(Q7 ,/ /0 )e(fa), (QZik)e(fA) > (Q7 t/ Cr)e(fa),

Q%4 () 2 (QU v, ). (fa):

O]
Theorem 12 Consider Q"*° = {Q”,“f’k Lskep s k(£ E)}asafamlly on, 5 ks , s Q° sk ‘E — [EE)

fulfilling (N1) and (N2) of Definition 7. We define a map F7%, F%, 7° : E — I't E) a5 follows:

oo M) [ €% g fad, B fa £ 9,
(7 >e(fA)—{ L o,
v o VAQE O (fa) [ 5 g fad, i fa # @,
(7 )e(fA){ 0 o
or (poy_  VIQG . (fa) [ g fa} if fu # @,
(7 >e(fA>{ 0 G

Thus, the following properties hold:

g nacr ————

(1) (7% )E isasvnston £, (2) If Q7€ is a svnsqen-system on £, then Q ,° ok = Qm(y forallel ¥ ¥ e P s k(£ E),

€

3 If QZGG and Qz’w“ are svnsqcn-systems on £ such that (%’”’“’) (ﬂ *”“") £ then ana QZMG.
Proof. In order to demonstrate (1), we must establish all conditions (91) (A).
() It’s simple and therefore, not included.

(%) For f4, pg € (£, E) we have
(TE)efaMpa) = N{(Q%, ). (fa Mpa) | € g (4T pn)}
> NQ, o). ) M@, o). (P) €™ (1 )}
=A@ 0. () 1€ Fa (faTpm)} | A [ALQT, ). (pw) | € Fa (faTpw)}

> [ QT 0. ) e ™ ()} A [ALQ% 4 0).(0s) | €™ g (pn)}]

:(%ﬂ)e(fA) A (%n)e(PB>7
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(Z0)e(famps) =\A(QY o) (faTps) | € ¥q (famps)}
<VAQE ). )V Qs o). (Pa) | € g (fa Lips))
=[VA@2 0. () kR (faupm)}] v [VAQS. ). (ps) L€ *q (Faupn)}]
< [VA@G 0. () [ € 5 ()} v V@S s o). (o) | € *a (pa)}

=(T)e(fa)V (T )e(PB)-

(T3)e(faMps) =\{(QF, o). (faTpp) [ €™ *q (faTpp)}
<VAQG ). )V (QF s 0).(Ps) | € g (fa Lips))
= V@G 0. () [ € 5 (fapm)} | v [VA(QS, o o). (o) | € *q (faLipa)}

< [VA@S, 0. ) et ¥q ()} v [VAQS, 4 0). (0) | € q (pn)}]

=(TF)e(fa)V (T )e(PB)-

jer

(T3 )e (I_I(pB),) /\{( Tk <|_|(PB)J'> e g (I_I(;m);)}
Jjer jer jer

>/\{/\(QZ e ((pB)j) | 7™ kQ((pB)j)}

jer

(73) Since (Q777), (I_I( 8),j ) = A Q T 1) ((pg) j), then

= A {A@% . 0. ((pe))) | € “q ((ps),) }

jer

Similarly, it can be obtained
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(T3 )e <|_|(PB)j> <V (Fe(p))), (T )e <|_|(PB)j> <V ((FF)e((ps);)-

jer jer jer jer

Thus, (Z7%°) is a svast on £.
For (2), it is proved by (N3) and theorem 5, so that

(Q?’fk) W=V D=V A{(Q5 o) 167 )

.5 k Y
ex " "qpB, PBCfA & ¥ *q pg, pECfa

~(o ) (),

9(1 go‘ gﬂ'ao‘
Similarly, itcanbeobtained( i k) (fA)—< ) (fa), < At k) (fa)= ( ”k) (f4). Hence, Qe,,QS’k

oo

t_sk

“For (3), Similar to the proof of (2). O
Theorem 13 Let (£, 7, T%* .7°) be a svnst-space and QEymcr a svnsqen- system on (£, 77, F%, 7). Then
FTac
(77 = (72 ).
Proof. Since

=Q

Q%) =V ZFew) = T ().

sk
& " *q pp, pCT S

(Q7%) = A Zen) < T ().

1,

sk X
ex " "qpB, PBCfA

Q%) = A Zoen < 77U,

sk
& " %q pp, pC S

t, s, k

foralle € E, ey 7" q fa, then we have

A (@) =750, Vo (Q4) U< 220,

18, k t, s, k
ex g fa €x q fa

Vo (QGer) ()< Z2hw).

t, s, k
€x q fa

Hence, (77%%); C (797 ).
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—_—~—

On the other hand, let’s assume there is an f4 € (£, E) with e € E such that

T # (T )elf), Z2(f0) 2 (T )elfa)s T2 2 (T )efa)-

—~— f sk

For each ¢y ¥ € B (£, E)} with ¢k ™" ¢ fu. If &k 9(P8) 1> (PB) , \ ESasthen =V (pn), -

) &V g fa *
That is,

%”(fA) = %ﬂ ( \/ (PB)E,. 5, k) 2 /\ Z” ((pB)e" s.k) ’

&g R/

yeo‘(fA)Zyeo’( V (PB)e;_S_k)S V 2a<(PB)€,X_X_k>7

tos, ko t, s, k
€x q fa €x q fa

v <p3>,,x,k>s Vo7 (lom),. ).

k
Y g

which means that

A7 (w0 )2 (727 = A (QZ5) (o

1, 8, k t, s, k
e g fa X qfa

Vo7 (ton, ) 2 (79 D= Vo (Q75) G

t, s, k t, s, k
f«’)cA q fa exé qfa

Voo (e, ) £(797) 0=V (Q7%)

t, s, k - t, s, k
ex q fa €x q fa

This leads to a contradiction. Consequently, (.7 7%%) g O (9 Q7 )E O

Theorem 14 Let (£, (Q7°?),) and (, (Q}°?),) be two svnsqen-spaces. A map ¥ : (£, (Q7°%),) — (%, (Q7°°);)
is N-map iff ¥y : <£ (ﬁ wa) ) ( ( 7% ) is svns-continuous.
E F

Proof. Since for all f4 € (x, F), ey 5k €P k(f, E)

& g0y (fa) if f (Op(er ™ ) = @(e); ") g fa

and
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P —_~— —_~—

{o(e)> e Py il F)l0(e) " afs} Dole); s Py wli, F) ™ € By il F), 9(e)fy 5 Hasal

Then, we have

©3x)

(Q7) k) (fa) | @(e )’”‘qu}
P/ g(e)

>\/ {((Q?‘),S,k) (0 (F2) | ¢ g 0, <fA>}
= (yQi’)g (95" (f1)) -

oo () = (790, (85 (f4).

) — (%, (ﬂng )p) s svns-continuous.
(2, F),

Similarly, it can be obtained (.7 Q
Therefore, ¥ : (£, (7 Qe

)
Conversely, since for all f4 €

[(79) 0 Un) < (T, 05 (), (%) () 2 (T, 05 (), (7)) = (TN, (05" (1)),

and (Q7%?), = (Qy ff“") Q%) = (Qg ;rw) , then we have
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<<Qi’ ety ) ( &2 ~N{(T) 0 (Pr): () g, puC 1
(e

{(T9) 0 (pw) ¢ 0 05" (ps). 0 (ps) C 0, (/) }

IA

{(9‘31’)6(@;1(,}3)) e kg0, (ps), B, (pB) C ﬁ;l(fA)}

< (@), (05"

Similarly, it can be obtained

<(Qg)"’("”):5&>k> o) = ((Qf‘)e; ">e (%"(4)).

and

O

Theorem 15 Let (£, 7,7°°) and (x, Z,7°°) be two svnst-spaces. A mapping Oy : (£, 7,7°%) = (x, 7.7°°) is
svns-continuous iff ¥ : (£, ﬂEQmm) = (%, 7;77°9) is N-map.

Proof. Similar to the proof of Theorem 8. O

5. Single-valued neutrosophic soft filter convergence

The convergence and properties of single-valued neutrosophic soft filters were examined in the previous section with
respect to neutrosophic soft quasi-coincident neighborhood spaces. In this section, we delve deeper into the complexities
of Single-Valued Neutrosophic Soft Quasi-Coincident Neighborhood Spaces, expanding on the concepts introduced
earlier.

Focusing on svns-filter structures, we provide a detailed analysis of cluster points, limit points, and convergence
criteria. This exploration not only advances our understanding of neutrosophic soft systems but also opens up new avenues
for both theoretical research and practical applications

Definition 9 Let (£, %, T% J°) be a svnst-space, FLF*° a svn-soft filter, fa, pp € (£, E) and e} * ke

—~—

Pt, S, k(=£7 E)
(1) €t * * is called a single-valued neutrosophic soft cluster point (for short, svus-cluster point) of #F*°, indicated

by FF% — e ® ¥ if for any pp € (Q’fafk> and fy € (FF%)°, we have fy Mpp # .
ey E
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) *is called a single-valued neutrosophic soft limit point (for short, svns-limit point) of #[F*°, indicated by

FEO & &V Fif forall (Q’ZO‘;’JE C Fpec.

ey 7’

‘We denote

—~—

cls S gao (FF%°) = |_|{e§; S ke (£, E): e Sk svns-cluster point of 5‘”0‘6},

M sruo (Z*) = | {eﬁg s ke (£ E): e ¥ svns-limit point of ﬁ‘g“"} :

Theorem 16 Let (£, 77", 7%, 7°) be a svnst-space and FF*°, J7*° are two svns-filters on £ such that FF*°
is coarser than J7%°. Then the followmg properties hold.
(1)9‘”“"<—>e§c SK o grac _ gls K
Q) litty o (FF) E el )
(3) yﬂac%el s, k’ ; S/, 14 E t, s, k:>fg~n'ogc;_> ,S k,.
!
(4)?&“’“’96&3 k eis * Cet® kzﬂ@”‘m(—wﬁc K
(5) FFH — e 3 sdthc cls gzao (FF*).
tosk o 15k
(6) FF¥ ey Ve VT L llmymm (FFE%°).
(7) FEC 5 e ™K = 7m0 o o E K
(8) 1im gy (FET) E lim g (HF).
E E
(9) HF 5 &y K o T
(10) clsyé,w (HF*°) C Cls.ybzmﬁ (FF%°).

Proof. (1) For each pg € (Q’fa:’k> , fa € (FF*9)°, since (Q”‘w ) C .Zf%°, we obtain pg € (FF*°)°. Thus,
& k)

FT(fanpp) >0, F*(falpp) <1, F°(falpp) < 1.

This leads to that f4 M pp # (T(DV)
(2) From (1) 1t is obvious.
(3) Since & vk and by using Theorem 5(2), we obtain

(Q77vw) U= (Q7%4) G (Q77vx) U= (Q754) () (QF7ew) (h)= (Q774) ().

e e

© o
For every pp € <Q7f,'m, k,) , we obtain pg € (Q’Z“:’k) . Since, ZE4C s ¢ for every £y € (0N, we
ey’ 5 E & E
TIN ! ! /
obtain f4 M pp # (). Hence, FF*° — oK

(4) Since FF*C e k (Qfoick> C #T%. Since K e ¥ by using Theorem 5(2),
E
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(Q77v.x) U= (Q77%4) () (Q77vw) ()= (Q774) (),

(Q77v) 0= (%) (),

!osl k! t, s, k

/ ! /
Therefor, <Qm6 ) (ng ) C F7%°. Hence, FF* > e .
E E

G)Ifesh T cls grao (FF*?), for all pg € (Q’:‘wk> according to the definition of (Q’faék) , there exists
& s, P & s, E

he € (£, E) such that ¢ * ¥ ¢ he, he C pp and

(@) =720 >0 (2] (= 7%0e) <1, (@3, ) (pw) < 770hc) <1

e

This leads to that ic g cls greo (FT*°).

Lok P s k(£, E) of FF%° such

Accordlng to the definition of cls gnao (# ), there ex1sts a svns-cluster point ey

that & & q hc implies that i g cls grao (FI*9). Hence, e q he, he € pp and

(@2,0) o> 75 >0, (Q% ) (o) < 700 <1

x

(Q‘,’, X ) (o8) < 72 (he) < 1

Thus, pg € <Q7Z,O‘G, k,> and e’ s'. ¥ is a svns-cluster point of FF%9 . Thus,V fy € (FF*°)°, faNpp # ®. Therefore,
ex’ o E

FFeo v
The converse is obvious.
(6) It is comparable to (5).

: . oo
(7) It is simply proved from (Qg; N k) C FRa0 C pma0,

(8) From (7), it is clear.

o

(9) For all pp € (me; ) and fa € (FF%9)° since FT4° L A", we have fy € (H,"%°);. Since % —
E

&K, fanpy # ® . Thatis, FFEO e 5,k
(10) It is comparable to (9). -

6. Conclusions

In conclusion, this paper explored the complex domain of Single-Valued Neutrosophic Soft Quasi-Coincident
Neighborhood Spaces and clarified the convergence procedures within this novel framework. We developed basic
theorems that clarify the connections between finer and coarser filters by investigating svns-filters, cluster points, and
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limit points. These theorems offer important new insights into the patterns of convergence of neutrosophic soft systems.
The newly presented ideas of svns-limit and svns-cluster points proved to be crucial in describing the behavior of these
systems.

The results of this research open up new possibilities for practical applications in several fields and strengthen the
theoretical foundations of neutrosophic soft systems. Novel approaches to computational intelligence and decision support
systems are made possible by the established theorems and insights, which offer scholars and practitioners a sophisticated
knowledge of convergence in Single-Valued Neutrosophic Soft Quasi-Coincident Neighborhood Spaces. In summary,
the work described here represents a major advancement in the field of neutrosophic soft structures, providing a useful
foundation for future study.

7. Discussion of future work

Boundedness in topological spaces (see [48]) is a well-established concept that plays a critical role in topological
analysis. It is well known that the collection of bounded sets forms an ideal, a concept further generalized by the notion
of bornology, which essentially represents an ideal in this context. In fuzzy set theory, this generalization is extended
through fuzzy bornology (see [49-51]). Building on these ideas, the following concepts could be explored in the context
of single-valued neutrosophic topological spaces:

(a) The collection of bounded single-valued neutrosophic soft sets;

(b) The concept of boundedness within neutrosophic soft topological spaces.
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