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1. Introduction
The Mittag-Leffler function Eα(z) for α ∈ C, with Re(α > 0) ([1] and [2]) is defined as;

Eα(z) : =
∞

∑
n=0

zn

Γ(αn+1)
, z ∈ C

The extended form of the Mittag-Leffler function that depends on two parameters was studied by Wiman [3]. For all
α, β ∈ C, with Re(α, β > 0), the two-parameters function Eα, β (z) is defined as;

Eα, β (z) : =
∞

∑
n=0

zn

Γ(αn+β )
, z ∈ C.

Generally, The Mittag-Leffler function and its generalizations have been considered by many researchers (see for
instance [4]). In here, we limit our focus to the generalization given by Salah and Darus [5] as follows:
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qFθ , k
α, β =

∞

∑
n=0

q

∏
j=1

(θ j)k jn

(β j)α jn

· zn

n!
, (1)

where (θ)v refers to the well-known Pochhammer symbol given by:

(θ)v : =
Γ(θ + v)

Γ(θ)
=


1, if v = 0, θ ∈ C\{0}

θ(θ +1) . . .(θ +n−1), if v = n ∈ N , θ ∈ C,

(1)n = n!, n ∈ N0, N0 = N ∪{0}, N = {1, 2, 3, . . .},

and

(
q ∈ N , j = 1, 2, 3, . . .q; Re

{
θ j, β j

}
> 0, and Reα j > max

{
0, Rek j −1; Rek j

}
; Rek j > 0

)
.

The Lambert series (see [6–9]), is widely considered in certain problems of the number theory due to its connection
to the well-known arithmetic functions such as:

∞

∑
n=1

σ0(n)xn =
∞

∑
n=1

xn

1− xn , (2)

where σ0(n) = d(n) is the number of positive divisors of n.

l(z) =
∞

∑
n=1

σα(n)xn =
∞

∑
n=1

nα xn

1− xn , (3)

where σα(n) is the higher-order sum of divisors function of n.
We limit our study to the series provided by (3). More specifically, we write σ1(n) = σ(n) when α = 1. In this case

σ(n) is the sum of divisors function that is potentially found in one of the straightforward equivalent statements to the
widely recognized Riemann hypothesis.

We first distinguish between the Lambert series and Lambert W function, which naturally arises in the resolution of
numerous scientific and engineering problems [10].

Guy Robin [11] demonstrated in 1984 that

σ(n)< eγ n log logn+
0.6483n
log logn

, n ≥ 3 (4)

Additionally, he proved that the Riemann hypothesis is equivalent to
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σ(n)< eγ n log(logn), n > 5040, (5)

here γ = 0.7721 · · · , refers to the Euler-Mascheroni constant.
The Riemann hypothesis and the Robin’s inequality (5) are not attempted to be proven or disproved in this article.

We recommend interested readers to study the papers mentioned in the references [12–16] for further information.

2. Main results
We recall the class A of analytic functions given by;

f (z) = z+
∞

∑
n=2

anzn, z ∈ U , (6)

where U is the open unit disk U : = {z ∈ C : |z| < 1}. These functions are normalized by the constraints f (0) =
f ′(0)− 1 = 0. The subclass of univalent functions in U , is denoted by S. We also, recall Ω, the class of all analytic
functions, w in U that satisfy the conditions of w(0) = 0 and |w(z)|< 1.

Robertson [17], introduced the starlike and the convex subclasses of S as follows:
A function A function f ∈ A given by (6) is said to be a starlike if and only if

Re

(
z f ′(z)
f (z)

)
> 0, z ∈U.

A function A function f ∈ A given by (6) is said to be convex if and only if

Re

(
1+

z f ′′(z)
f ′(z)

)
> 0, z ∈ U

The above two classes are denoted by S∗ and K respectively and they are connected by the Alexander’s duality
relation [18]

f ∈ K ⇔ z f ′(z) ∈ S∗.

In general, given 0 ≤ γ < 1, we obtain the following generalizations;
A function f ∈ A given by (6) is said to be a starlike of order γ , if and only if

Re

(
z f ′(z)
f (z)

)
> γ, z ∈ U .

A function f ∈ A given by (1) is said to be the convex of order γ, 0 ≤ γ < 1, if and only if
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Re

(
1+

z f ′′(z)
f ′(z)

)
> γ, z ∈ U .

The last two subclasses are denoted by S∗(γ) and K(γ) respectively.
In particular, S∗(0) = S∗ and K(0) = K.
The Fekete-Szegö theorem [19] states that for a function f of the form (6), the following sharp inequality holds

∣∣a3 −µa2
2
∣∣≤ 1+2exp

(
−2µ
1−µ

)
, 0 ≤ µ < 1.

For two functions f , g of the form (6), the Hadamard product (∗) is given by

( f ∗g)(z) = z+
∞

∑
n=2

anbnzn.

Now, since qFθ , k
α, β does not belong to the class A , we consider some normalization by introducing:

qFθ , k
α, β =

q

∏
j=1

(β j)α j

(α j)k j

(
qFθ , k

α, β −1
)
= z+

∞

∑
n=2

q

∏
j=1

(β j)α j

(α j)k j

(θ j)k jn

(β j)α jn
· zn

n!
(7)

Let f (z) ∈ A . Denote qFθ , k
α, β , σ ( f )(z) : A → A the linear operator is defined by;

qFθ , k
α, β , σ ( f )(z) = qFθ , k

α, β ∗ l(z),

by the Hadamard product the latter becomes

qFθ , k
α, β , σ ( f )(z) = z+

∞

∑
n=2

q

∏
j=1

(β j)α j

(α j)k j

(θ j)k jn

(β j)α jn
· σ(n)

n!
anzn. (8)

Definition 1 Let f (z) ∈ A . Then f (z) ∈ qSθ , k
α, β , σ (λ ) if and only if

R

 z
[
qFθ , k

α, β , σ ( f )(z)
]

qFθ , k
α, β , σ ( f )(z)

> λ , 0 ≤ λ < 1, z ∈ U .

Definition 2 Let f (z) ∈ A . Then f (z) ∈ qC θ , k
α, β , σ (λ ) if and only if
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R


[

z
(

qFθ , k
α, β , σ ( f )(z)

)′
]′

(
qFθ , k

α, β , σ ( f )(z)
)′

> λ , 0 ≤ λ < 1, z ∈ U .

Next, we study the general characteristics and the distortion theorems for the function f (z) ∈ A that is a member of
the new subclasses qSθ , k

α, β , σ (λ ) and qC θ , k
α, β , σ (λ ), provided that the coefficient bounds are obtained. In order to compute

the sharp upper bounds of a2 and the Fekete-Szegö inequality, we need the following Lemma (Duren [20]).
Lemma 1 Given that h(z) = 1+∑∞

n=1 hnzn ∈ P , such that h(z) is analytic in U , and P is the class of all analytic
functions with a positive real part. Then

i.
∣∣∣∣h2 −

h2
1

2

∣∣∣∣≤ 2−
∣∣h2

1

∣∣
2

,

ii. |hn| ≤ 2, n ∈ N.
Theorem 1 Let f (z) ∈ A . If

∞

∑
n=2

(n−λ ) |an|
q

∏
j=1

(β j)α j

(α j)k j

(θ j)k jn

(β j)α jn
· σ(n)

n!
≤ 1−λ , 0 ≤ λ < 1, (9)

Then f (z) ∈ qSθ , k
α, β , σ (λ ). The result (9) is sharp.

Proof. For short hand we write ϕ = ∏q
j=1

(β j)α j

(α j)k j

(θ j)k jn

(β j)α jn
· σ(n)

n! . Let (9) hold true. Since

1−λ ≥
∞

∑
n=2

(n−λ ) |an| ·ϕ

≥
∞

∑
n=2

λ |an|ϕ −
∞

∑
n=2

n |an|ϕ ,

that is

1+∑∞
n=2 n |an|ϕ

1+∑∞
n=2 |an|ϕ

> λ .

Hence

R


{

qFθ , k
α, β , σ ( f )(z)

]′
qFθ , k

a, β , σ ( f )(z)

> λ .

The inequality (9) is sharp and the equality holds at the extremal function given by
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f (z) = z+
∞

∑
n=2

(1−λ )
(n−λ )

q

∏
j=1

(α j)k j

(β j)α j

(β j)α jn

(θ j)k jn

n!
σ(n)

zn.

Corollary 1 If f (z) ∈ qSθ , k
α, β , σ (λ ). Then

|an| ≤
(1−λ )
(n−λ )

q

∏
j=1

(α j)k j

(β j)α j

(β j)α jn

(θ j)k jn

n!
σ(n)

, n ≥ 2.

By utilizing the inequality (4), we write

1
σ(n)

>
log logn

eγ n(log logn)2 +0.6483n
, n ≥ 3,

we derive the following lower bounds inequality.
Corollary 2 If f (z) ∈ qSθ , k

α, β , σ (λ ). Then

|an|>
(1−λ )
(n−λ )

q

∏
j=1

(α j)k j

(β j)α j

(β j)α jn

(θ j)k jn

(n−1)! log logn
eγ(log logn)2 +0.6483

, n ≥ 3.

Similarly, if we assume the Robin’s inequality (5), we deduce
Corollary 3 If f (z) ∈ qδ θ , k

α, β , σ (λ ), and the Robin’s inequality (5) holds true. Then

|an|>
(1−λ )
(n−λ )

q

∏
j=1

(α j)k j

(β j)α j

(β j)α jn

(θ j)k jn
· (n−1)!

eγ log logn
, n > 5040.

Using the same method of Theorem 1, we can verify the following result:
Theorem 2 Let f (z) ∈ A . If

∞

∑
n=2

n(n−λ ) |an|
q

∏
j=1

(β j)α j

(α j)k j

(θ j)k jn

(β j)α jn
· σ(n)

n!
≤ 1−λ , 0 ≤ λ < 1 (10)

Then f (z) ∈ qC θ , k
α, β , σ (λ ). The result (10) is sharp.

Corollary 4 If f (z) ∈ qC θ , k
α, β , σ (λ ). Then

|an| ≤
(1−λ )
(n−λ )

q

∏
j=1

(α j)k j

(β j)α j

(β j)α jn

(θ j)k jn

(n−1)!
σ(n)

, n ≥ 2.
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Corollary 5 If f (z) ∈ qC θ , k
α, β , σ (λ ). Then

|an|>
(1−λ )
n(n−λ )

q

∏
j=1

(α j)k j

(β j)α j

(β j)α jn

(θ j)k jn

(n−1)! log logn
eγ(log logn)2 +0.6483

, n ≥ 3.

Corollary 6 If f (z) ∈ qSθ , k
α, β , σ (λ ), and the Robin’s inequality (5) holds true. Then

|an|>
(1−λ )
n(n−λ )

q

∏
j=1

(α j)k j

(β j)α j

(β j)α jn

(θ j)k jn
· (n−1)!

eγ log logn
, n > 5040.

Definition 3 Let ξ (z) be univalent starlike function with respect to 1 which maps the unit disk U onto a region in
the right half plane which is symmetric about the real axis, ξ (0) = 1 and ξ ′(0) > 0. An analytic function f (z) is in the
class qFθ ,k

α,β ,σ (ξ ) if

z
(

qFθ ,k
α,β ,σ ( f )(z)

)′

qFθ , k
α, β , σ ( f )(z)

≺ ξ (z). (11)

Lemma 2 (see [21]) Let h1(z) = 1+c1z+c2z2+c3z3+ . . . be an analytic function with positive real part inU . Then

∣∣c2 − vc2
1
∣∣≤ 2max{1, |2v−1|}, (12)

and the result is sharp for the functions given by

h(z) =
1+ z
1− z

, h(z) =
1+ z2

1− z2 . (13)

Theorem 3 Let the conditions of Theorem 1 be satisfied. Then

|a2| ≤
4(1−λ )
3(1+λ )

q

∏
j=1

(α j)k j

(β j)α j

(β j)2α j

(θ j)2k j

, 0 ≤ λ < 1,

and for every µ ∈ C the following inequality is sharp

∣∣a3 −µa2
2
∣∣≤ 1−λ

(2+λ )B
max

{
1,

∣∣∣∣B2 +
1−λ
1+λ

B2
1 −µµ

(1−λ )(2+λ )B
(1+λ )2A2 B2

1

∣∣∣∣}

Proof. Since f (z) ∈ qSθ , k
α, β , σ (λ ) then the condition
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R

z

[
qFθ , k

α, β , σ ( f )(z)
]′

qFθ , k
α, β , σ ( f )(z)

> λ , 0 ≤ λ < 1, z ∈ U ,

is equivalent to

z
[
qFθ , k

α, β , σ ( f )(z)
]′
= (1−λ )h(z)qFθ , k

α, β , σ ( f )(z), z ∈ U ,

for a given function h ∈ P . We equate the coefficients, and we obtain the values of

a2 =
(1−λ )h1

(1+λ )A
(14)

and

a3 =
1−λ

(2+λ )B

(
1−λ
1+λ

h2
1 +h2

)
. (15)

By using equation (14) and Lemma 1, we achieve the required result of |a2|

|a2| ≤
4(1−λ )
3(1+λ )

q

∏
j=1

(α j)k j

(β j)α j

(β j)2α j

(θ j)2k j

.

Where

A =
2
3

q

∏
j=1

(α j)k j

(β j)α j

(β j)2α j

(θ j)2k j

and B =
3
2

q

∏
j=1

(α j)k j

(β j)α j

(β j)3α j

(θ j)3k j

. (16)

For the Fekete-Szegö function
∣∣a3 −µa2

2

∣∣, consider ξ (z) = 1+B1z+B2z2 + . . . if f (z) ∈ qFθ , k
α, β , σ (ξ ), then

h(z) = ξ
(

h1(z)−1
h1(z)+1

)
. (17)

Since ξ (z) is univalent and h(z)≺ ξ (z), then the function below, is analytic and has a positive real part in U .

h1(z) =
1+ξ−1(h(z))
1−ξ−1(h(z))

= 1+ c1z+ c2z2 + . . . (18)

Next, by the means of (17) and (18) we find the values of h1(z) and h2(z)
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h1(z) =
1
2

B1c1,

and

h2(z) =
1
2

(
c2 −

1
2

c2
1

)
+

1
4

B2c2
1,

so, by using Lemma 2 we find that

∣∣a3 −µa2
2
∣∣≤ 2(1−λ )

(2+λ )B
+

{
(1−λ )2

(1+λ )(2+λ )
−µ

(1−λ )2

(1+λ )2A2

}
|h1|2

≤W (x) =
2(1−λ )
(2+λ )B

+

{
K − (1−λ )

2(2+λ )B

}
x2, x : = |h1|2 .

(19)

Consequently, we deduce

∣∣a3 −µa2
2
∣∣≤


W (0) =

2(1−λ )
(2+λ )B

if K ≤ (1−λ )
2(2+λ )B

W (2) = 4K if K >
(1−λ )

2(2+λ )B
,

where

K : =
(1−λ )

2(2+λ )B
+

(1−λ )2

(1+λ )(2+λ )
−µ

(1−λ )2

(1+λ )2A2 .

The equality is reached by the functions satisfying;

z

[
qFθ , k

α, β , σ ( f )(z)
]′

qFθ , k
α, β , σ ( f )(z)

=
1+ z(1−2λ )

1− z

z

[
qFθ , k

α, β , σ ( f )(z)
]′

qFθ , k
α, β , σ ( f )(z)

=
1+ z2(1−2λ )

1− z2 .

We also have
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a3 −µa2
2 =

(1−λ )
2(2+λ )B

(
c2 − vc2

1
)
, (20)

The values of A and B are given in (16), and the value of v is given by

v =
1
2

(
1−B2 −

1−λ
1+λ

B2
1 +µ

(1−λ )(2+λ )B
(1+λ )2A2 B2

1

)
,

Thus, the result is proved by Lemma 2.
Corollary 7 Under the assumption of Theorem 3, if λ = 0, then

|a2| ≤
4
3

q

∏
j=1

(α j)k j

(β j)α j

(β j)2α j

(θ j)2k j

, 0 ≤ λ < 1,

and for all µ ∈ C

∣∣a3 −µa2
2
∣∣≤ 1

2B
max

{
1,
∣∣∣∣B2 +B2

1 −µ
2B
A2 B2

1

∣∣∣∣} .

Next, we prove the result for the class qC θ , k
α, β , σ (λ ).

Theorem 4 If the conditions of Theorem 2 are satisfied, then

|a2| ≤
2(1−λ )
3(1+λ )

q

∏
j=1

(α j)k j

(β j)α j

(β j)2α j

(θ j)2k j

, 0 ≤ λ < 1,

and for every µ ∈ C the following inequality is sharp

∣∣a3 −µa2
2
∣∣≤ 1−λ

3(2+λ )B
max

{
1,

∣∣∣∣B2 +
1−λ
1+λ

B2
1 −µ

3(1−λ )(2+λ )B
2(1+λ )2A2 B2

1

∣∣∣∣} .

Proof. Since f ∈ qC θ , k
α, β , σ (λ ) then the condition

R


[

z
(

qFθ , k
α, β , σ ( f )(z)

)′
]′

(
qFθ , k

α, β , σ ( f )(z)
)′

> λ , 0 ≤ λ < 1,

is equivalent to
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(
qFθ , k

α, β , σ ( f )(z)
)′
+

[
z
(

qFθ , k
α, β , σ ( f )(z)

)′
]′

= (1−λ )h(z)
(

qFθ , k
α, β , σ ( f )(z)

)′
,

for a given function of positive real part, h ∈ P . By equating the coefficients, we obtain

a2 =
(1−λ )h1

2(1+λ )A
, (21)

and

a3 =
1−λ

3(2+λ )B

(
1−λ
1+λ

h2
1 +h2

)
(22)

Therefore, from (21) and Lemma 1, the result of |a2| is obtained.
In addition, we conclude the following;

a3 −µa2
2 =

1−λ
6(2+λ )B

(
c2 − vc2

1
)
, (23)

Again, the values of A and B are given in (16), and the value of v here is given by

v =
1
2

(
1−B2 −

1−λ
1+λ

B2
1 +µ

3(1−λ )(2+λ )B
2(1+λ )2A2 B2

1

)
,

the result then, is proved by using Lemma 2.
Corollary 8 Under the assumption of Theorem 4, if λ = 0, then

|a2| ≤
2
3

q

∏
j=1

(α j)k j

(β j)α j

(β j)2α j

(θ j)2k j

, 0 ≤ λ < 1,

and for all µ ∈ C.

∣∣a3 −µa2
2
∣∣≤ 1

6B
max

{
1,

∣∣∣∣B2 +B2
1 −µ

2B
A2 B2

1

∣∣∣∣} .

3. Conclusions
In this study, we have introduced a linear operator that is the Hadamard product of the most generalized Mittag-

Leffler function along with the Lambert series, where the coefficients represent the function of sum of divisors. Hence, we
investigated the inclusion conditions of the new operator into the well-known subclasses of starlike and convex functions
of order λ . Finally; we have studied the Fekete-Szegö inequality
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