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Abstract: The philosophical nature of randomly generated quantities is widely discussed in the realms of chaos theory. 
Although, the fundamental premise of the chaos theory does not assume any random behavior in the resulting series and 
considers them deterministic however highly dependent on the initial conditions of the system, one could address the 
problem of randomness, by using the output of a chaotic system, as the input of a mathematical function, aiming for the 
generation of randomly distributed values. For that matter, the voltages of the two capacitors in the classic configuration of 
a Chua’s circuit have been measured. Having defined eight mathematical schemes for manipulating the inputted data set, 
the current manuscript focuses on the pragmatic and engineering criteria of the resulting data, in terms of randomness, and 
spectral distributions; hence proposing methods of random data generation. The ranking of schemes has been proceeded 
through a geometrical manifestation of the Monte Carlo Integration. And the suggested eight schemes are compared with 
the commercially common timer-based random generators. As the geometrical domain in the Monte Carlo Integration has 
defined in such a way that the most randomly distributed data set would result in a closer estimation of the number Pi, the 
suggested scheme working based on ‘frequency indicator’ is evaluated as the highest-ranked scheme in that regard, with 
the estimated numerical value of 3.1424 for Pi.
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Nomenclature
BP		  Breakpoint of current through Chua’s diode
 C1		  Capacitor no. 1
 C2		  Capacitor no. 2
 Ga		  Inner slope of Chua’s diode
 Gb		  Outer slope of Chua’s diode
 iL		  Inductor current
 iR		  Chua’s diode current
L		  Self-inductance
R		  Resistance
 VC1

		  Voltage of Capacitor no. 1
 VC2

		  Voltage of Capacitor no. 2
 VR		  Voltage of Chua’s diode
 V11		  Voltage of Capacitor no. 1 in first experiment
 V12		  Voltage of Capacitor no. 1 in second experiment
 V21		  Voltage of Capacitor no. 2 in first experiment
 V22		  Voltage of Capacitor no. 2 in second experiment
 T		  Time interval
x		  Inputs extracted from capacitor no. 1
 y		   Inputs extracted from capacitor no. 2
 U		  Unit Step Function

Copyright ©2020 Kasra Amini, et al.
DOI: https://doi.org/10.37256/cm.142020491
This is an open-access article distributed under a CC BY license 
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

mailto:kasra.amini@rwth-aachen.de


Contemporary Mathematics 254 | Kasra Amini, et al.

1. Introduction
Chaos theory, the science of nonlinear topics, has lots of applications in engineering, physics, economics, etc. 

Although it fails to predict the precise condition of the system in different topics such as weather forecast, demographic 
patterns in biology, three-body problem, etc. However, in the current study this feature has been used to make progress in 
various fields such as private communications[1-2].

Lorenz derived a three-dimensional system from a drastically simplified model of convective flows in the atmosphere. 
He found out that the solution of some systems has oscillating irregularities, which cause the outputs not to have a 
repetitive pattern, however they could be limited in a bounded region of phase space. He discovered the trajectories settled 
onto a complicated set, while plotting them in three dimensions. This complicated set is called a “strange attractor”. The 
strange attractor is a fractal, unlike fixed points and limited cycles, with a fractional dimension between 2 and 3[3].

Chaos is a fundamental property that possesses nonlinearity and sensitive dependence on initial conditions. It is 
associated with the complex and unpredictable behavior of phenomena over time, which means being inputs on the series 
initial condition, the value of the series at any time is a specified nonlinear function of the previous values. Any alteration 
of the initial conditions makes it impossible to determine the outcome of the system with the desired prediction accuracy[4]. 
Hence the nonlinearity of a chaotic system makes it display highly erratic and chaotic behavior over a given time 
interval[5-6]. This feature made chaos undesirable and it was strongly avoided in research[5, 7-9]. But recent breakthroughs 
have found some new procedures for chaos, where it is intentionally created for unconventional applications; for example, 
in the field of secure communication[2, 9, 10]. Therefore, there has been a growing interest in exploring systems displaying 
unusual and complicated waveforms[11].

Chua’s circuit could be considered as an example of how chaos theory affects the accuracy of predictions over a given 
time interval. Therefore, in the last decade, it has been used as a prototype of studying dynamics and control algorithms 
of nonlinear circuits[7]. Several investigations on Chua’s circuit have been developed to find its different applications and 
enhancing the accuracy of output tracking or validating particular theories such as bifurcation and synchronization[12]. 
Chaotic circuits have widely absorbed the attention due to their applications in chaos control[13], signal encryption[14], test 
platform for synchronization and private communications[1, 15]. In addition, the easy implementation of these circuits has 
made it possible to study chaos in the electronics background. Chaotic features of electronic circuitry, especially in the 
frame of chaotic attractors have made them beneficial to be used in some practical problems such as genetic algorithms, 
which are inspired by Darwin’s theory of natural selection, to improve its optimization capacities[16 -18].

Chaotic circuits could also be used as random number generators in cryptography and particularly Chua’s circuit is 
used as a pseudo random sequence generator[16]. A new chaotic cryptosystem is presented in [19], which also deals with 
few problems appearing in cryptosystems.

Chua’s circuit plays an important role in chaos communications. In order to enhance the level of security in such 
systems, different techniques have been investigated, such as chaotic masking, chaotic switching and chaotic modulation. 
These approaches to private communications are based on the combination of synchronization and unpredictability of 
chaos using Chua’s circuit or an analog circuit implementation of the Lorenz system[1]. Comparing the methods in output 
tracking for having the best results is a necessity in chaotic communications. Reducing the tracking error in the presence 
of a deterministic disturbance due to coupled circuits and having those signal sources work together in close proximity are 
examples of the difficulties in this field[12, 20-24].

Bifurcation and chaotic phenomena could be observed in many nonlinear electronic circuitry[25]. Chua’s circuit is 
the most significant setup, since it is the simplest electronic circuit to produce chaotic data, whereas dynamically the 
most complex among nonlinear circuits yet. In addition, it is the only system, in which the presence of chaos has been 
mathematically proven[26-30]. These characteristics have made Chua’s circuit a standard sample for studying chaotic 
phenomena[22]. It has been shown that dynamic behavior of Chua’s circuit is extended using fractional derivative by non-
local and non-singular kernel by the means of numerical analysis for the solution[28].

Monte Carlo methods are defined as a class of computational algorithms, that could be applied to a considerable range 
of problems. The important role of Monte Carlo methods in statistical physics and their influence in later high technical al-
gorithms to quantify systematic and statistical errors are undeniable. Demonstrating a solution to a problem as a parameter, 
that is going to be estimated by sampling a given distribution of data is the main idea behind the Monte Carlo algorithm. 
The general goal of Monte Carlo methods is to approximately provide analytical or numerical solutions, where they are too 
challenging for implementation. The algorithm will perform a deterministic calculation with possible inputs and analyze 
the results statistically. In the current research, the attention will be on Monte Carlo Integration, which is the most common 
application of the mentioned method. The core idea behind the Monte Carlo Integration algorithm is to compensate for 



Volume 1 Issue 4|2020| 255 Contemporary Mathematics

lack of precise information on the boundaries and geometric definitions of the problem set, with a higher than necessary 
sweeping the domain with randomly generated sets and evaluating the problem thereafter. This higher number of random 
sets, and the fact that based on the initial premises of the Monte Carlo algorithm, and the experiment should be performed 
more than a certain threshold limit, causes a numerically over-saturation leading to an approximate value[31].

Finally, it is worth mentioning, that the current manuscript addresses the output signal of an experimental Chua’s 
circuit in its core classical configuration, and the degree of randomness corresponding to it. First, the output signal is 
mathematically manipulated in certain ways to generate several desired sets of so-called random data, which are extracted 
from the Chua’s circuit experimentally. Then the interpreted data are inputted to the Monte Carlo Integration algorithm in 
order to evaluate the results and allocate the level of randomness to each individual case.

2. Chua’s circuit
2.1 Circuit architecture

The classical Chua’s circuit first presented by L. O. Chua and his colleagues in 1984[32], is a nonlinear oscillator, which 
consists of four linear elements being an inductor, a resistor and two capacitors, as well as a nonlinear element, which 
could provide an active negative resistance (NR) called Chua’s diode. Chua’s diode is not a commercially available device, 
however, there are various circuit solutions to synthesize NR using the standard active and passive elements available in the 
market, mostly including an operational amplifier (op-amp) as the active device[33].
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Figure 1. Classical configuration of Chua’s circuit

Figure 1 represents the classical Chua’s circuit with the Chua’s diode implemented using a combination of resistors 
R1 to R6 and operational amplifiers. Another common alternative solution for the implementation of Chua’s diode is 
shown in Figure 2, consisting of an operational amplifier and PN-junction diodes[34].
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Figure 2. Diode included configuration of Chua’s diode (NR)

2.2 Governing equations
The dynamics of Chua’s circuit could be modeled by the following set of nonlinear ordinary differential equations[25].
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 and i3 denote the voltages of the capacitors C1 and C2 and the current of the inductor L, respectively, 
and f (VR) is a nonlinear function defined as;
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Figure 3. Current vs. voltage characteristics of Chua’s diode graph

GbVR + (Gb - Ga)BP	 	 VR < -BP						           (5)

GaVR			   -BP ≤ VR ≤ BP					           (6)

GbVR + (Ga - Gb)BP	 	 VR ﹥ BP						            (7)

Ga and Gb are considered as the inner and outer slopes of Chua’s diode, respectively, and ± BP are the breakpoints in iR 
(Figure 3). 

Most of the analytical studies of the circuit will be focused on dimensionless form of the equations:

dx/dt = α( y - x - f (x))			   				          (8)

dy/dt = x - y + z			   					           (9)

dz/dt = -βy				    					           (10)

Where 1 2,  and ( ). C C

P P P

V V R
LB B Bx y z i= = =  are dimensionless state variables and 

2
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1

 and C R C
C Lα β= =  are the only 

two essential parameters. It is worth mentioning, that BP has the same dimension as the voltage, the variables x, y and z are 
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dimensionless, as are the α and β parameters. Therefore, equations 8 to 10 hold from a dimensional analysis point of view.
2.3 Chaotic output

According to [33-37] Chua’s circuit is the only known physical system which has been proven to have chaotic 
behavior in three different methods including computer simulations, laboratory experiments and mathematical analyses. 
The chaotic nature of the system comes from complex behavior that displays sensitive dependence on initial conditions. 
Several attempts have been made to understand Chua’s circuit using different approaches such as investigating bifurcation 
phenomena and understanding nonlinear dynamic systems. By keeping all parameters in the above equations constant 
except for β, two periodic orbits are created simultaneously in a Hopf bifurcation (Figure 4). Then, by changing β they start 
to show a period-doubling cascade, as shown in Figure 4(c) and eventually the attractors begin to approach one another 
and reach chaos in Figure 4(f).
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d e f
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Figure 4. Fixed parameters are α = 10, 8 5
a b7 7G = , G = . The attracting set starts to variate as parameter β changes. (a) β = 25, two periodic orbits. 

(b) β = 20, the orbits have “period-doubled”. (c) β = 18, another doubling of the period. (d) β = 17.8, a pair of chaotic attracting orbits. 
(e) β = 17.4, the chaotic attractors expand and move toward one another. (f) β = 15.4, a “double scroll” chaotic attractor

3. Experimental setup
3.1 Chua’s circuit

For resonating chaotic configurations like Chua’s circuit, solid connections are required to observe accurate signals, 
therefore the classical configuration of Chua’s circuit has been built on a custom-designed PCB (Printer Circuit Board) for 
experimental purposes. At one side of the 3 × 4 cm board the cupric connections are built, while the other side is covered 
with fiberglass as shown in Figure 5.
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Figure 5. Custom designed PCB

Numerical simulations indicate that for the classical Chua’s circuit of Figure 1 to exhibit chaotic behavior in the 
oscillation frequency, the components of the circuit should be set as indicated in Table 1. Whereas, the components’ values 
presented in Table 2 could be used, had the Chua’s diode been implemented using the configuration illustrated in Figure 2. 

Table 1. parameters chosen for the experiment

Elements Value

R 1.5 kΩ

R1 220 Ω

R2 220 Ω

R3 2.2 kΩ

R4 22.0 kΩ

R5 22.0 kΩ

R6 3.3 kΩ

C1 10 nF

C2 100 nF

L 15 mH

Table 2. Parameters chosen for alternative configuration of Chua’s diode (Figure 2)

Elements Value

R7 290 Ω

R8 290 Ω

R9 1.2 kΩ

R10 3.3 kΩ

R11 3.3 kΩ

D1 IN4148

D2 IN4148

The final fabricated circuit is shown in Figure 6. The components were selected according to Table 1. The operational 
amplifiers are implemented using a TL082 PC Integrated Chip (IC), which includes two op-amps working with a supply 
voltage of 18 Volts provided by a battery. The inherent possible errors of the elements are listed in Table 3.



Volume 1 Issue 4|2020| 259 Contemporary Mathematics

Figure 6. Chua’s circuit

Table 3. Error percentage of circuit elements

Component Error percentage

Resistance 5%

Capacitance 5%

Inductance 5%

The approach in the experiment is to plot the time-domain sampled version of the waveforms of VC1
 and VC2

, where 
VC1

 and VC2
 denote the voltages of the capacitors C1 and C2, respectively. 

3.2 Measurement devices
The chaotic signals obtained from Chua’s circuit of Figure 6 are analog continuous time voltages in the range of 

around -33 V to +33 V. However, the mathematical schemes being used for the signal processing in the following sections 
of the manuscript are designed to be applied to discrete-time datasets. The Arduino microcontroller board presented in 
Figure 7 is used to perform the signal conversion from the analog domain to the required sampled values by means of the 
internal Analog to Digital Converter (ADC) block of the processor. The integrated ADC provides the equivalent voltage 
value representing the magnitude of the signal with continuous values for the sampled data. 

In order to adapt the voltage levels of the Chua’s circuit outputs, VC1
 and VC2

, to a voltage level that is acceptable and 
processable by the microcontroller, a voltage amplifier as shown in Figure 8 is required. Using an LM324 Quad op-amp 
IC, which includes four operational amplifiers, the initial voltage level of VC1

 and VC2
 is transformed to 0-5 V. This process 

is done using two inverting amplifiers implemented by two op-amps with the gain less than one as defined by the ratio of 
R13 to R14 or equivalently R15 to R16, and an offset voltage generated by the remaining circuitries to shift the output 
voltage level to 0-5 V. It is worth mentioning that, for each sampled discrete-time input data, the Arduino is programmed to 
output the corresponding value of the capacitors’ voltages in the range of -33 to 33.

Figure 7. Arduino microcontroller
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Figure 8. Voltage amplifier circuit

4. Methodology
4.1 Monte carlo algorithm-random inputs

For the sake of clarity in the concerns considered in the Monte Carlo Method as the main methodology of the current 
investigation, a brief explanation has been presented. Monte Carlo method is widely used for physical and mathematical 
problems, where a deterministic approach would be impossible to implement. The presented algorithm uses randomly 
generated values to produce numerical results to simulate the behavior of a system. Instead of considering all the 
influencing factors to formulate a general law, the method uses a rationally large and comprehensive set of randomized 
values and then this set is claimed to cover the whole domain of the problem. These algorithms can be applied to a 
vast range of problems, which have a probabilistic interpretation and are commonly used in a variety of fields such as 
optimization, numerical integration, generating samples from a probability distribution and simulating phenomena with 
significant uncertainty in inputs and numerous couple degrees of freedom. This makes the algorithm an appropriate 
technique when it comes to computational physics, many-body problems, weather forecasting, risk analysis and so on.

Monte Carlo integration is a method for approximately computing the value of complex integrals. Monte Carlo 
techniques are mostly used to provide numerical solutions for multi-dimensional functions, where they are too challenging 
to implement directly. The algorithm analyzes the results of possible inputs statistically; therefore, the current research is 
based on this method. Instead of having fixed inputs, Monte Carlo algorithms sweep the domain by adding random sets 
and evaluate the problem with that regard. Due to the necessity of well-controlled computational experiments in numerical 
methods such as the Monte Carlo algorithm[31], the experiment should be performed certain times to get better approximate 
outcomes.
4.2 Input data generation

Voltage alterations resulted from the implemented capacitors are considered as the output of the designed circuit. 
By applying them to the Monte Carlo integration after exerting the required manipulations, its level of randomness can 
be determined. For these manipulations, 8 schemes have been designed as mentioned below. The chaotic outputs of these 
schemes after being non-dimensionalized will be assigned to x and y pairs as the inputs of the Monte Carlo algorithm. 

Each (x, y) represents a point on the Cartesian coordinate system. Both x and y should be in the range of [0, 1], 
therefore, the output of each scheme is divided by their maximum value. Bounded by the computational domain, the 
position of the dots should be limited to a unit square. Later, the number of points among them, which are also positioned 
inside a quarter of a circle will be calculated (Figure 9).
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Figure 9. Computational domain

An adequate criterion to determine the level of randomness could be the extent of the proximity to the value of the 
quarter circle area, when the number of the points below the quarter circle curve in proportion to that of the entire data 
points is converging to π/4 as in Figure 10.
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Figure 10. Convergence of Monte Carlo Integration Algorithm to π/4

4.2.1 Timer driven randomized data set
In the first scheme, instead of using voltage alteration resulted from the implemented capacitors as the output of the 

designed circuit, computer’s timer driven randomized data set is used as to be inputted in the Monte Carlo algorithm; 
therefore, other scheme will be compared to the timer driven randomized data set to determine their level of randomness. 
Computer’s algorithm for generating random numbers produces positive numbers smaller than 1, which are in the correct 
range for the Monte Carlo Integration according to what said before. These data sets will be non-dimensionalized by being 
divided to their maximum value, and after being simple-sampled over equidistant intervals of 4 ms will be inputted to the 
Monte Carlo integration.

Rand(t) = {Random(t)| ∀ t ∈ N}

x = Rand(t)		   t ∈ N

y = Rand(t)		   t ∈ N							             (11)

4.2.2 Simple sampling
In order to produce a scattering and chaotic set of data as to be inputted in the Monte Carlo algorithm, this scheme 

is simply designed to extract random samples from the raw measured dataset. For that matter, a particular set of data over 
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equidistant intervals of 4 ms have been selected, instead of a completely random selection and it is due to the chaotic 
nature of the signal voltages, which could be considered as entirely random in this case.

x = V11(t)		  t ∈ N

y = V21(t)		  t ∈ N		  					           (12)

4.2.3 First time-derivative
In this scheme, the first-time numerical derivative of two followed data over equidistant intervals of 4 ms is the 

mathematical manipulation that produces a chaotic set of data exerted from the original dataset for the Monte Carlo 
Integration. However, this method produces outputs in the incorrect range according to the requirements of the Monte 
Carlo algorithm. Therefore, these outputs, after being mathematically transformed into the correct amplitude, will be 
assigned to the mentioned interval, and then used as the inputs of the Monte Carlo Integration.
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4.2.4 Root of squared time derivatives
In this scheme the way of producing chaotic and scattering data is similar to the previous section. The first time-

derivative of two consecutive data over equidistant intervals of 4 ms is calculated. As mentioned before, this method 
produces outputs in the inadequate range of [-1, 1]. So, in order to transfer the outputs into the correct range of [0, 1] in this 
section, the root of the squared time derivative is calculated. In the end, a new set of data has been exerted from the last set 
of outputs will be used as the required inputs of the Monte Carlo Integration.
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4.2.5 Frequency indicator
In order to obtain an indicator of the longitudinal behavior of the original signal, this scheme addresses the 

instantaneous frequency opposing to the common consideration of the amplitude as the scattering and chaotic data set 
derived from continuous-time signal. However, a mean frequency indicator over equidistant intervals has been considered, 
instead of a more usual instantaneous frequency, since the further requirements of the Monte Carlo algorithm demand one 
to switch to a digital sampling of the data anyway. For that matter, the measured data has been cut to intervals of 4 ms. 
Then, the number of alterations in the algebraic sign of the first time derivative in each interval has been assigned to the 
said interval, and then used as the mathematically manipulated data set inputted to the Monte Carlo Integration method.

11 11( ( '( ) '( )))        i T

i

t
i itx U V t V t t N+ − += − ∗ ∈∑

21 21( ( '( ) '( )))        i T

i

t
i ity U V t V t t N+ − += − ∗ ∈∑ 					           (15)

4.2.6 Time interval between two consecutive extremums (Time extremum distance)
This scheme addresses the time interval between two consecutive extremums as a factor of producing chaotic and 

scattering data set exerted from the raw signals for the Monte Carlo Integration. The extremums are found with numerical 
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derivation of the data and checking sign alterations to find whether the investigated point could be considered as an 
extremum. At last, by subtracting the time established to every two consecutive extremums, the input of the Monte Carlo 
integration would be ready.

x = ti - ti-1	 if (V11(ti) = extremum and V11(ti-1) = extremum)

y = ti - ti-1	 if (V21(ti) = extremum and V21(ti-1) = extremum)			         (16)

4.2.7 Voltage interval between two consecutive extremums (Y extremum distance)
With regard to demonstrating the voltage alteration between each two following extremums of the signal, the current 

method would be considered as the next schematic. The algorithm of finding the extremums is as mentioned above with a 
difference in the established value, which is the voltage of the extremum and it should be mentioned that the subtraction 
of the consecutive extremums can cause the result value to have different signs. Therefore, similar to the other schemes, a 
shift would be applied to the data to fit in the [0, 1] range.

x = V1(ti) - V1(ti-1)	 if (V11(ti) = extremum and V11(ti-1) = extremum)

y = V2(ti) - V2(ti-1)	 if (V21(ti) = extremum and V21(ti-1) = extremum)		        (17)

4.2.8 Riemann integration method
This scheme measures the effect of integration on producing chaotic and scattering data sets as the requirements of 

the Monte Carlo integration. In order not to get involved with the complex mathematical calculations, Riemann integration 
is used on the input data, since it is the simplest integration algorithm. Riemann integration approximates the area under 
a curve by breaking up the said area into rectangles and calculating the sum of areas of those rectangles. Therefore, the 
measured signal is cut into intervals of 4 ms. Then, to each interval the multiplication of the average of the two following 
voltages of the measured signal and the time interval between them will be assigned as the Riemann integration of that 
interval. The sum of Riemann integration of 4 ms consecutive intervals after being simple-sampled will be the required 
chaotic and scattering inputs for the Monte Carlo Integration.
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4.2.9 Natural logarithm of consecutive experiments
In this scheme the natural logarithm of subtraction of two signals extracted from consecutive experiments is the 

mathematical manipulation which produces the scattering and chaotic data as the inputs of the Monte Carlo integration. As 
mentioned above, for this section two consecutive experiments would be executed, and due to the lack of sensitivity and 
errors of the implemented elements, the results would be different as it resembles the nature of chaos. The measured data 
will be cut into several intervals of 4 ms. Then natural logarithm of the absolute value of the subtraction of the voltages of 
the two signals with exact time will be calculated. After these manipulations, a new data set will be simple sampled which 
will become the chaotic and scattering inputs required for the Monte Carlo Integration.

x = Ln(|V11(ti) - V12(ti)|)		  t ∈ N

y = Ln(|V21(ti) - V22(ti)|)		  t ∈ N					           (19)

5. Results and discussion
As the primary objective of the current research a quantitative comparison between 9 mathematical schemes/functions 

driven based on the output voltage signals measured over the capacitors of a classic Chua’s circuit is established. In order 
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to have a set of criteria quantifying, while evaluating, the level of randomness of the resulting mathematically manipulated 
data, a geometric manifestation of the Monte Carlo Integration algorithm has been utilized, in which a quarter circle of 
unit radius has been swept by points of normalized coordinates, each obtained from one of the above mentioned voltages 
undergoing a mathematical scheme, as discussed in the previous section. The final evaluation has then been carried out by 
checking the ratio of the fraction of swept area to that of the entire quarter circle, which would estimate a numerical value 
for the constant π, should this sweeping occur uniformly throughout the computational domain. 

The results of the scattering data in the Monte Carlo algorithm in one view have made an opportunity to make 
them comparable. As a matter of clarification, it should be mentioned that to cover all the data including both positive 
and negative voltages for some schemes (Simple sampling (b)-First time derivative (c)-Voltage interval between two 
consecutive extremums (g)-Riemann integration method (h)), a shifting transform was applied to the manipulated data in 
order to make it accessible for the Monte Carlo algorithm; so as if the stated process was taken, it can be concluded that 
the data which are located in the center, top and bottom of the graphs in Figure 12 are valued nearly zero, positive and 
negative, respectively. 

Simple sampling shows a wide distribution of data over the domain as can be seen in Figure 12 (b). Also, because of 
the physical limitations of the experiment some values can never be accepted by the capacitors, which have been left blank 
on the mentioned graph.

In First time-derivative, Root of squared time derivative and Riemann integration methods, the derivation and the 
integration of the voltage graph with a reasonable shift, to be in a specific range is demonstrated. As shown in Figure 12 (c), 
there is a dense distribution of data in the central part of the domain resulted from the numerous oscillations in the chaotic 
signal (Figure 11), that could lead to having many extremums as well, and it means that the first-time derivatives are 
zero so they would be displayed in the center. The next scheme (Figure 12 (d)) is similar to the previous one with a small 
difference in its area transformation. The operation of root of square time derivatives makes the plot look similar to the top 
right of the Figure 12 (c). The behavior of the Riemann integration scheme states that in a specific time range, a numerical 
integration, in which the upper parts of the signal considered positive and the lower parts considered negative (Figure 11), 
should be applied and because of the chaotic nature of the signal, which causes consecutive oscillations, the summation of 
the calculated areas would be mostly zero. Therefore, the condensed central distribution of data in Figure 12 (h) could be 
explained.
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Figure 11. Output signal of Capacitor 1

It is assumable from the mathematical behavior of the time-domain waveform of the voltage for both capacitors that 
each maximum extremum can only be followed by a minimum one and the same goes for the opposite situation. As a 
result of the stated fact, the outputs sign changes once in a row; therefore, there exist only two possibilities when mapping 
the outputs of the two capacitors. Either values with equal signs or values with opposite signs could be mapped. The 
occurrence of both situations depends on whether the initial slope of the mentioned graph for both capacitors have the 
same sign or not (Figure 12 (g)). In the current paper, values with the same signs have been mapped. Due to the shift in the 
domain, in order to plot the results in the correct range for the sake of comparison, the graph displays two squares in the 
Cartesian coordinates.

Since the number of alterations of the signal’s scope in a particular time changes between some specific quantities 
(Figure 11), due to choosing a limited interval time, the below-demonstrated results of the frequency indicator scheme 
were expected to behave discretely. But, if the data set number was allowed to reach a large quantity, in consequence of 
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the unlimited data, the area of the square would have been covered completely. Again, in time interval scheme, due to the 
chaotic behavior of the output signal and the certain rate of sampling of the experiment (i.e. 4 ms), the discrete form of the 
distribution could be described by the philosophy of the algorithm, since every extremum in the time axis is a multiple of 4 
ms.

An explanation for the form of dense distribution of the data in the top right of natural logarithm scheme could be 
the nature of exponential behavior of the ln function. That is due to the fact that, in small quantities, because of the low 
slope of the function, the differences in the input values would not change the outcome intensively, and the exact opposite 
description applies to the rest of the graph of natural logarithm of consecutive experiments. This means, the higher the 
given inputs, the greater the change in the final result will be, and as long as a limited accuracy in sampling of the voltages 
exists, the subtraction of the two voltages could not obtain a certain amount to sweep all the domain, hence the uncovered 
area displayed in Figure 12 (i).
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Table 4. Convergence results

Mathematical Scheme Data Set 
Number

Convergence
Rate

Convergence 
Margine

Calculated Pi 
Number

Deviation 
From Pi

Deviation 
percentage

Frequency Indicator 2500 2300 0.0003 3.1424 0.0009 0.02%

Randomized-timer 7500 5258 0.0003 3.1304 -0.0101 -0.32%

Simple Sampling 7500 5441 0.0003 3.2576 0.1161 3.69%

Y Extremum Distance 4950 4407 0.0003 2.6604 -0.4811 -15.31%

Integration 750 672 0.0150 3.8668 0.7253 23.08%

F´(x) 7500 2570 0.0003 3.9428 0.8013 25.50%

SQRT(F´^2) 7500 450 0.0003 3.9904 0.8489 27.02%

Time Extremum Distance 3750 2716 0.0003 3.9916 0.8501 27.06%

Natural logarithm (ln) 7025 3600 0.0003 0.4632 2.6783 85.25%

Table 4 summarizes the final results of the investigated schemes to find the accuracy of each one in estimating the Pi 
number by manipulating a truly set of chaotic data to make a random one. The experiment has been performed only once 
and according to the explanation, the voltage of the capacitors in every 4 ms have been used as the raw input, which results 
in all the schemes having identical inputs. However, because of the mathematical manipulation applied to each scheme, 
the amount of the data used as the input of the Monte Carlo algorithm in each scheme may differ from others. Therefore, 
the first column of this table has been dedicated to manifest the amount of data, which has been used for the Monte Carlo 
algorithm in each scheme.

In order to find the span of the set of data, in which the calculated Pi number for each scheme converges to the final 
calculated value, a criterion has been assessed according to the corresponding graphs (Figure 13). For that, the subtraction 
of Monte Carlo algorithm output for two consecutive data has been divided by the maximum value of this subtraction, then 
in each scheme these ratios have been compared to a pre-defined threshold, presented on the third column of the table. The 
n-th data, from which all the ratios have smaller values than the threshold, has been chosen as the convergence rate of that 
scheme, and it is shown in the second column of Table 4.
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Figure 13. Convergence chart of the schemes to the quarter of calculated Pi value

All the thresholds have been fixed on 0.0003, except for the integration scheme. In this scheme, as Figure 12 (h) 
displays, the center of the graph has a condense distribution of data, which makes the subtraction of the output for each 
data, and the maximum value of this subtraction adjacent. Therefore, these ratios cannot possess values less than a specific 
number. This characteristic of the mentioned scheme makes an obligation to choose a special threshold, that compensates 
for this feature.
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Two extra columns have been added into the above table as a matter of comparing the final results of the current 
research with the analytical Pi number. The comparisons have been made in two ways. First, the deviation of the estimated 
Pi from its actual value has been shown in column 5 of the table, for each scheme. And then, the ratio of these subtractions 
to the analytical Pi forms the last column. It is to be witnessed, that the negative and positive deviations represent under-, 
and over-estimations of the analytical value, respectively. This rule applies to both columns.

Although the main philosophy of Y extremum distance and time extremum distance is to determine the localized 
maximums and minimums of the chaotic signal in the voltage and the time axes, respectively, there exists a considerable 
difference between the final outcomes of the Pi estimation in the studied schemes. Due to the constant rate of sampling, 
the time extremum distance, with its calculation process being described before in 4.2.6, would be obliged to show results 
in just limited calculated multiples of the sampling rate (4 ms), and consequently would not cover all the area but in the 
Y extremum scheme, no such limitation has appeared and the chaotic nature of the resulting data set would itself act as a 
trigger to the random sweeping of the domain.

A misconception may exist, where there is a difference between the estimated Pi in Y extremum distance and simple 
sampling schemes, while both are dealing with the original chaotic data. To resolve this issue, one should consider that the 
algorithm of Y extremum distance scheme operates a mathematical variation, which leads to the fact that the sign of each 
individual output would be the reverse of the previous one, thus by asserting the above conditions for both of the voltages, 
only two quarters of the computational domain would be swept by the data depending on the initial slope of the graph. But 
the simple sampling scheme deals with the original non-manipulated data, which could cover the entire domain. Therefore, 
a better estimation was expected for the latter scheme. 

A significant difference between the convergence rate of F´(x) and SQRT(F´^2) is observed, despite the two being 
derived from a quite similar algorithm. Due to the limited range of the SQRT(F´^2) scheme, it can be assumed that each 
point in the F´(x) scheme with any specific coordinates would be transferred to the top right of the computational domain, 
where all the data is positive (Figure 12 (c)), hence the only essential parameter for the random positioning of the points 
would be the distance of each point to the center of the domain. Having the F´(x) scheme domain divided into four separate 
parts, it would result in the SQRT(F´^2) scheme with a convergence rate being four times smaller.

However, as the lowest ranked scheme; i.e. Natural Logarithm, the result sets plotted in the computational domain 
correspond to less scattered and normally distributed points. The numerical value of Pi calculated from this scheme shows 
less satisfactory randomly sweeping of the domain. The reason could be addressed in regard to the mathematical nature 
of the ln operator; as it tends to compress numerical values in their orders of magnitude with respect to the constant Euler 
Number (Napier’s Constant)’. This process of reduction will generate well distributed results for the input signals with 
great changes in amplitude, however, as could be seen in the experimental measurements of the Chua’s circuit, which 
was the basis of the computations in the current research, the proximity of the data in a rather narrow vicinity has led to 
less randomly distributed fashion of the (x, y) pairs in the domain, and consequently a prediction of the value Pi with an 
undesirable precision.

As shown above, the frequency indicator is the most exact approximation and has the least distance from Pi amongst 
the other schemes. Next, the acceptable applied schemes are the Y extremum distance and the simple sampling algorithm. 
Frequency indicator has a discrete distribution of data as shown in Figure 12 (e). This makes the exact estimation of Pi 
in this scheme a counter-intuitive one. Also, the symmetrical system of dispensation causes the output to depend on the 
number of the recurrence of each specific input, but not exactly on its position, and the scattering distribution of the points. 
This scheme shows a high repetition of data in the center and a low distribution on the edges of the domain; therefore, its 
specific results could be explained by a Gaussian distribution.

Having the computational domain divided by smaller but not quite infinitesimal sections, i.e. one third of the unit 
length, 9 squares (Figure 14) will be constructed. Each point in Figure 12 (e) represents a corresponding point among the 
set of points inside a square, the distribution function of which is the Gaussian function (Figure 15).
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where, a = 2.058, x and y represent the horizontal and vertical axes, respectively, the origin being chosen at a point, where 
probability of occurrence is at its highest, and the range for x and y being defined from -10 to 10. 
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Pi is calculated using the equation below.

4 7

4 7

4 7
4 4 12

P P
P P

π × + ×
=

× + × 								              (21)

where P4 and P7 are the probabilities of occurrence in the four central squares, and in the peripheral ones, respectively.

2 216.67 16.67
100 100

R L= + 							             (22)

Finally, benefitting from the symmetry of the problem, all the calculations at this point have been taken place in the 
y = 0 plane, while not imposing any change to the general premises of the problem. In these calculations, P4 is the ratio of 
the number of points located in the central section to the number of points located in the ± 16% range of the x axis, and P7 
is the ratio of the number of points located in the ± 33% range of the x axis to the number of points located in the ± 41% 
range of the x axis.
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In conclusion, this Gaussian distribution indicates that the data in the frequency indicator scheme (Figure 12 (e)), act 
similarly, and estimate Pi nearly accurately.

After investigating all the mentioned schemes, comparing the final results of the Monte Carlo as in Figure 13, which 
demonstrates the estimation of the Pi value and gives a clear view on where the convergence of each scheme starts from, 
is the last item in the results and discussion section. According to Figure 13, frequency indicator and simple sampling 
schemes have the best estimation of Pi value among all the schemes, which means the number of extremums over equal 
time intervals of voltage-time graph of the Chua’s circuit capacitors and the voltage values themselves were the best 
algorithms aligned with the purpose of this study than the other generated methods. However, there exist some schemes 
such as Natural logarithm, Riemann integration method, Time extremum distance and SQRT(F´^2), which do not provide 
acceptable approximations for Pi.

6. Conclusion
The main aim of the manuscript is to evaluate the randomness level of 8 defined schemes, which are mathematically 

manipulated sets of experimental driven chaotic data produced by a classical configuration of Chua’s circuit by using 
the Monte Carlo Integration algorithm. Therefore, it can be concluded that the result of this research has an application 
in the realm of Random Number Generators (RNGs). In the first steps of the work, a chaotic signal was generated from 
the Chua’s circuit after finding the chaos-producing range of the resistors. The experimental data were then inserted 
into 8 different mathematical manipulation schemes and lastly, the results were utilized as the inputs of a geometrical 
manifestation of the Monte Carlo Integration algorithm.

In order to make the output of the current research comparable to the existing methods of generating random sets of 
data, a scheme was designed to only use the computer random number generation method for estimating of Pi by the help 
of the Monte Carlo algorithm. This scheme has been used as an evaluator in this research. All the eight remaining schemes 
will be compared to the first one. Whether or not these estimations are closer to Pi is this paper’s criterion of choosing the 
scheme producing the most scattering and chaotic sets of random numbers.

By considering the explained scheme as the evaluator on this research, all the 8 schemes have been ranked according 
to the fulfillment of the above-mentioned criterion. Applying this logic has resulted in the frequency indicator scheme 
having the closest approximation of 3.1424 for Pi, and the natural logarithm scheme with the estimated value of 0.4632 
for Pi, being the most diverged one. Frequency indicator scheme shows the best estimation of Pi value among all, which 
means the number of extremums over equal time intervals of voltage-time graph of the Chua’s circuit capacitors produces 
most satisfying results than the conventional method of timer driven random number generating.
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