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Abstract: The family of fractional Cauchy transforms, defined on the open unit disc in the complex plane, is of classical
and modern interest. Membership of an analytic function in the family is determined by the requirement that the function
can be expressed as an integral of a certain kernel against a complex Borel measure on the disc. Such an integral
representation imposes a growth condition on the function and its derivatives. This exposes a connection between the
families of Cauchy transforms and familiar spaces of analytic functions, such as the Bloch spaces and the Zygmund
space. The notion of a composition operator has been a fruitful area of study. More generally, many authors have
studied weighted composition operators, the differentiation operator, integral-type operators, and various products of
such operators, acting from one normed linear space of analytic functions to another such space. A common theme of
such works is to characterize the operator-theoretic notions of boundedness and compactness in terms of the inducing
symbols of the operator. We extend these studies to a specific linear transformation which will be defined as the sum of
finitely many integral operators. Our conclusions include a complete characterization of boundedness and compactness
of the integral sum, acting from the fractional Cauchy spaces to the Bloch-type and Zygmund-type spaces.
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1. Introduction
We begin by establishing notation. We let N denote the set of positive integers. We denote the open unit disc in the

complex plane by D and its boundary by ∂D. We let H(D) be the linear space of holomorphic functions on D. We letM
denote the set of all complex Borel measures on ∂D, endowed with the total variation norm.

A weight ν is a positive and continuous function on D. The weight ν is called radial if ν(z) = ν(|z|) for z ∈ D. The
weight ν is said to be typical if it is radial, non-increasing in the variable |z|, and lim|z|→1 ν(z) = 0.

For α > 0, the family Fα(D) = Fα of Cauchy transforms is the collection of all f ∈ H(D) which admit a
representation of the form
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f (z) =
∫

∂D

dµ(ζ )
(1−ζ z)α

(z ∈ D) (1)

for some µ ∈ M, where the principal branch of the logarithm is used here. The space Fα is a Banach space with the
norm

∥ f∥Fα = inf
µ∈M

{
∥µ∥ : f (z) =

∫
∂D

dµ(ζ )
(1−ζ z)α

}
,

where ∥µ∥ is the total variation of the measure µ .
Let ν be a typical weight. Then the Bloch-type space Bν and the Zygmund-type space Zν are defined for f ∈ H(D),

respectively, by

f ∈ Bν ⇔ ∥ f ∥Bν = | f (0) | + sup
z∈D

ν(z) | f ′(z) | < ∞

and

f ∈ Zν ⇔ ∥ f ∥Zν = | f (0) |+ | f ′(0) |+sup
z∈D

ν(z)| f ′′(z)|< ∞.

If ν(z) = 1−|z|2, then the spaces Bν and Zν are the standard Bloch space B and the standard Zygmund space Z .

Letφ be an analytic self-map ofD and let g∈H(D). Many authors have studied the operatorsCφ( f )= f ◦φ,Mg( f )=
g f and the differentiation operator D( f ) = f ′, acting between various normed families of analytic functions. More recent
work has focused on products of such operators [1–12]. Also of interest is the integral operator Jφ, g defined for f ∈ H(D)
by

(Jφ, g f )(z) =
∫ z

0
f ′(φ(w))g(w)dw.

We mention [13–18] although this is only a partial list.
S. Stević was among the first to study the sum of two weighted differentiation composition operators, that is, ψ0( f ◦

φ)+ψ1( f ′ ◦φ) where ψ j ∈ H(D). See [19]. The investigation of such operators was continued in [12, 20, 21]. Stević
then proposed a study of the operator

(Tn f )(z) =
n

∑
j=0

ψ j(z) f ( j)(φ(z))

for generic natural number n.
We extend these studies to an operator defined as the finite sum of integral operators, acting from the spaces of

fractional Cauchy transforms to the Bloch-type or Zygmund-type spaces. Let n ∈ N and let φ be an analytic self-map of
D. For k = 1, 2, . . . , n, let gk ∈ H(D). For f ∈ H(D) we define the operator Jn by
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(Jn f )(z) =
∫ z

0
f ′(φ(w))g1(w) dw +

∫ z

0
f ′′(φ(w))g2(w) dw + · · ·+

∫ z

0
f (n)(φ(w))gn(w) dw.

We establish necessary and sufficient conditions for boundedness and compactness of the operator Jn acting from the
spaces of fractional Cauchy transforms to the Bloch-type and Zygmund-type spaces.

We present a brief description of the layout of the paper. In Section 2, we gather the necessary background on
the structure of the families Fα . In Section 3, we provide necessary and sufficient conditions for boundedness and
compactness of the operator Jn: Fα → Bν . Our method is illustrated by a brief example at the end of Section 3. In
Section 4, necessary and sufficient conditions are established for boundedness and compactness of Jn: Fα → Zν . The
paper closes with an overview of the results and a brief discussion of the distinction between problems involving the sum
of two operators and problems involving the sum of n operators for n ≥ 3.

Throughout this paper, constants are denoted byC. These constants are positive and not necessarily the same at each
occurrence.

2. Methods
In this section, we present several known results that will be used in this work.
Lemmas 1 and 3 appear in [22]. The case k = 0 in Lemma 2 appears in [22]. The result generalizes to positive integer

k by an argument given in [3].
Lemma 1 Let α > 0 and k ∈N. Let f ∈ H(D). Then f ∈Fα if and only if f (k) ∈Fα+k.Moreover, if f ∈Fα , there

is a constant C depending only on α and k such that ∥ f (k) ∥Fα+k ≤ C ∥ f ∥Fα .
Lemma 2 Let α > 0 and let |w| ≤ 1. Fix a non-negative integer k and define

fw, k(z) =
(1− | w |2)k

(1−wz)α+k , (|z|< 1).

Then fw, k ∈ Fα and there is a constant C independent of w such that ∥ fw, k∥Fα ≤C.

Lemma 3 Let z ∈ D and α > 0. Let k be a non-negative integer. Then there is a constant C depending only on α
and k such that

| f (k)(z)| ≤ C
∥ f∥Fα

(1−|z|2)α+k

for every f ∈ Fα .

3. Results: The operator Jn: Fα → Bν

In this section we characterize boundedness and compactness of Jn: Fα → Bν in terms of the symbols φ, gk for
k = 1, 2, . . . , n and the weight ν . The following lemma will be useful in the proof of Theorem 1.

Lemma 4 Fix n ∈ N and fix α > 0. Let φ be a self-map of D and let gk ∈ H(D) for k = 1, 2, . . . , n. Assume that
Jn: Fα → Bν is bounded. Then
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sup
z∈D

ν(z) | gk(z) | < ∞ for k = 1, 2, . . . , n.

Proof. By assumption, there exists a constant C independent of f such that

∥ Jn f ∥Bν ≤ C ∥ f ∥Fα .

Note that fk(z) = zk/k! ∈ Fα for k = 1, 2, . . . , n. A calculation yields (Jn f1)(z) =
∫ z

0 g1(w) dw and therefore

sup
z∈D

v(z) |g1(z)|= sup
z∈D

ν(z) | (Jn f1)
′(z) | ≤C ∥ f1 ∥Fα .

Next, (Jn f2)(z) =
∫ z

0 φ(w)g1(w) dw +
∫ z

0 g2(w) dw and it follows that

sup
z∈D

ν(z) | φ(z)g1(z)+g2(z) | = sup
z∈D

ν(z) | (Jn f2)
′(z) | ≤C ∥ f2 ∥Fα .

Since

ν(z) | g2(z) | ≤ ν(z) | φ(z)g1(z)+g2(z) | + ν(z) | φ(z)g1(z) |

and since | φ(z) |< 1, it follows that

sup
z∈D

ν(z) | g2(z) | <C (∥ f1 ∥Fα + ∥ f2 ∥Fα ).

To complete the proof, fix 1 ≤ k ≤ n−1 and assume

sup
z∈D

ν(z) | g j(z) | < ∞ for j = 1, 2, . . . , k.

By a calculation,

(Jn fk+1)
′(z) =

(φ(z))k

k!
g1(z)+ . . .+φ(z)gk(z)+gk+1(z)

and an argument using the Triangle Inequality yields

sup
z∈D

ν(z) | gk+1(z) | < ∞.
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The proof is complete.
Theorem 1 Fix α > 0 and n ∈ N. Let ν be a weight function. Let φ be a self-map of D and let gk ∈ H(D) for

k = 1, 2, . . . , n. The operator Jn: Fα → Bν is bounded if and only if

Mk = sup
z∈D

ν(z)
| gk(z) |

(1− | φ(z) |2)α+k < ∞ (k = 1, 2, . . . , n). (2)

Proof. First assume (2) and let f ∈Fα . Note that (Jn f )(0) = 0. For each k = 1, 2, . . . , n, Lemma 3 yields a constant
Ck depending only on α such that

| f (k)(φ(z)) | ≤ Ck ∥ f ∥Fα

(1− | φ(z) |2)α+k

for all k = 1, 2, . . . , n and for z ∈ D. Therefore

ν(z) | (Jn f )′(z) | ≤ ∥ f ∥Fα

n

∑
k=1

ν(z) Ck | gk(z) |
(1− | φ(z) |2)α+k ≤ (

n

∑
k=1

CkMk) ∥ f ∥Fα

and thus supz∈D ν(z) | (Jn f )′(z) | ≤C ∥ f ∥Fα . Therefore Jn: Fα → Bν is bounded.
For the converse, suppose that Jn: Fα → Bν is bounded. Lemma 4 yields

sup
|φ(z)| ≤1/2

ν(z) | gk(z) |
(1− | φ(z) |2)α+k < ∞ for k = 1, 2, . . . , n.

In order to complete the argument we define the following test functions

fλ (z) =
n−1

∑
j=0

γ j
(1− | φ(λ ) |2) j

(1−φ(λ )z)α+ j
(z ∈ D) (3)

where λ varies over D and the scalars γ j depend only on α . By Lemma 2, ∥ fλ ∥Fα ≤C for a constant C independent of
λ . Therefore ∥ Jn( fλ ) ∥Bν ≤C. In particular,

sup
z∈D

ν(z) | (Jn fλ )
′(z) | ≤C

for all λ ∈ D.
To obtain M1 < ∞, we will choose the scalars γ j in (3) so that

f ′λ (φ(λ )) =
φ(λ )

(1− | φ(λ ) |2)α+1
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and f (k)λ (φ(λ )) = 0 for k = 2, 3, . . . , n. Note that

f (k)λ (z) = φ(λ )
k n−1

∑
j=0

(
j+k−1

∏
l= j

(α + l) γ j
(1− | φ(λ ) |2) j

(1−φ(λ )z)α+ j+k
)

and

f (k)λ (φ(λ )) =
φ(λ )

k

(1− | φ(λ ) |2)α+k

n−1

∑
j=0

(
j+k−1

∏
l= j

(α + l) ) γ j

for k = 1, 2, . . . , n. Therefore the scalars γ0, γ1, . . . , γn−1 are chosen to obey the following n equations.

α γ0 +(α +1) γ1 + · · ·+(α +n−1) γn−1 = 1

α(α +1) γ0 +(α +1)(α +2) γ1 + · · ·+(α +n−1)(α +n) γn−1 = 0

2

∏
l=0

(α + l) γ0 +
3

∏
l=1

(α + l) γ1 + · · ·+
n+1

∏
l=n−1

(α + l) γn−1 = 0

...

n−1

∏
l=0

(α + l) γ0 +
n

∏
l=1

(α + l) γ1 + · · ·+
2n−2

∏
l=n−1

(α + l) γn−1 = 0. (4)

To see that such γ j exist, let An denote the n×n matrix of the coefficients of the equations at (4). Let Γ be the n×1
column matrix in which γ j appears in the ( j+1)-st row for j = 0, 1, . . . , n−1. Let E1 be the n×1 column matrix with
entry 1 in the first row and with all other entries 0. By an argument using Lemma 3 [9], the determinant of the matrix An

is

α(α +1) . . .(α +n−1)
n−1

∏
j=1

j!

and thus the γ j are found as the solution to the equation AnΓ = E1.
With these γ j in (3), it follows that
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C ≥ ∥ Jn fλ ∥Bν = sup
z∈D

ν(z) |
n

∑
k=1

f (k)λ (φ(z))gk(z) |

≥ν(λ ) |
n

∑
k=1

f (k)λ (φ(λ ))gk(λ ) |

=ν(λ )
| φ(λ ) | | g1(λ ) |
(1− | φ(λ ) |2)α+1

for all λ ∈ D. We conclude that

sup
|φ(λ )|>1/2

ν(λ ) | g1(λ ) |
(1− | φ(λ ) |2)α+1 ≤C.

The initial remark using Lemma 4 now yields M1 < ∞.
To obtain Mk < ∞ for fixed k = 2, 3, . . . , n, let Ek be the n×1 matrix with entry 0 in every row except the k-th row,

where the entry is 1. The scalars γ j, j = 0, 1, . . . , n−1 are then obtained as the solution of the equation AnΓ = Ek. Using
these γ j in (3), we obtain

f (k)λ (φ(λ )) =
φ(λ )k

(1− | φ(λ ) |2)α+k

and f (l)λ (φ(λ )) = 0 for l = 1, 2, . . . , n with l ̸= k. As in the previous argument, it follows that

sup
|φ(λ )|>1/2

ν(λ ) | gk(λ ) |
(1− | φ(λ ) |2)α+k <C.

An application of Lemma 4 now yields Mk < ∞. We have obtained (2) and the proof is complete.
The following sequential criterion for compactness of a bounded operator is well known. The criterion is stated here

for the operator Jn: Fα →Bν . In Section 4, the analogous result will be used to characterize compactness of Jn: Fα →Zν .
Lemma 5 Assume that Jn: Fα → Bν is bounded for fixed n ∈ N and for α > 0. Then Jn: Fα → Bν is compact

if and only if for any bounded sequence ( fm) in Fα such that fm → 0 uniformly on compact subsets of D as m → ∞, it
follows that ∥ Jn( fm) ∥Bν→ 0 as m → ∞.

Theorem 2 Assume that Jn: Fα → Bν is bounded. Then Jn: Fα → Bν is compact if and only if

lim
|φ(z)|→1

ν(z) | gk(z) |
(1− | φ(z) |2)α+k = 0 (5)

for k = 1, 2, . . . , n.
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Proof. First assume that (5) holds. Let ( fm) be a bounded sequence in Fα with fm → 0 uniformly on compact
subsets of D as m → ∞. We assume that ∥ fm ∥Fα≤ 1 for m = 1, 2, . . .. By Lemma 5, we must prove that ∥ Jn fm ∥Bν→ 0
as m → ∞. It is enough to prove that supz∈D ν(z) | (Jn fm)

′(z) |→ 0 as m → ∞.
Lemma 3 implies that there is a positive constant C such that

| f (k)m (φ(z)) | ≤ C
(1− | φ(z) |2)α+k

for k = 1, 2, . . . , n and for z ∈ D. Given ε > 0, the hypothesis yields r0, 0 < r0 < 1, such that

ν(z) | gk(z) |
(1− | φ(z) |2)α+k <

ε
Cn

for all k = 1, 2, . . . , n, provided | φ(z) | > r0. Therefore

sup
|φ(z)|>r0

ν(z) | (Jn fm)
′(z) | = sup

|φ(z)|>r0

n

∑
k=1

ν(z) | f (k)m (φ(z)) | | gk(z) |

≤ sup
|φ(z)|>r0

n

∑
k=1

C
ν(z) | gk(z) |

(1− | φ(z) |2)α+k < ε

for all m = 1, 2, . . ..
Next consider z with | φ(z) | ≤ r0. Since Jn: Fα → Bν is bounded, Theorem 1 yields

ν(z) | (Jn fm)
′(z) | ≤

n

∑
k=1

Mk | f (k)m (φ(z)) |

where we assume Mk > 0, k = 1, 2, . . . , n. Since f (k)m → 0 uniformly on the set {w: | w |≤ r0} for each k = 1, 2, . . . , n,
there exists M > 0 such that

| f (k)m (w) | < ε
nMk

for all | w | ≤ r0 and for all k = 1, 2, . . . , n, provided that m > M. Therefore

sup
|φ(z)|≤r0

ν(z) | (Jn fm)
′(z) | < ε

for m > M. Since (Jn fm)(0) = 0, we conclude that

∥ Jn fm ∥Bν= sup
z∈D

ν(z) | (Jn fm)
′(z) | → 0
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as m → ∞, and the operator is compact.
For the converse, we assume that Jn: Fα → Bν is compact. Assume that | φ(zm) |→ 1 as m → ∞ for a sequence zm

in D. We note that if no such sequence exists, then the conditions in the theorem are established vacuously.
To obtain the limits at (5), we will use test functions fm (m = 1, 2, . . .) with ∥ fm ∥Fα≤C and fm → 0 uniformly on

compact subsets as m → ∞. By Lemma 5, ∥ Jn fm ∥Bν→ 0 as m → ∞. For ε > 0, there exists M > 0 such that

sup
z∈D

ν(z) | (Jn fm)
′(z) | = sup

z∈D
ν(z) |

n

∑
k=1

f (k)m (φ(z))gk(z) | < ε

for all m > M.
The functions fm are defined as

fm(z) =
n−1

∑
j=0

γ j
(1− | φ(zm) |2) j+1

(1−φ(zm)z)α+ j+1
(6)

for various choices of the scalars γ j, where γ j depends only on α . Lemma 2 implies ∥ fm ∥Fα≤C for a positive constant
C independent of m. It is clear that fm → 0 uniformly on compact subsets as m → ∞.

A calculation yields

f (k)m (z) = φ(zm)
k n−1

∑
j=0

j+k

∏
l= j+1

(α + l) γ j
(1− | φ(zm) |2) j+1

(1−φ(zm)z)α+ j+k+1

and

f (k)m (φ(zm)) =
φ(zm)

k

(1− | φ(zm) |2)α+k

n−1

∑
j=0

j+k

∏
l= j+1

(α + l) γ j

for k = 1, 2, . . . and for m = 1, 2, . . ..
To obtain the first required limit, we choose the scalars γ j ( j = 0, 1, . . . , n−1) in (6) to obey the system of n equations

below.

(α +1) γ0 +(α +2) γ1 + . . .+(α +n) γn−1 = 1

(α +1)(α +2) γ0 +(α +2)(α +3) γ1 + . . .+(α +n)(α +n+1) γn−1 = 0

3

∏
l=1

(α + l) γ0 +
4

∏
l=2

(α + l) γ1 + . . .+
n+2

∏
l=n

(α + l) γn−1 = 0

...
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n

∏
l=1

(α + l) γ0 +
n+1

∏
l=2

(α + l) γ1 + . . .+
2n−1

∏
l=n

(α + l) γn−1 = 0 (7)

Existence of γ j as described at (7) follows as in the proof of Theorem 1, using the determinant calculation in [9].
With these scalars in (6), we obtain

f ′m(φ(zm)) =
φ(zm)

(1− | φ(zm) |2)α+1

and f (k)m (φ(zm)) = 0 for k = 2, 3, . . . , n. Therefore if m > M,

ν(zm)
| g1(zm) | | φ(zm) |
(1− | φ(zm) |2)α+1 =ν(zm) |

n

∑
k=1

f (k)m (φ(zm))gk(zm) |

≤sup
z∈D

ν(z) |
n

∑
k=1

f (k)m (φ(z))gk(z) |

≤ ∥ Jn fm ∥Bν< ε.

Since | φ(zm) |→ 1, the argument shows that

ν(zm) | g1(zm) |
(1− | φ(zm) |2)α+1 → 0

as m → ∞. Since zm is a generic sequence with | φ(zm) |→ 1 we conclude that

lim
|φ(z)|→1

ν(z) | g1(z) |
(1− | φ(z) |2)α+1 = 0.

The remaining limits are derived in a similar way. For fixed k = 2, 3, . . . , n, the γ j are chosen to ensure that

f (k)m (φ(zm)) =
φ(zm)k

(1− | φ(zm) |2)α+k

and f (l)m (φ(zm)) = 0 for l ̸= k. The argument proceeds as above. We have obtained (5) and the proof is complete.
We end this section with an example to illustrate the results. Let φ(z) = (z+1)/2 and let g j(z) = (1− z)γ for fixed

γ > 0 and for j = 1, 2, . . . , n. Let ν(z) = (1− | z |2)β for fixed β > 0.
First we assume β + γ ≥ α +n. By a calculation using the Schwarz-Pick Lemma,
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M j = sup
z∈D

ν(z) | g j(z) |
(1− | φ(z) |2)α+ j ≤ C sup

z∈D
(1− | z |2)β−α− j | 1− z |γ < ∞

for j = 1, 2, . . . , n. By Theorem 1, Jn: Fα → Bν is bounded.
If on the other hand β + γ < α + j for some j, 1 ≤ j ≤ n, then

M j ≥ 4α+ j sup
0≤x<1

(1− x2)β (1− x)γ

(x+3)α+ j(1− x)α+ j = ∞

and Jn: Fα → Bν is not bounded.
Next assume β + γ = α +n. Note that | φ(z) |→ 1 ⇒ z → 1 and

lim
x→1

(1− x2)β (1− x)γ

(x+3)α+n(1− x)α+n ̸= 0.

Thus Jn: Fα → Bν is bounded and is not compact.
Finally assume β + γ > α + n. An argument similar to the above establishes the limit conditions at (5) and thus

Jn: Fα → Bν is compact, by Theorem 2.

4. Further results: The operator Jn: Fα → Zν

In this section we characterize boundedness and compactness of the operator Jn: Fα → Zν .
We first establish notation. Let f ∈ H(D). Then

(Jn f )′′(z) =
n+1

∑
k=1

f (k)(φ(z))Ψk(z) (8)

where Ψ1(z) = g′1(z), Ψk(z) = φ ′(z)gk−1(z)+g′k(z) for k = 2, 3, . . . , n and Ψn+1(z) = φ ′(z)gn(z). The characterizations
for boundedness and compactness will be given in terms of the Ψk, k = 1, 2, . . . , n+1.

Lemma 6 is similar to Lemma 4. Brief details will be provided.
Lemma 6 Assume that Jn: Fα → Zν is bounded. Then

sup
z∈D

ν(z) | Ψk(z) | < ∞ for k = 1, 2, . . . , n+1.

Proof. By assumption there exists a constantC independent of f ∈Fα such that ∥ Jn f ∥Zν ≤ C ∥ f ∥Fα . In particular

sup
z∈D

ν(z) | (Jn f )′′(z) | ≤C ∥ f ∥Fα .

With f1(z) = z, we obtain (Jn f1)
′′(z) = g′1(z) = Ψ1(z) and thus
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sup
z∈D

ν(z) | Ψ1(z) | < C ∥ f1 ∥Fα .

With f2(z) = z2/2, we obtain (Jn f2)
′′(z) = φ(z)Ψ1(z)+Ψ2(z). For z ∈ D,

ν(z) | Ψ2(z) | ≤ ν(z) | φ(z)Ψ1(z)+Ψ2(z) | + ν(z) | Ψ1(z) |

≤ C (∥ f1 ∥F1 + ∥ f2 ∥F2)

and thus

sup
z∈D

ν(z) | Ψ2(z) | < ∞.

An inductive argument similar to the proof in Lemma 4 now completes the proof.
Theorem 3 Fix α > 0 and n ∈ N. Let φ be a self-map of D and let gk ∈ H(D) for k = 1, 2, . . . , n. The operator

Jn: Fα → Zν is bounded if and only if

Nk = sup
z∈D

ν(z) | Ψk(z) |
(1− | φ(z) |2)α+k < ∞ for k = 1, 2, . . . , n+1. (9)

Proof. First assume (9) holds and let f ∈Fα . Since (Jn f )(0)= 0 and since Lemma 3 yields | (Jn f )′(0) | ≤C ∥ f ∥Fα ,

it is enough to prove

sup
z∈D

ν(z) | (Jn f )′′(z) | ≤C ∥ f ∥Fα .

By Lemma 3 and (8),

ν(z) | (Jn f )′′(z) | ≤ C ∥ f ∥Fα

n+1

∑
k=1

ν(z) | Ψk(z) |
(1− | φ(z) |2)α+k

≤ C (
n+1

∑
k=1

Nk) ∥ f ∥Fα

and thus the operator is bounded.
Next we assume that Jn: Fα → Zν is bounded. Lemma 6 yields

sup
|φ(z)|≤1/2

ν(z) | Ψk(z) |
(1− | φ(z) |2)α+k < ∞ for k = 1, 2, . . . , n+1.
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To complete the argument we will use test functions defined by

fλ (z) =
n

∑
j=0

γ j
(1− | φ(λ ) |2) j

(1−φ(λ )z)α+ j
(10)

where λ ∈ D and the scalars γ j depend only on α . Lemma 2 implies that ∥ fλ ∥Fα≤C and therefore ∥ Jn fλ ∥Zν≤C for
all λ ∈ D. In particular

sup
z∈D

ν(z) |
n+1

∑
k=1

f (k)λ (φ(z))Ψk(z) | ≤C

for all λ .
By a calculation,

f (k)λ (φ(λ )) =
φ(λ )

k

(1− | φ(λ ) |2)α+k

n

∑
j=0

j+k−1

∏
l= j

(α + l) γ j.

To obtain N1 < ∞ the γ j are chosen to obey the system of n+1 equations below.

α γ0 +(α +1) γ1 + . . .+(α +n) γn = 1

α(α +1) γ0 +(α +1)(α +2) γ1 + . . .+(α +n)(α +n+1) γn = 0

2

∏
l=0

(α + l) γ0 +
3

∏
l=1

(α + l) γ1 + . . .+
n+2

∏
l=n

(α + l) γn = 0

...

n

∏
l=0

(α + l) γ0 +
n+1

∏
l=1

(α + l) γ1 + . . .+
2n

∏
l=n

(α + l) γn = 0. (11)

Let An+1 be the (n+1)× (n+1) matrix of the coefficients of the system at (11). A calculation using [9] shows that
the determinant of An+1 is non-zero. Let Γ be the (n+1)×1 matrix with entry γ j in the ( j+1)-st row for j = 0, 1, 2, . . . , n.
Let E1 be the (n+1)×1 matrix with entry 1 in the first row and with all other entries 0. We obtain the scalars γ j as the
solution of the equation An+1Γ = E1. Substitution of these scalars into (10) yields

f ′λ (φ(λ )) =
φ(λ )

(1− | φ(λ ) |2)α+1
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and f (k)λ (φ(λ )) = 0 for k = 2, 3, . . . , n+1. Therefore

C ≥ ∥ Jn fλ ∥Zν ≥ sup
z∈D

ν(z) |
n+1

∑
k=1

f (k)λ (φ(z)) Ψk(z) |

≥ ν(λ ) | f ′λ (φ(λ )) Ψ1(λ ) |

= ν(λ )
| φ(λ ) Ψ1(λ ) |

(1− | φ(λ ) |2)α+1 .

Thus

sup
|φ(λ )|>1/2

ν(λ )
| Ψ1(λ ) |

(1− | φ(λ ) |2)α+1 < ∞

and an application of Lemma 6 yields N1 < ∞.
To obtain Nk < ∞ for fixed k = 2, 3, . . . , n+1, we let Ek be the (n+1)×1 matrix with entry 1 in the k-th row and

with entry 0 in every other row. The desired scalars γ j are the solution to the equation An+1Γ = Ek.
With these scalars in (10), the test function fλ obeys

f (k)λ (φ(λ )) =
φ(λ )

k

(1− | φ(λ ) |2)α+k

and f (l)λ (φ(λ )) = 0 for l = 1, . . . , n+1 with l ̸= k. It follows that

sup
|φ(λ )|>1/2

ν(λ ) | Ψk(λ ) |
(1− | φ(λ ) |2)α+k < ∞

and an application of Lemma 6 then yields Nk < ∞. We have obtained (9) and the proof is complete.
Theorem 4 Assume that Jn: Fα → Zν is bounded. Then Jn: Fα → Zν is compact if and only if

lim
|φ(z|→1

ν(z) | Ψk(z) |
(1− | φ(z) |2)α+k = 0 (12)

for k = 1, 2, . . . , n+1.
Proof. First assume that (12) holds. Let ( fm) be a bounded sequence in Fα with fm → 0 uniformly on compact

subsets as m → ∞. We may assume ∥ fm ∥Fα≤ 1 for m = 1, 2, . . .. As shown in Lemma 5, it is enough to show that
∥ Jn fm ∥Zν→ 0 as m → ∞. First note that the assumption of uniform convergence implies that | (Jn fm)

′(0) |→ 0 as m → ∞.
It remains to prove that supz∈D ν(z) | (Jn fm)

′′(z) | → 0 as m → ∞.
As in previous arguments, there is a positive constant C with
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| f (k)m (φ(z)) | ≤ C
(1− | φ(z) |2)α+k

for k = 1, 2, . . . , n+1 and for z ∈ D.
Given ε > 0, there exists r0, 0 < r0 < 1, such that

ν(z) | Ψk(z) |
(1− | φ(z) |2)α+k <

ε
C(n+1)

for all k = 1, 2, . . . , n+1, provided that | φ(z) | > r0. For such z,

ν(z) | (Jn fm)
′′(z) | ≤ C

n+1

∑
k=1

ν(z)
| Ψk(z) |

(1− | φ(z) |2)α+k < ε

and we obtain

sup
|φ(z)|>r0

ν(z) | (Jn fm)
′′(z) | < ε

for m = 1, 2, . . ..
Next consider z with | φ(z) | ≤ r0. Since Jn: Fα → Zν is bounded, Theorem 3 gives

ν(z) | (Jn fm)
′′(z) | ≤

n+1

∑
k=1

Nk | f (k)m (φ(z)) |

where we assume Nk > 0. Since f (k)m → 0 on the set {w: | w | ≤ r0}, there exists N such that

| f (k)m (w) | < ε
(n+1)Nk

for all | w | ≤ r0, for all m > N and for k = 1, 2, . . . , n+1. We obtain

sup
|φ(z)|≤r0

ν(z) | (Jn fm)
′′(z) | < ε

for all m > N.
Since fm → 0 uniformly on compact subsets, it follows easily that | (Jn fm)

′(0) |→ 0 as m → ∞. We conclude that

∥ Jn fm ∥Zν→ 0 as m → ∞
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and therefore Jn: Fα → Zν is compact.
Finally we assume that Jn: Fα → Zν is compact. As in the proof of Theorem 2, we consider a sequence zm in D

with | φ(zm) |→ 1 as m → ∞. We define a sequence of test functions fm (m = 1, 2, . . .) as

fm(z) =
n

∑
j=0

γ j
(1− | φ(zm) |2) j+1

(1−φ(zm)z)α+ j+1
(13)

where, as before, the γ j depend only on α . Therefore ∥ fm ∥Fα≤ C and fm → 0 uniformly on compact subsets of D as
m → ∞. By Lemma 5,

sup
z∈D

ν(z) | (Jn fm)
′′(z) |= sup

z∈D
ν(z) |

n+1

∑
k=1

f (k)m (φ(z))Ψk(z) |→ 0

as m → ∞.
For example, to obtain the first limit at (12), the scalars γ0, . . . , γn in (13) are chosen so that

f ′m(φ(zm)) =
φ(zm)

(1− | φ(zm) |2)α+1

and f (k)m (φ(zm)) = 0 for k = 2, 3, . . . , n+1. We then obtain

ν(zm)
| φ(zm) Ψ1(zm) |

(1− | φ(zm) |2)α+1 ≤ sup
z∈D

ν(z) | (Jn fm)
′′(z) |→ 0

as m → ∞. Since | φ(zm) |→ 1 as m → ∞, we obtain the first required limit.
Existence of γ j as described follows as in Theorem 3, using the invertible matrix An+1.
A similar argument yields the remaining limits at (12). The proof is complete.

5. Conclusions
In this work we have characterized the self-maps φ , the holomorphic functions gk (k = 1, 2, . . . , n) and the weight

ν for which the integral operator Jn defined for f ∈ H(D) by

(Jn f )(z) =
∫ z

0
f ′(φ(w))g1(w) dw +

∫ z

0
f ′′(φ(w))g2(w) dw . . . +

∫ z

0
f (n)(φ(w))gn(w) dw

is bounded or compact, acting from the spaces of Cauchy transforms to the Bloch-type space and the Zygmund-type space.
Our method is applicable to various finite sums of three or more operators. Because of known growth conditions on

f ∈ Fα , it is relatively straight-forward to find conditions sufficient for boundedness or compactness of such an operator.
The key here is the construction of suitable test functions, in order to prove necessity of our conditions. In the case of the
sum of two operators, it is possible to solve explicitly for the coefficients γ j of suitable test functions fw (w ∈ D) defined
as
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fw(z) =
n−1

∑
j=0

γ j
(1− | w |2) j

(1−wz)α+ j (z ∈ D).

However, in the case of generic n ≥ 3, the approach here is to avoid calculation by proving the existence of the
appropriate scalars γ j as described in a matrix equation. Probably the first to take this approach was S. Stević [9]. Indeed,
in this paper the current authors make use of a slightly modified calculation of the determinant of a matrix that first
appeared in [9].
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