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Abstract: In the decision making problems, transportation problem (TP) is one of the most significant applications
that aim to optimize the objective function of products shipped from different sources to different destinations. When
an additional charge such as toll tax, parking fee, permit fee and so on are included in the transportation cost then the
problem becomes a fixed charge TP. If the shipped products are damageable, they are affected by the type of vehicle and
the distance of route. So it is quite evident that the vehicle type and the distance of route play a significant role in TP.
In reality, along with sources and destinations, the decision maker (DM) desires to consider the parameters such as the
mode of transport and routes of transportation that are used for shipment of the products from sources to destinations in
order to minimize the loss of damageable products and to maximize the profit. As a result, mode of transport and routes
of transportation are added to TP, then the TP becomes a four-dimensional TP. Sometimes, the data/parameters of the
problems may not be always precise due to incomplete information, inadequate data or shortage of evidence. To deal
with these obstacles, the parameters of the problem can be represented as the single-valued trapezoidal neutrosophic
numbers (SVTrNNs). The neutrosophic data facilitate a reasonable and practicable way for DMs to tackle decision-
making problems by managing indeterminacy and providing an effective framework for analysis and synthesis of complex
decision scenarios. In view of this, in this paper we have considered the single objective four-dimensional fixed charge
transportation problem (4DFCTP) with parameters, supply, demand, conveyance, transportation cost, fixed charge as
single-valued trapezoidal neutrosophic numbers and the distance of routes as real numbers. First, the score function is
utilized to transform the neutrosophic parameter into its deterministic parameter in order to avoid the negative values
for the decision variable. Then the deterministic problem comprises deterministic parameters such as supply, demand,
conveyance, transportation cost with fixed charges and distance of routes. Secondly, a novel approach namely, min zero-
min cost approach is introduced for finding the optimal solution to the equivalent deterministic problem in polynomial
time. The main objective of this paper is to optimize the breakable products and routing plan of vehicles in a way to
minimize the total transportation cost with fixed cost of the business organizations using the proposed min zero-min cost
approach. To demonstrate the problem’s validity and relevance, two numerical examples are solved using our proposed
approach. To highlight the proposed approach, comparison of the solution with the LINGO software is performed. The
obtained optimal solution from the proposed approach is the same as the LINGO software. At last, conclusions as well as
future work related to the study are presented.
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Abbreviation
DMs Decision Makers
FS Fuzzy Sets
IFS Intuitionistic Fuzzy Set
MF Membership Function
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NS Neutrosophic Set
SVNS Single-Valued Neutrosophic Sets
SVTrNNs Single-Valued Trapezoidal Neutrosophic Numbers
TP Transportation Problem
4DFCTP Four-Dimensional Fixed Charge Transportation Problem
4DTP Four-Dimensional Transportation Problem

1. Introduction
Transportation problem (TP) also called the two dimensional problem is one of the most well-known decision

making problem which targets to optimize the objective function of products transported from various sources to distinct
destinations. TP was introduced by Hitchcock [1] in 1941 and then the solution procedure for finding the optimal solution
was developed by Koopmans [2] in 1947. During transportation, some additional charges are paid for parking the vehicles,
charges in toll plaza for the maintenance of roads in some routes, public contributions for festive occasions, handling fees,
voluntary works and so on. These types of additional charges are termed as fixed charges. Generally, a fixed charge is
characterized by two forms of costs namely, a variable cost that progressively increases as the number of transported
products increases and a fixed charge that is paid when a non-zero quantity of products is shipped from sources to
destinations. Tolls at toll plazas, which are based on the type of vehicle and its weight, are an important component of fixed
charges incurred while shipping products. When the fixed charge is added to the TP then the problem becomes a fixed
charge TP (FCTP). Incorporating toll taxes, parking fees, and permit fees in the transportation cost allows the decision
makers for more accurate optimization of transportation routes and schedules and more precise calculation of operational
costs, which can be critical in determining pricing strategies. Routes with lower toll taxes or parking fees can be preferred
to minimize costs, while understanding permit fees helps in complying with regulatory requirements efficiently. Hirsch
and Dantzig [3] were the first to introduce the fixed charge TP and discussed the properties of a general solution to the
fixed charge TP. Murty [4] developed an algorithm for ranking basic feasible solutions to obtain the optimal solution for
fixed charge TP. Gray [5] developed the decomposition approach for solving fixed charge TP. Schaffer and O’Leary [6],
Udatta et al. [7] applied a branch and bound approach to solve fixed charge TP. A simple heuristic algorithm is presented
for solving fixed charge TP by Adlakha and Kowalski [8]. Safi [9] developed two algorithms based on order relations to
obtain the optimal solution for fixed charge TP. Mollanoori et al. [10] considered a TP with two types of fixed charges.
They have utilized Simulated Annealing algorithm and Imperialist competitive algorithm for solving two-stage multi-item
fixed charge solid TP (FCSTP). Kartli et al. [11] proposed a new heuristic algorithm for solving fixed charge TP to obtain
the optimal solution.

An extension on the TP is based on the typology of dimensions where it can be classified into 2 dimensions, 3
dimensions, 4 dimensions and n dimensions. The three-dimensional TP is also called the solid transportation problem
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in which three-dimensions are supply, demand and mode of transportation. The three-dimensional TP was introduced by
Shell [12]. Pandian and Anuradha [13] proposed an approach for solving solid TP to obtain the optimal solution. The four-
dimensional TP is an extension of the three-dimensional TP in which four-dimensional properties such as supply, demand,
conveyance and distance of routes are considered in the objective function and constraints, where Giri and Roy proposed
the solution approaches to obtain the compromise solutions for this problem. In the real world situations, products are
delivered from sources to destinations by different conveyances such as bus, trucks, goods trains, cargo flights, etc. In
addition, there may be various routes to transport the products from source to destination. The condition of different roads
may vary greatly from good to terrible, smooth to rough with various humps, etc. In these situations, a long smooth path
may require less time, whereas a short rough path may require more time to transport the products. Moreover, the cost
of transportation can differ depending on the type of conveyance and the route. It is expected that breakability is higher
on rough paths than smooth ones. If the product is breakable in transportation, it may depend on the vehicle type, road
condition and distance. In this way, route selection is more realistic along with vehicle selection. In addition to source
and destination constraints, different modes of transport (bus, train, flight, etc.) and various routes are considered from
sources to destinations to minimize the loss of damageable products and maximize the profit. Among these, the four-
dimensional TP is a model that attracts entrepreneurs. In the industries, it fits the requirements of the type of vehicles and
the distance of routes to transport the products from the supplier to the distributor. Bera et al. [14] were the first to extend
the TP into a four-dimensional TP. They employed the generalized reduced gradient technique for solving multi-item
four-dimensional TP. Fakhrzad et al. [15] developed meta-heuristic algorithms for solving the fixed charge TP in which
there are various routes with various conveyances between sources and destinations. Hameed and Moalla [16] employed
a particle swarm optimization algorithm for solving four-dimensional TP. In real situations, the parameters of 4DTP like
availability of supply, demand, conveyance, distance of routes and unit transportation cost with fixed charge are not exact
due to certain unpredictable factors in traffic delays, conditions on the road and lack of information. In order to deal
with this, Zadeh [17] introduced the fuzzy sets (FS) which provide the membership function (MF). Yang and Liu [18]
have employed expected, optimistic and pessimistic value criteria for solving FCSTP under type-2 fuzzy environment to
determine the optimal solution. Zhang et al. [19] have employed tabu search algorithm for solving fixed charge solid TP
(FCSTP) under type-2 fuzzy environment to determine the optimal solution. Jana and Jana [20] developed a generalized
reduced gradient technique for solving fixed charge four-dimensional multi-item TP under fuzzy triangular and Gaussian
type-2 environment. Bera et al. [21] modified the generalized reduced gradient technique for solving four-dimensional
fixed charge TP under type-2 fuzzy environment. Devnath et al. [22] developed a generalized reduced gradient technique
for solving two-stage four-dimensional fixed charge TP with multi-items under type-2 fuzzy environment. Devnath et
al. [23] modified the generalized reduced gradient technique for solving multi-item two-stage four-dimensional fixed
charge TP under fuzzy environment. Aktar et al. [24] developed a generalized reduced gradient technique for solving
four-dimensional fixed charge TP under type-2 fuzzy environment. Devnath et al. [25] modified the generalised reduced
gradient technique for solvingmulti-item two stage four-dimensional TP under fuzzy environment. Gazi et al. [26] utilized
the Analytic hierarchy process which is a decision-making approach based on the hexagonal fuzzy numbers. Numerous
researchers such as Giri and Roy [27], Mondal et al. [28] and Mardanya and Roy [29] have utilized the fuzzy numbers to
deal the uncertain data.

In reality, fuzzy numbers might not be suitable for all situations where uncertainty and hesitation coexist. In this
case, the intuitionistic fuzzy set (IFS) was introduced by Atanassov [30] to handle both the MF and non-membership
function (NMF). The IFS takes into account both the MF and NMF, but it cannot deal with the indeterminacy. Samanta
et al. [31] proposed a convex combination approach for solving multi-item multi-objective four-dimensional TP under
intuitionistic fuzzy environment. Ghorui et al. [32] utilized the Analytic hierarchy process based on the pentagonal
intuitionistic fuzzy numbers. To address these issues, Smarandache [33] introduced the neutrosophic set (NS) which
considers both the truth MF and falsity MF along with the indeterminacy MF when making decisions. Wang et al.
[34] was the first to analyze the relations and operations over single-valued neutrosophic (SVN) sets. Deli and Subas
[35] discussed special forms of SVTrNNs and applied the weighted aggregation operator to solve multi-criteria decision-
making. Samanta et al. [36] employed the generalized reduced gradient technique for solving two stage four-dimensional
TP under neutrosophic environment. Kar et al. [37] developed the generalized reduced gradient technique for solving
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multi-item fixed charge four-dimensional TP under neutrosophic environment. Giri and Roy [38] proposed neutrosophic
programming and Pythagorean hesitant fuzzy programming approaches for solving neutrosophic multi-objective four-
dimensional fixed charge TP. Numerous researchers such as Imran et al. [39], Simic et al. [40] and Senapati et al. [41]
have utilized the neutrosophic numbers to deal the uncertain data. Table 1 lists the comparison between the recent literature
survey with the present paper.

Table 1. Comparison between the recent literature survey with the present paper

References
Parameters nature Dimension

Fixed
charge Methods

Cr F T2F IF NF Two Three Four

Gray [5] ✓ ✓ ✓ Decomposition

Schaffer and O’Leary [6] ✓ ✓ ✓ Branch and bound

Udatta et al. [7] ✓ ✓ ✓ Branch and bound

Adlakha and Kowalski [8] ✓ ✓ ✓ Heuristic algorithm

Mollanoori et al. [10] ✓ ✓ ✓ Simulated annealing and
imperialist competitive algorithms

Kartli et al. [11] ✓ ✓ ✓ Heuristic algorithm

Bera et al. [14] ✓ ✓ Generalised reduced gradient
(GRG) technique

Fakhrzad et al. [15] ✓ ✓ ✓ Meta-heuristic algorithm

Hameed and Moalla [16] ✓ ✓ Particle swarm optimization
algorithm

Yang and Liu [18] ✓ ✓ Expected, optimistic
and pessimistic value criterion

Zhang et al. [19] ✓ ✓ Tabu search algorithm

Jana and Jana [20] ✓ ✓ ✓ GRG technique

Bera et al. [21] ✓ ✓ ✓ GRG technique

Devnath et al. [22] ✓ ✓ ✓ GRG technique

Devnath et al. [23] ✓ ✓ ✓ GRG technique

Aktar et al. [24] ✓ ✓ ✓ GRG technique

Devnath et al. [25] ✓ ✓ ✓ GRG technique

Samanta et al. [31] ✓ ✓ ✓ Convex combination approach

Samanta et al. [36] ✓ ✓ GRG technique

Kar et al. [37] ✓ ✓ ✓ GRG technique

Giri and Roy [38] ✓ ✓ ✓ Neutrosophic programming,
pythagorean hesitant fuzzy programming

Proposed approach ✓ ✓ ✓ Min zero-min cost approach

Note: Cr-Crisp, F-Fuzzy, T2F-Type-2 fuzzy, IF-Intuitionistic fuzzy, NF-Neutrosophic fuzzy
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1.1 Motivation and contribution

In recent days, the transportation of products from origin to the destinations by road has played a crucial role due
to globalization. While transporting the products through vehicles are of finite capacity plying on the roads from source
to destination there may be many available routes connecting the cities. In some routes for maintenance, fixed charges
such as toll taxes, parking fees, permit fees, and so on are collected. In real life problems sometimes few/all parameters
of the problem are with impreciseness. In this paper, we have considered the single objective four-dimensional fixed
charge TP under neutrosophic environment. The parameters such as supply, demand and conveyance are considered as
single-valued trapezoidal neutrosophic numbers. The distance of routes in the objective function are represented by real
numbers. Based on the literature survey in Table 1 the research gap, motivation and contribution are noted below.

1. It is evident that the work performed so far focuses mostly on obtaining the optimal solution using various
softwares such as LINDO, LINGO, GAMS, MATLAB, Python, etc. for solving the four-dimensional fixed charge
TP (4DFCTP) under certain environment [14–16], fuzzy environment [18–25], intuitionistic environment [31] and
neutrosophic environment [36–38].

2. The fuzzy environment deals only with the membership function whereas the intuitionistic fuzzy environment
deals with both the membership and non-membership function. The neutrosophic environment deals with truth,
indeterminacy and falsity MF. The neutrosophic numbers are necessary to handle indeterminacy situations, when the
DM is under neutral thoughts and he/she is unaware of the decisions. For example, we can consider the statement as “If
the supplier ‘X’ needs to ship the scout drones to the customer ‘Y ’ with minimum toll charge of rupees 20”, there is 0.6
chance that ‘X’ will ship the scout drones with minimum toll charge of rupees 20, it is true, there is 0.5 chance that ‘X’ will
not ship the scout drones with minimum toll charge of rupees 20, it is false and there is 0.2 chance that ‘X’ may or may not
ship the scout drones with minimum toll charge of rupees 20, it is indeterminate. This shows that the neutrosophic number
gives an additional importance to represent uncertainty, imprecise, incomplete and inconsistent information which exist
in real world. So, it would be more suitable to apply the neutrosophic numbers in the real world applications where the
indeterminate information and inconsistent information measures are available.

3. To the best of our knowledge, many researchers have considered the certain and fuzzy environment for solving four-
dimensional fixed charge TP whereas solving under intuitionistic and neutrosophic environment receives less attention.
Finding the optimal solution to the single objective problem under neutrosophic environment by manual computation is
also very rare.

4. This motivates us to propose the novel approach namely, min zero-min cost approach to determine the optimal
solution for single objective four-dimensional fixed charge TP under neutrosophic environment. The obtained optimal
allotment will help the DM to choose the amount of products to be transported from the source to destination by the suitable
vehicle through the suitable route to minimize the loss of damage in the products during transportation, the transportation
cost and fixed cost satisfying the availability and requirements of each source and destination of the problem.

5. Obtaining the optimal solution by the proposed approach namely, min zero-min cost approach for solving single
objective 4DFCTP under neutrosophic environment which is a novelty in this paper.

6. To validate the proposed approach, comparison of the solution with the LINGO software is performed. The
obtained optimal solution using our proposed approach is the same as the LINGO software which demonstrates that our
novel approach is one of the computational approaches for the real life problem. Two numerical examples are incorporated
to illustrate the applicability of the proposed approach.

The paper is classified into the following categories: Section 2 follows with basic concepts and preliminaries. The
mathematical formulation of 4DFCTP under neutrosophic environment is represented in Section 3. Section 4 illustrates
the proposed approach to obtain the optimal solution while Section 5 depicts a numerical illustration with results and
discussions. In Section 6, a comparison of the proposed approach is illustrated with LINGO software which is performed
by Intel(R) Core (TM) i3-7100U CPU @ 2.40 GHz and 4 GB RAM while Section 7 incorporates the final conclusions
and future scopes.
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2. Preliminaries and essential definitions
In this section, definitions and mathematical formulation are presented. Some fundamental definitions related to the

NS [33], SVN sets [34], SVTrNNs, arithmetic operations and score function of SVTrNNs [35] have been outlined.
Definition 2.1 Neutrosophic Set [33]: Let X be a universe discourse. A NS L in X is characterized by a truth MF

AL̄N (x), indeterminacy MF BL̄N (x) and a falsity MF CL̄N (x). AL̄N (x), BL̄N (x) and CL̄N (x) are real standard elements of [0,
1]. It can be written as

L̄N =
{
⟨x, AL̄N (x), BL̄N (x), CL̄N (x)⟩ : x ∈ X , AL̄N (x), BL̄N (x), CL̄N (x) ∈

[
0−, 1+

]}
There is no restriction on the sum of AL̄N (x), BL̄N (x) and CL̄N (x), so 0− ≤ AL̄N (x) + BL̄N (x) + CL̄N (x)≤ 3+.
Definition 2.2 Single-valued neutrosophic sets [34]: A SVNS L̄SV N of a non-empty set X is defined as follows:

L̄SV N = {⟨x, AL̄N (x), BL̄N (x), CL̄N (x)⟩ : x ∈ X} where AL̄N (x), BL̄N (x), CL̄N (x) ∈ [0, 1] for each x ∈ X and 0 ≤ AL̄N (x) +
BL̄N (x) + CL̄N (x)≤ 3.

Definition 2.3 Single-valued trapezoidal neutrosophic number [35]: There are many research papers published on
neutrosophic numbers. Depending on the need of the problem, researchers can use triangular neutrosophic numbers,
trapezoidal neutrosophic numbers, single-valued triangular neutrosophic numbers, single-valued trapezoidal neutrosophic
number and interval valued neutrosophic numbers. In this paper, single-valued trapezoidal neutrosophic numbers have
been used.

Let σd̃N , λd̃N , τd̃N ∈ [0, 1] and p, q, r, s∈ℜ such that p≤ q≤ r ≤ s. Then a SVTrNN, d̃N =
⟨
(p, q, r, s); σd̃N , λd̃N ,

τ d̃N

⟩
is a special NS on ℜ, whose truth membership, indeterminacy membership and falsity membership functions are

given below:

µd̃N =



σd̃N

(
x− p
q− p

)
, p ≤ x < q

σd̃N , q ≤ x ≤ r

σd̃N

(
s− x
s− r

)
, r ≤ x ≤ s

0, otherwise

δd̃N =



q− x+λd̃N (x− p)
l − k

, p ≤ x < q

λd̃N , q ≤ x ≤ r

x− r+λd̃N (s− x)
s− r

, r ≤ x ≤ s

0, otherwise
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ρd̃N =



q− x+ τd̃N (x− p)
q− p

, p ≤ x < q

τd̃N , q ≤ x ≤ r

x− r+ τd̃N (s− x)
s− r

, r ≤ x ≤ s

1, otherwise

where σd̃N , λd̃N and τd̃N denote the maximum truth, minimum indeterminacy, and minimum falsity membership degrees
respectively. A SVTrNN d̃N =

⟨
(p, q, r, s); σd̃N , λd̃N , τd̃N

⟩
may be expressed as an ill-defined quantity of p, which is

approximately equal to [q, r].
Definition 2.4 Arithmetic Operations on SVTrNNs [35]: Let d̃N =

⟨
(p, q, r, s); σd̃N , λd̃N , τd̃N

⟩
and g̃N =⟨

(p
′
, q

′
, r

′
, s

′
); σg̃N , λg̃N , τg̃N

⟩
be two SVTrNNs. The arithmetic operations on d̃N and g̃N are:

1. d̃N + g̃N =
⟨
(p+ p

′
, q+q

′
, r+ r

′
, s+ s

′
); σd̃N ∧σg̃N , λd̃N ∨λg̃N , τd̃N ∨ τg̃N

⟩
2. d̃N − g̃N =

⟨
(p− p

′
, q−q

′
, r− r

′
, s− s

′
); σd̃N ∧σg̃N , λd̃N ∨λg̃N , τd̃N ∨ τg̃N

⟩

3. d̃N × g̃N =



⟨
(pp

′
, qq

′
, rr

′
, ss

′
); σd̃N ∧σg̃N , λd̃N ∨λg̃N , τd̃N ∨ τg̃N

⟩
, s > 0, s

′
> 0

⟨
(ps

′
, qr

′
, qr

′
, ps

′
); σd̃N ∧σg̃N , λd̃N ∨λg̃N , τd̃N ∨ τg̃N

⟩
, s < 0, s

′
> 0

⟨
(ss

′
, qq

′
, rr

′
, pp

′
); σd̃N ∧σg̃N , λd̃N ∨λg̃N , τd̃N ∨ τg̃N

⟩
, s < 0, s

′
< 0

4. d̃N/g̃N =



⟨
(p/s

′
, q/r

′
, r/q

′
, s/p

′
); σd̃N ∧σg̃N , λd̃N ∨λg̃N , τd̃N ∨ τg̃N

⟩
, s > 0, s

′
> 0

⟨
(s/s

′
, r/r

′
, q/q

′
, p/p

′
); σd̃N ∧σg̃N , λd̃N ∨λg̃N , τd̃N ∨ τg̃N

⟩
, s < 0, s

′
> 0

⟨
(s/p

′
, r/q

′
, q/r

′
, p/s

′
); σd̃N ∧σg̃N , λd̃N ∨λg̃N , τd̃N ∨ τg̃N

⟩
, s < 0, s

′
< 0

5. dg̃N = h(x) =


⟨
(d p, dq, dr, ds); σg̃N , λg̃N , τg̃N

⟩
, d > 0

⟨
(ds, dr, dq, d p); σg̃N , λg̃N , τg̃N

⟩
, d < 0

6. g̃N−1
=
⟨
(1/s

′
, 1/r

′
, 1/q

′
, 1/p

′
); σg̃N , λg̃N , τg̃N

⟩
, g̃N ̸= 0.

In the above arithmetic operations, if s = 0 and s
′
= 0, then the single-valued trapezoidal neutrosophic numbers d̃N =⟨

(p, q, r, 0); σd̃N , λd̃N , τd̃N

⟩
and g̃N =

⟨
(p

′
, q

′
, r

′
, 0); σg̃N , λg̃N , τd̃N

⟩
becomes a single-valued triangular neutrosophic

numbers d̃N =
⟨
(p, q, r); σd̃N , λd̃N , τd̃N

⟩
and g̃N =

⟨
(p

′
, q

′
, r

′
); σg̃N , λg̃N , τg̃N

⟩
.
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Definition 2.5 Score function of SVTrNNs [35]: Let d̃N =
⟨
(p, q, r, s); σd̃N , λd̃N , τd̃N

⟩
be a single-valued

trapezoidal neutrosophic number then the score function of d̃N is

S(d̃N) =
1

16
[p+q+ r+ s]

(
2+σd̃N −λd̃N − τd̃N

)

3. Formulation of neutrosophic four-dimensional fixed charge transportation
problem (N4DFCTP)
Based on [38], in this paper, we have considered the single objective four-dimensional fixed charge TP under

neutrosophic environment where the objective function is taken as cost of transportation along with the fixed charge and
the parameters are supply, demand, conveyance and distance of routes. Let there be ‘m’ sources, ‘n’ destinations, each
are connected by different routes, and in each route, various forms of conveyances are used to shipment the scout drones
from sources to destinations. This study considers the four-dimensional fixed charge TP under neutrosophic environment.
Here, the parameters of the problem are imprecise and signified by single-valued trapezoidal neutrosophic numbers and
the distance of routes as real numbers. The DMs aim is to determine the optimal solution by choosing the appropriate
vehicle and right route to transport the scout drones from sources to destinations so that the total transportation cost with
fixed charges is minimized. The mathematical formulation of the problem is represented as follows:

(G1)Minimize Z̃N(x) =
m

∑
i=1

n

∑
j=1

g

∑
k=1

h

∑
r=1

c̃N
i jkrxi jkrPi jr +

m

∑
i=1

n

∑
j=1

g

∑
k=1

h

∑
r=1

f̃ N
i jkryi jkr

Subject to:
n

∑
j=1

g

∑
k=1

h

∑
r=1

xi jkr ≤ ãN
i , i = 1, 2, ..., m (1)

m

∑
i=1

g

∑
k=1

h

∑
r=1

xi jkr ≤ b̃N
j , j = 1, 2, ..., n (2)

m

∑
i=1

n

∑
j=1

xi jkr ≤ ẽN
kr, k = 1, 2, ..., g; r = 1, 2, ..., h (3)

xi jkr ≥ 0, for all i, j, k, r (4)

yi jkr =


1, xi jkr > 0

0, otherwise
(5)

where ãN
i = (a1

i , a2
i , a3

i , a4
i ; a

′1
i , a

′2
i , a

′3
i ) for i = 1, 2, ..., m refers to the single-valued trapezoidal neutrosophic supply at

ith origin, b̃N
j =(b1

j , b2
j , b3

j , b4
j ; b

′1
j , b

′2
j , b

′3
j ) for j = 1, 2, ..., n refers to the single-valued trapezoidal neutrosophic demand

at jth destination and ẽN
kr = (e1

kr, e2
kr, e3

kr, e4
kr; e

′1
kr, e

′2
kr, e

′3
kr) for k = 1, 2, ..., g, r = 1, 2, ..., h refers to the single-valued

trapezoidal neutrosophic capacity at kth conveyance through rth route. c̃N
i jkr = (c1

i jkr, c2
i jkr, c3

i jkr, c4
i jkr; c

′1
i jkr, c

′2
i jkr, c

′3
i jkr)
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denotes the objective function of single valued trapezoidal neutrosophic transportation cost shipped through rth route by
kth conveyance from ith source to jth destination respectively. f̃ N

i jkr = ( f 1
i jkr, f 2

i jkr, f 3
i jkr, f 4

i jkr; f
′1
i jkr, f

′2
i jkr, f

′3
i jkr) refers the

single-valued trapezoidal neutrosophic fixed charge shipped through rth route by kth conveyance from ith source to jth

destination. Pi jr denotes the distance between rth route from ith source to jth destination. xi jkr denotes the scout drones
shipped through rth route by kth conveyance from ith source to jth destination. yi jkr denotes the binary variable with a
value of 1 if the scout drones were shipped through rth route by kth conveyance from ith source to jth destination and 0
otherwise.

The problem (G1) satisfies the feasibility condition if
m

∑
i=1

ãN
i ≥

n

∑
j=1

b̃N
j and

g

∑
k=1

h

∑
r=1

ẽN
kr ≥

n

∑
j=1

b̃N
j .

By applying the score function [35] to the problem (G1), we get

(G2)Minimize ℜ
(
Z̃N(x)

)
= ℜ

(
m

∑
i=1

n

∑
j=1

g

∑
k=1

h

∑
r=1

(
c1

i jkr, c2
i jkr, c3

i jkr, c4
i jkr; c

′1
i jkr, c

′2
i jkr, c

′3
i jkr

)
xi jkrPi jr

)

+ℜ

(
m

∑
i=1

n

∑
j=1

g

∑
k=1

h

∑
r=1

(
f 1
i jkr, f 2

i jkr, f 3
i jkr, f 4

i jkr; f
′1
i jkr, f

′2
i jkr, f

′3
i jkr

)
yi jkr

)

Subject to:
n

∑
j=1

g

∑
k=1

h

∑
r=1

xi jkr ≤ ℜ
(

a1
i , a2

i , a3
i , a4

i ; a
′1
i , a

′2
i , a

′3
i

)
, i = 1, 2, ..., m (6)

m

∑
i=1

g

∑
k=1

h

∑
r=1

xi jkr ≤ ℜ
(

b1
j , b2

j , b3
j , b4

j ; b
′1
j , b

′2
j , b

′3
j

)
, j = 1, 2, ..., n (7)

m

∑
i=1

n

∑
j=1

xi jkr ≤ ℜ
(

e1
kr, e2

kr, e3
kr, e4

kr; e
′1
kr, e

′2
kr, e

′3
kr

)
, k = 1, 2, ..., g; r = 1, 2, ..., h (8)

xi jkr ≥ 0, for all i, j, k, r (9)

yi jkr =


1, xi jkr > 0

0, otherwise
(10)

Now, we extended the theorem based on [13] for the single objective four-dimensional fixed charge TP and then we
prove the solution obtained by min zero-min cost approach is an optimal solution to the problem (G2) in the following
theorem.

Theorem 3.1 If (x◦i jkr, i = 1, 2, ..., m, j = 1, 2, ..., n, k = 1, 2, ..., g, r = 1, 2, ..., h) is an optimal solution of the
problem (G3).

(G3)Minimum
m

∑
i=1

n

∑
j=1

g

∑
k=1

h

∑
r=1

(
ci jkrPi jr −ui − v j −wkr

)
xi jkr + fi jkryi jkr
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Subject to (6) to (10), where ui, v j and wkr are any real values, then (x◦i jkr, i = 1, 2, ..., m, j = 1, 2, ..., n, k =

1, 2, ..., g, r = 1, 2, ..., h) is an optimal solution to the problem (G2).
Proof. Clearly, (x◦i jkr, i = 1, 2, ..., m, j = 1, 2, ..., n, k = 1, 2, ..., g, r = 1, 2, ..., h) is a feasible solution of (G2).
Suppose that (x◦i jkr, i = 1, 2, ..., m, j = 1, 2, ..., n, k = 1, 2, ..., g, r = 1, 2, ..., h) is not an optimal solution of

(G2).
Then there exists a feasible solution (li jkr, i = 1, 2, ..., m, j = 1, 2, ..., n, k = 1, 2, ..., g, r = 1, 2, ..., h) such that

m

∑
i=1

n

∑
j=1

g

∑
k=1

h

∑
r=1

ci jkrPi jrli jkr + fi jkryi jkr <
m

∑
i=1

n

∑
j=1

g

∑
k=1

h

∑
r=1

ci jkrPi jrx◦i jkr + fi jkryi jkr

Clearly, (li jkr, i = 1, 2, ..., m, j = 1, 2, ..., n, k = 1, 2, ..., g, r = 1, 2, ..., h) is also a feasible solution to the
problem (G3).

Now,

m

∑
i=1

n

∑
j=1

g

∑
k=1

h

∑
r=1

(
ci jkrPi jr −ui − v j −wkr

)
li jkr + fi jkryi jkr

=
m

∑
i=1

n

∑
j=1

g

∑
k=1

h

∑
r=1

ci jkrPi jrli jkr + fi jkryi jkr −
m

∑
i=1

n

∑
j=1

g

∑
k=1

h

∑
r=1

uili jkr −
m

∑
i=1

n

∑
j=1

g

∑
k=1

h

∑
r=1

v jli jkr −
m

∑
i=1

n

∑
j=1

g

∑
k=1

h

∑
r=1

wkrli jkr

<
m

∑
i=1

n

∑
j=1

g

∑
k=1

h

∑
r=1

ci jkrPi jrli jkr + fi jkryi jkr −
m

∑
i=1

uiai −
n

∑
j=1

v jb j −
g

∑
k=1

h

∑
r=1

wkrekr

=
m

∑
i=1

n

∑
j=1

g

∑
k=1

h

∑
r=1

(
ci jkrPi jr −ui − v j −wkr

)
x◦i jkr + fi jkryi jkr

which contradicts (x◦i jkr, i = 1, 2, ..., m, j = 1, 2, ..., n, k = 1, 2, ..., g, r = 1, 2, ..., h) is an optimal solution of (G3).
Therefore, (x◦i jkr, i = 1, 2, ..., m, j = 1, 2, ..., n, k = 1, 2, ..., g, r = 1, 2, ..., h) is an optimal solution of (G2).
Hence the theorem.
The above theorem demonstrates that the solution obtained by min zero-min cost approach is an optimal solution to

the problem (G2) which is applied in the proposed approach. The procedure of the proposed approach is illustrated in the
following section.

4. Solution approach
In this section, we have proposed themin zero-min cost approach for obtaining the optimal solution to single objective

4DFCTP under neutrosophic environment. Figure 1 represents the flowchart of the proposed min zero-min cost approach.
The procedure of the proposed approach proceeds as follows:

Step 1 Consider the neutrosophic four-dimensional fixed charge TP (G1). Transform the problem (G1) into its
equivalent deterministic problem (G2) using the score function [35]. Ensure whether the problem (G2) is balance or
not, if not, make it balance.

Step 2 Construct Supply (S)-Demand (D) table from the problem (G2) without considering the fixed charges where
the rows are supply and columns are demands.
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Step 3 Subtract the minimum cost element of each row from all the elements of the row. Ensure that each column
contains at least one zero. If not, subtract the minimum cost element of each column from all the elements of the column.

Step 4Using the zero cost cells, check whether each supply is assigned to its corresponding demands. If it is satisfied,
proceed to Step 6 (i), otherwise move to Step 5.

Step 5 In the reduced problem draw the minimum number of horizontal and vertical lines through the supply,
demand and conveyance that contains zeros. Subtract the smallest uncovered entry from all uncovered entry and add
it to the intersection entry. Repeat the procedure until all the supply/demand/conveyance is assigned to its corresponding
demands/conveyances/supplies.

Step 6
(i) Construct Demand (D)-Conveyance (E) table from Step 5 where the rows are demands and columns are

conveyances. Repeat step 5 until all the demand is assigned to its corresponding conveyances and then move to Step
6 (ii).

(ii) Construct Conveyance (E)-Supply (S) table from the above step where the rows are conveyances and columns
are supply. Repeat Step 5 until all the conveyance is assigned to its corresponding supplies and then move to Step 7.

Step 7 Construct S-D-E table and then choose supply, demand and conveyance with least number of zeros. Next,
assign the maximum possible to the zero cell with the least cost. If there is a tie, select one. Repeat the step until all
supplies, demands and conveyances are fully utilized.

Step 8 Now represent all the allocations in the problem (G2). This allocations leads to an optimal solution for
the problem (G2) by Theorem 1. Calculate the neutrosophic optimal solution for the problem (G1) using the optimal
allocations of problem (G2).

Figure 1. Flowchart of the proposed min zero-min cost approach
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The proposed approach for solving the problem (G1) is demonstrated using two real-life based examples in which
for Example 5.1, the data of transportation cost, fixed charge, conveyance, distance of route are considered from [38] and
supply and demand are considered due to our preference and for Example 5.2, the data of transportation cost, fixed charge,
supply, demand, conveyance, distance of route are considered from [38] in the following section. The primary objective
for solving the problem (G1) is to determine the optimal solution using the proposed approach to transport the products
from ‘m’ sources to ‘n’ destinations by ‘k’ conveyances through ‘p’ routes. In addition to the above, the transportation
cost with fixed charges are minimized by choosing the right vehicle and best path in such a way to prevent the loss of
damage to products.

5. Numerical example
In this section, we have taken two real-life based examples in which Example 1 is taken from [38] which demonstrates

that the scout drones are transported from two supplies to two destinations by two vehicles through two routes. Example 2
is taken from [38] and considered as unbalanced problem which demonstrates that the vaccines are transported from two
supplies to two destinations by two vehicles through two routes. In these problems, the parameters such as transportation
cost, supply at sources, demand at destinations and capacity at conveyances are considered as fully single-valued
trapezoidal neutrosophic numbers and distance of routes in the objective function as real numbers.

Example 5.1
The Aerial Drobotics-Agriculture Drone Sprayer, Namakkal, Tamil Nadu, India supplies scout drones from two

origins in Madurai (S1) and Chennai (S2) to two destinations located in Coimbatore (D1) and Udumalpet (D2). The
Aerial Drobotics transports these scout drones through two different routes such as NH-83 (P1) and NH-79 (P2) by two
forms of conveyance such as trucks (E1) and vans (E2). On these NH roads, two different toll stations collect toll taxes
for different types of vehicles which are termed as fixed charges (F1) and (F2). Here the goal of Aerial Drobotics is to
minimize the transportation cost by shipping the scout drones from the two origins to the two destinations by the two
types of conveyances through the two various routes. Due to the state of the market, changes in the climate, scout drone
conditions, vehicle conditions, the parameters such as transportation cost (c̃N

i jkr), fixed charge ( f̃ N
i jkr), supply (ã

N
i ), demand

(b̃N
j ) and conveyance (ẽN

kr) are all SVTrNNs. The distance of routes (Pi jr) are represented in real numbers. Table 2 shows
the neutrosophic data of transportation cost (c̃N

i jkr) with fixed charge ( f̃ N
i jkr) and distance of routes (Pi jr).

Table 2. Neutrosophic transportation cost (c̃N
i jkr), fixed charge ( f̃ N

i jkr) and distance of routes (Pi jr)

D j D1 D2
Supply

Si/Ekr E11 E21 E12 E22 E11 E21 E12 E22

S1
c̃N

1111(P111)

+ f̃ N
1111

c̃N
1121(P111)

+ f̃ N
1121

c̃N
1112(P112)

+ f̃ N
1112

c̃N
1122(P112)

+ f̃ N
1122

c̃N
1211(P121)

+ f̃ N
1211

c̃N
1221(P121)

+ f̃ N
1221

c̃N
1212(P122)

+ f̃ N
1212

c̃N
1222(P122)

+ f̃ N
1222

ãN
1

S2
c̃N

2111(P211)

+ f̃ N
2111

c̃N
2121(P211)

+ f̃ N
2121

c̃N
2112(P212)

+ f̃ N
2112

c̃N
2122(P212)

+ f̃ N
2122

c̃N
2211(P221)

+ f̃ N
2211

c̃N
2221(P221)

+ f̃ N
2221

c̃N
2212(P222)

+ f̃ N
2212

c̃N
2222(P222)

+ f̃ N
2222

ãN
2

Conveyance ẽN
11 ẽN

21 ẽN
12 ẽN

22 ẽN
11 ẽN

21 ẽN
12 ẽN

22

Demand b̃N
1 b̃N

2

Supplies: ãN
1 = (14, 16, 21, 23; 0.7, 0.5, 0.3) and ãN

2 = (7, 9, 12, 15; 0.8, 0.2, 0.1).
Demands: b̃N

1 = (14, 17, 21, 28; 0.8, 0.2, 0.6) and b̃N
2 = (5, 9, 11, 13; 0.8, 0.2, 0.1).

Conveyances: ẽN
11 = (3, 5, 6, 8; 0.7, 0.3, 0.2), ẽN

12 = (4, 5, 6, 7; 0.9, 0.1, 0.2), ẽN
21 = (4, 6, 7, 9; 0.8, 0.2, 0.2)

and ẽN
22 = (5, 7, 8, 10; 0.8, 0.1, 0.2).
Distance of routes: P111 = 12, P112 = 34, P121 = 18, P122 = 56, P211 = 45, P212 = 16, P221 = 37 and P222 = 48.
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Transportation cost:
c̃N

1111 = (3, 5, 6, 8; 0.9, 0.3, 0.2); c̃N
1211 = (5, 6, 7, 8; 0.9, 0.1, 0.2); c̃N

1121 = (4, 5, 6, 7; 0.8, 0.2, 0.1);
c̃N

1221 = (2, 5, 6, 9; 0.7, 0.3, 0.1); c̃N
1112 = (2, 4, 6, 9; 0.7, 0.2, 0.1); c̃N

1212 = (4, 6, 9, 11; 0.9, 0.2, 0.1);
c̃N

1122 = (5, 7, 9, 11; 0.8, 0.3, 0.2); c̃N
1222 = (4, 6, 9, 11; 0.9, 0.2, 0.1); c̃N

2111 = (5, 9, 11, 13; 0.8, 0.2, 0.1);
c̃N

2211 = (7, 9, 11, 13; 0.9, 0.1, 0.3); c̃N
2121 = (2, 3, 5, 7; 0.7, 0.2, 0.1); c̃N

2221 = (3, 4, 5, 6; 0.7, 0.1, 0.3);
c̃N

2112 = (6, 7, 8, 9; 0.8, 0.3, 0.1); c̃N
2212 = (6, 8, 10, 12; 0.7, 0.3, 0.2); c̃N

2122 = (4, 6, 8, 10; 0.9, 0.1, 0.2);
c̃N

2222 = (4, 5, 6, 8; 0.8, 0.1, 0.3).
Fixed charge:
f̃ N
1111 = (2, 3, 4, 5; 0.9, 0.2, 0.1); f̃ N

1211 = (5, 6, 7, 8; 0.7, 0.3, 0.1); f̃ N
1121 = (4, 5, 6, 8; 0.8, 0.2, 0.2);

f̃ N
1221 = (3, 4, 5, 6; 0.7, 0.1, 0.1); f̃ N

1112 = (3, 5, 7, 8; 0.7, 0.2, 0.3); f̃ N
1212 = (6, 7, 8, 9; 0.7, 0.2, 0.2);

f̃ N
1122 = (3, 4, 5, 6; 0.8, 0.1, 0.2); f̃ N

1222 = (4, 5, 6, 7; 0.8, 0.3, 0.1); f̃ N
2111 = (6, 7, 8, 10; 0.8, 0.1, 0.1);

f̃ N
2211 = (3, 5, 7, 10; 0.9, 0.1, 0.1); f̃ N

2121 = (4, 5, 7, 9; 0.7, 0.2, 0.1); f̃ N
2221 = (4, 5, 7, 9; 0.8, 0.2, 0.1);

f̃ N
2112 = (5, 7, 8, 10; 0.7, 0.2, 0.1); f̃ N

2212 = (5, 6, 7, 9; 0.9, 0.2, 0.1); f̃ N
2122 = (4, 6, 7, 8; 0.8, 0.2, 0.3);

f̃ N
2222 = (5, 6, 7, 9; 0.8, 0.3, 0.2).
Using Step 1, transform the problem (G1) into its equivalent deterministic problem (G2) using the score function are

given as follows (Table 3):

Table 3. Deterministic ci jkr and fi jkr using score function

D1 D2
Supply

E11 E21 E12 E22 E11 E21 E12 E22

S1 3(12) + 2 3(12) + 3 3(34) + 3 5(34) + 3 4(18) + 4 3(18) + 3 5(56) + 4 5(56) + 3 9

S2 6(45) + 5 3(45) + 4 5(16) + 5 5(16) + 4 6(37) + 4 3(37) + 4 5(48) + 4 3(48) + 4 7

Conveyance 3 4 4 5 3 4 4 5

Demand 10 6

As in Step 1, the reduced deterministic problem (G2) is balanced. By Step 2, the S-D table is constructed without
considering the fixed charges is shown below (Table 4).

Table 4. S-D table

D1 D2
Supply

E11 E21 E12 E22 E11 E21 E12 E22

S1 36 36 102 170 72 54 280 280 9

S2 270 135 80 80 222 111 240 144 7

Demand 10 6

Using Step 3, by subtracting the least cost element of each row from all the elements of row and by subtracting the
least cost element of each column from all the elements of column is given below (Table 5).
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Table 5. Reduced S-D table

D1 D2
Supply

E11 E21 E12 E22 E11 E21 E12 E22

S1 0 0 66 134 18 0 226 226 9

S2 190 55 0 0 124 13 142 46 7

Demand 10 6

Using the zero cost cells, each supply is less than the sum of the demands (9 < 16 and 7 < 10). From Table 5, it is
clear that each supply is assigned to its corresponding demands, so we move to the next step. As in Step 6 (i), the D-E
table is constructed from Table 5 is shown below (Table 6).

Table 6. D-E table

S1 S2
Demand

E11 E21 E12 E22 E11 E21 E12 E22

D1 0 0 66 134 190 55 0 0 10

D2 18 0 226 226 124 13 142 46 6

Conveyance 3 4 4 5 3 4 4 5

From Table 6, using the zero cost cells, the demand of second row exceeds the conveyance of second column. So,
we cover the zeros with one horizontal line (D1) and one vertical line (E21). Then by subtracting the smallest uncovered
element (i.e., 18) from all the uncovered element and add the smallest uncovered element to the intersection element is
shown below (Table 7).

Table 7. Reduced D-E table

S1 S2
Demand

E11 E21 E12 E22 E11 E21 E12 E22

D1 0 18 66 134 190 73 0 0 10

D2 0 0 208 208 106 13 124 28 6

Conveyance 3 4 4 5 3 4 4 5

Using the zero cost cells, each demand is less than the sum of the conveyances. From Table 7, it is clear that each
demand is assigned to its corresponding conveyances, so we move to the next step. By Step 6 (ii), the E-S table is
constructed from Table 7 is shown below (Table 8).
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Table 8. E-S table

D1 D2
Demand

E11 E21 E12 E22 E11 E21 E12 E22

S1 0 18 66 134 0 0 208 208 9

S2 190 73 0 0 106 13 124 28 7

Conveyance 3 4 4 5 3 4 4 5

Using the zero cost cells, each conveyance is less than the sum of the supplies. From the above table, it is clear that
each conveyance is assigned to its corresponding supplies, so we move to the next step. By Step 7, the S-D-E table is
constructed and the obtained optimal allotment table is shown below (Table 9).

Table 9. S-D-E table

D1 D2
Supply

E11 E21 E12 E22 E11 E21 E12 E22

S1
0

(1)

18 66

(2)

134 0

(2)

0

(4)

208 208
9

S2
190 73 0

(2)

0

(5)

106 13 124 28
7

Conveyance 3 4 4 5 3 4 4 5

Demand 10 6

As in Step 8, to obtain the optimal transportation cost of the problem (G2) we have allocated the optimal allocations
of Table 9 in the problem (G2) is shown in Table 10.

Table 10. Optimal allotment table

D1 (Coimbatore) D2 (Udumalpet)

SupplyE11 E21 E12 E22 E11 E21 E12 E22

(Truck and
NH-83)

(Van and
NH-83)

(Truck and
NH-79)

(Van and
NH-79)

(Truck and
NH-83)

(Van and
NH-83)

(Truck and
NH-79)

(Van and
NH-79)

S1 (Madurai)
3(12) + 2

(1)

3(12) + 3 3(34) + 3

(2)

5(34) + 3 4(18) + 4

(2)

3(18) + 3

(4)

5(56) + 4 5(56) + 3
9

S2 (Chennai)
6(45) + 5 3(45) + 4 5(16) + 5

(2)

5(16) + 4

(5)

6(37) + 4 3(37) + 4 5(48) + 4 3(48) + 4
7

Conveyance 3 4 4 5 3 4 4 5

Demand 10 6
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Results and discussions
Nowadays, the shipment of products from sources to the destinations by road is getting more important due to

globalization. While transporting the products through vehicles are of finite capacity plying on the roads from source
to destination there may be many available routes connecting the cities. In some routes for maintenance, fixed charges
such as toll taxes, parking fees, permit fees, and so on are collected. Now the DMneeds to decide the amount of products to
be transported from various sources to different destinations by the suitable vehicle through the suitable route to minimize
the loss of damage in the products, the transportation cost and fixed cost satisfying the availability and requirements of
each source and destination of the problem. From Table 10, the optimal allotments for Example 1 are picturized as network
diagram in Figure 2.

Figure 2. Network diagram of optimal allotment for Example 1

From Figure 2, it is clear that the number of scout drones transported from the source by different vehicles through
various routes to reach the destination: S1 → E1 → P1 → D1 is 1 (i.e., x1111 = 1); S1 → E1 → P1 → D2 is 2 (i.e., x1112 = 2);
S1 → E2 → P1 → D1 is 2 (i.e., x1211 = 2); S1 → E2 → P2 → D1 is 4 (i.e., x1221 = 4), S2 → E1 → P1 → D2 is 2 (i.e.,
x2112 = 2); S2 → E1 → P2 → D2 is 5 (i.e., x2122 = 5). From Table 10 and Figure 2, it is observed that 3 scout drones are
shipped from source to destination by truck through NH-83, 4 scout drones by truck through NH-79, 4 scout drones by van
through NH-83 and 5 scout drones by van through NH-79. From this analysis, we conclude that the DM transported the
maximum number of scout drones by the vehicle (van) through route (NH-79) which results in minimal loss of damage
in products at minimal cost with fixed charge. Finally, the optimal transportation cost with fixed charge is 1,181 and the
neutrosophic optimal transportation cost with fixed charge is (79, 120, 150, 191; 0.7, 0.3, 0.3).

Example 5.2
An Integrated Vaccine Park (IVP) in Chengalpet, Tamil Nadu, India supplies two different types of vaccines, namely

Covaxin and Covishield from two origins in Chennai (S1) and Vellore (S2) to two destinations located in Trichy (D1) and
Coonoor (D2). IVP transports these vaccines through two different routes such as NH-38 (P1) and NH-45 (P2) by two
forms of conveyances such as refrigerated trucks (E1) and refrigerated vans (E2). On these NH roads, two different toll
stations collect toll taxes for different types of vehicles which are termed as fixed charges (F1) and (F2). Here the goal
of IVP is to minimize the transportation cost by shipping the vaccines from the two origins to the two destinations by the
two types of conveyances through the two various routes. Due to the state of the market, changes in the climate, scout
drone conditions, vehicle conditions, the parameters such as transportation cost (c̃N

i jkr), fixed charge ( f̃ N
i jkr), supply (ãN

i ),
demand (b̃N

j ) and conveyance (ẽN
kr) are all SVTrNNs. The distance of routes (Pi jr) are represented in real numbers. Table

11 shows the neutrosophic data of transportation cost (c̃N
i jkr) with fixed charge ( f̃ N

i jkr) and distance of routes (Pi jr).
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Table 11. Neutrosophic transportation cost (c̃N
i jkr), fixed charge ( f̃ N

i jkr) and distance of routes (Pi jr)

D j D1 D2
Supply

Si/Ekr E11 E21 E12 E22 E11 E21 E12 E22

S1
c̃N

1111(P111)

+ f̃ N
1111

c̃N
1121(P111)

+ f̃ N
1121

c̃N
1112(P112)

+ f̃ N
1112

c̃N
1122(P112)

+ f̃ N
1122

c̃N
1211(P121)

+ f̃ N
1211

c̃N
1221(P121)

+ f̃ N
1221

c̃N
1212(P122)

+ f̃ N
1212

c̃N
1222(P122)

+ f̃ N
1222

ãN
1

S2
c̃N

2111(P211)

+ f̃ N
2111

c̃N
2121(P211)

+ f̃ N
2121

c̃N
2112(P212)

+ f̃ N
2112

c̃N
2122(P212)

+ f̃ N
2122

c̃N
2211(P221)

+ f̃ N
2211

c̃N
2221(P221)

+ f̃ N
2221

c̃N
2212(P222)

+ f̃ N
2212

c̃N
2222(P222)

+ f̃ N
2222

ãN
2

Conveyance ẽN
11 ẽN

21 ẽN
12 ẽN

22 ẽN
11 ẽN

21 ẽN
12 ẽN

22

Demand b̃N
1 b̃N

2

Supplies: ãN
1 = (5, 7, 9, 11; 0.9, 0.1, 0.1) and ãN

2 = (6, 8, 10, 12; 0.8, 0.1, 0.2).
Demands: b̃N

1 = (4, 6, 8, 9; 0.7, 0.1, 0.2) and b̃N
2 = (5, 6, 7, 8; 0.9, 0.2, 0.1).

Conveyances: ẽN
11 = (3, 5, 6, 8; 0.7, 0.3, 0.2), ẽN

12 = (4, 5, 6, 7; 0.9, 0.1, 0.2), ẽN
21 = (4, 6, 7, 9; 0.8, 0.2, 0.2)

and ẽN
22 = (5, 7, 8, 10; 0.8, 0.1, 0.2).
Distance of routes: P111 = 12, P112 = 34, P121 = 18, P122 = 56, P211 = 45, P212 = 16, P221 = 37 and P222 = 48.
Transportation cost:
c̃N

1111 = (3, 5, 6, 8; 0.9, 0.3, 0.2); c̃N
1211 = (5, 6, 7, 8; 0.9, 0.1, 0.2); c̃N

1121 = (4, 5, 6, 7; 0.8, 0.2, 0.1);
c̃N

1221 = (2, 5, 6, 9; 0.7, 0.3, 0.1); c̃N
1112 = (2, 4, 6, 9; 0.7, 0.2, 0.1); c̃N

1212 = (4, 6, 9, 11; 0.9, 0.2, 0.1);
c̃N

1122 = (5, 7, 9, 11; 0.8, 0.3, 0.2); c̃N
1222 = (4, 6, 9, 11; 0.9, 0.2, 0.1); c̃N

2111 = (5, 9, 11, 13; 0.8, 0.2, 0.1);
c̃N

2211 = (7, 9, 11, 13; 0.9, 0.1, 0.3); c̃N
2121 = (2, 3, 5, 7; 0.7, 0.2, 0.1); c̃N

2221 = (3, 4, 5, 6; 0.7, 0.1, 0.3);
c̃N

2112 = (6, 7, 8, 9; 0.8, 0.3, 0.1); c̃N
2212 = (6, 8, 10, 12; 0.7, 0.3, 0.2); c̃N

2122 = (4, 6, 8, 10; 0.9, 0.1, 0.2);
c̃N

2222 = (4, 5, 6, 8; 0.8, 0.1, 0.3).
Fixed charge:
f̃ N
1111 = (2, 3, 4, 5; 0.9, 0.2, 0.1); f̃ N

1211 = (5, 6, 7, 8; 0.7, 0.3, 0.1); f̃ N
1121 = (4, 5, 6, 8; 0.8, 0.2, 0.2);

f̃ N
1221 = (3, 4, 5, 6; 0.7, 0.1, 0.1); f̃ N

1112 = (3, 5, 7, 8; 0.7, 0.2, 0.3); f̃ N
1212 = (6, 7, 8, 9; 0.7, 0.2, 0.2);

f̃ N
1122 = (3, 4, 5, 6; 0.8, 0.1, 0.2); f̃ N

1222 = (4, 5, 6, 7; 0.8, 0.3, 0.1); f̃ N
2111 = (6, 7, 8, 10; 0.8, 0.1, 0.1);

f̃ N
2211 = (3, 5, 7, 10; 0.9, 0.1, 0.1); f̃ N

2121 = (4, 5, 7, 9; 0.7, 0.2, 0.1); f̃ N
2221 = (4, 5, 7, 9; 0.8, 0.2, 0.1);

f̃ N
2112 = (5, 7, 8, 10; 0.7, 0.2, 0.1); f̃ N

2212 = (5, 6, 7, 9; 0.9, 0.2, 0.1); f̃ N
2122 = (4, 6, 7, 8; 0.8, 0.2, 0.3);

f̃ N
2222 = (5, 6, 7, 9; 0.8, 0.3, 0.2).
Using Step 1, transform the problem (G1) into its equivalent deterministic problem (G2) using the score function are

given as follows (Table 12):

Table 12. Deterministic ci jkr and fi jkr using score function

D1 D2
Supply

E11 E21 E12 E22 E11 E21 E12 E22

S1 3(12) + 2 3(12) + 3 3(34) + 3 5(34) + 3 4(18) + 4 3(18) + 3 5(56) + 4 5(56) + 3 5

S2 6(45) + 5 3(45) + 4 5(16) + 5 5(16) + 4 6(37) + 4 3(37) + 4 5(48) + 4 3(48) + 4 6

Conveyance 3 4 4 5 3 4 4 5

Demand 4 4

As in Step 1, the reduced deterministic problem is unbalanced. So, balance it (Table 13).
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Table 13. Deterministic ci jkr and fi jkr using score function

D1 D2 D3
Supply

E11 E21 E12 E22 E11 E21 E12 E22 E11 E21 E12 E22

S1 3(12) + 2 3(12) + 3 3(34) + 3 5(34) + 3 4(18) + 4 3(18) + 3 5(56) + 4 5(56) + 3 0 0 0 0 5

S2 6(45) + 5 3(45) + 4 5(16) + 5 5(16) + 4 6(37) + 4 3(37) + 4 5(48) + 4 3(48) + 4 0 0 0 0 6

S3 0 0 0 0 0 0 0 0 0 0 0 0 5

Conveyance 3 4 4 5 3 4 4 5 3 4 4 5

Demand 4 4 8

By Step 2, the S-D table is constructed without considering the fixed charges is shown below (Table 14).

Table 14. S-D table

D1 D2 D3
Supply

E11 E21 E12 E22 E11 E21 E12 E22 E11 E21 E12 E22

S1 36 36 102 170 72 54 280 280 0 0 0 0 5

S2 270 135 80 80 222 111 240 144 0 0 0 0 6

S3 0 0 0 0 0 0 0 0 0 0 0 0 5

Demand 4 4 8

Using the zero cost cells, each supply is less than the sum of the demands. From Table 14, it is clear that each supply
is assigned to its corresponding demands, so we move to the next step. As in Step 6 (i), the D-E table is constructed from
Table 14 is shown below (Table 15).

Table 15. D-E table

S1 S2 S3
Demand

E11 E21 E12 E22 E11 E21 E12 E22 E11 E21 E12 E22

D1 36 36 102 170 270 135 80 80 0 0 0 0 4

D2 72 54 280 280 222 111 240 144 0 0 0 0 4

D3 0 0 0 0 0 0 0 0 0 0 0 0 8

Conveyance 3 4 4 5 3 4 4 5 3 4 4 5

Using the zero cost cells, each demand is less than the sum of the conveyances. From Table 15, it is clear that
each demand is assigned to its corresponding conveyances, so we move to the next step. By Step 6 (ii), the E-S table is
constructed from Table 15 is shown below (Table 16).
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Table 16. E-S table

D1 D2 D3
Supply

E11 E21 E12 E22 E11 E21 E12 E22 E11 E21 E12 E22

S1 36 36 102 170 72 54 280 280 0 0 0 0 4

S2 270 135 80 80 222 111 240 144 0 0 0 0 4

S3 0 0 0 0 0 0 0 0 0 0 0 0 8

Conveyance 3 4 4 5 3 4 4 5 3 4 4 5

Using the zero cost cells, each conveyance is less than the sum of the supplies. From Table 16, it is clear that each
conveyance is assigned to its corresponding supplies, so wemove to the next step. By Step 7, the S-D-E table is constructed
and the obtained optimal allotment table is shown below Table 17.

Table 17. S-D-E table

D1 D2 D3
Supply

E11 E21 E12 E22 E11 E21 E12 E22 E11 E21 E12 E22

S1
36 36

(3)

102 170 72 54 280 280 0 0 0

(2)

0
5

S2
270 135 80 80 222 111 240 144 0

(3)

0 0

(2)

0

(1)
6

S3
0 0

(1)

0 80 0 0 0 0

(4)

0 0 0 0
5

Conveyance 3 4 4 5 3 4 4 5 3 4 4 5

Demand 4 4 8

As in Step 8, to obtain the optimal transportation cost of the problem (G2) we have allocated the optimal allocations
of Table 17 in the problem (G2) is shown in Table 18.
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Table 18. Optimal allotment table

D1 (Trichy) D2 (Coonoor) D3 (Coimbatore)

SupplyE11 E21 E12 E22 E11 E21 E12 E22 E11 E21 E12 E22

(Truck
and

NH-83)

(Van
and

NH-83)

(Truck
and

NH-79)

(Van
and

NH-79)

(Truck
and

NH-83)

(Van
and

NH-83)

(Truck
and

NH-79)

(Van
and

NH-79)

(Truck
and

NH-83)

(Van
and

NH-83)

(Truck
and

NH-79)

(Van
and

NH-79)

S1
(Chennai)

3(12) + 2 3(12) + 3

(3)

3(34) + 3 5(34) + 3 4(18) + 4 3(18) + 3 5(56) + 4 5(56) + 3 0 0 0

(2)

0
5

S2
(Vellore)

6(45) + 5 3(45) + 4 5(16) + 5 5(16) + 4 6(37) + 4 3(37) + 4 5(48) + 4 3(48) + 4 0

(3)

0 0

(2)

0

(1)
6

S3
(Salem)

0 0

(1)

0 0 0 0 0 0

(4)

0 0 0 0
5

Conveyance 3 4 4 5 3 4 4 5 3 4 4 5

Demand 4 4 8

Results and discussions
From Table 18, the optimal allotments for Example 2 is picturized as network diagram in Figure 3.

Figure 3. Network diagram of optimal allotment for Example 2

From Figure 3, it is clear that the number of vaccines transported from the source by the different vehicles through
various routes to reach the destination is: S1 → E1 → P2 → D1 is 3 (i.e., x1121 = 3); S1 → E3 → P1 → D2 is 2 (i.e.,
x1312 = 2); S2 → E3 → P1 → D1 is 3 (i.e., x2311 = 3); S2 → E3 → P1 → D2 is 2 (i.e., x2312 = 2); S2 → E3 → P2 → D2

is 1 (i.e., x2322 = 1); S3 → E1 → P2 → D1 is 1 (i.e., x3121 = 1); S3 → E2 → P2 → D2 is 4 (i.e., x3222 = 4). From Table
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18 and Figure 3, it is observed that 3 vaccines are shipped from source to destination by refrigerated truck through NH-
38, 4 vaccines by refrigerated truck through NH-45, 4 vaccines by refrigerated van through NH-38 and 5 vaccines by
refrigerated van through NH-45. From this, we conclude that the DM transported the maximum number of vaccines by
the vehicle (refrigerated van) through route (NH-45) which results in minimal loss of damage in products at minimal
cost with fixed charge. Finally, the optimal transportation cost with fixed charge is 111 and the neutrosophic optimal
transportation cost with fixed charge is (16, 20, 24, 29; 0.8, 0.2, 0.2).

6. Comparative study
To check the efficiency of the proposed approach, we have compared the Examples 1 and 2 using the LINGO software

which is performed with Intel(R) Core (TM) i3-7100U CPU @ 2.40 GHz and 4 GB RAM is shown in Table 19.

Table 19. Neutrosophic optimal solution of the proposed approach and the LINGO software

Methods

Proposed approach LINGO software

Example 1
Values of decision variable x1111 = 1, x1112 = 2, x1211 = 2,

x1221 = 4, x2112 = 2, x2122 = 5
x1111 = 1, x1112 = 2, x1211 = 2,
x1221 = 4, x2112 = 2, x2122 = 5

Neutrosophic optimal solution (79, 120, 150, 191; 0.7, 0.3, 0.3) (79, 120, 150, 191; 0.7, 0.3, 0.3)

Example 2
Values of decision variable x1121 = 3, x1312 = 2, x2311 = 3, x2312 = 2,

x2322 = 1, x3121 = 1, x3222 = 4
x1121 = 3, x1312 = 2, x2311 = 3, x2312 = 2,

x2322 = 1, x3121 = 1, x3222 = 4

Neutrosophic optimal solution (16, 20, 24, 29; 0.8, 0.2, 0.2) (16, 20, 24, 29; 0.8, 0.2, 0.2)

For better understanding, the obtained optimal solution for Examples 1 and 2 are compared between the proposed
approach and the LINGO software is shown graphically in Figures 4 and 5 respectively.

Figure 4. Comparison between the proposed approach and the LINGO software for Example 1

From Table 19, Figures 4 and 5, it is clear that the obtained optimal solution for Examples 1 and 2 using the proposed
approach provides the same result as the LINGO software. During transportation product damageability plays a crucial
role. The rates of product damage depend on the vehicle type, route condition between source and destination and so on.
While transporting the products the decision makers is always keen on minimizing the transportation cost by selecting
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a suitable mode of transport and routes which will optimize the product damage during transportation. Our proposed
approach is one of the manual computational approaches which will help the DM in choosing the suitable vehicle and
path to minimize the total transportation cost.

Figure 5. Comparison between the proposed approach and the LINGO software for Example 2

7. Conclusions and future scopes
In this article, we have considered the single objective four-dimensional fixed charge TP under neutrosophic

environment. Here all the parameters other than the distance of routes are considered as single-valued trapezoidal
neutrosophic numbers. The single-valued trapezoidal neutrosophic number gives an additional possibility to represent
uncertainty, imprecise, incomplete and inconsistent information which exist in real world. In this article, we have tried
to focus on computational approach, min zero-min cost approach for obtaining optimal solution to the problem. The
score function of SVTrNNs is utilized to transform the neutrosophic 4DFCTP into its equivalent deterministic 4DFCTP
to prevent negative values for the decision variable. The reduced deterministic problem is then solved using the proposed
min zero-min cost approach to determine the optimal solution. Therefore, the proposed approach is to optimize the
damageable products and routing plan of vehicles in a way to minimize the total transportation cost with fixed charge
of the business organizations. The optimal solution obtained from the proposed approach is the same as the LINGO
software that validates its effectiveness. This approach can also be applied to other applications of neutrosophic TPs. The
solution obtained using this approach is helpful for the DMs to manage indeterminacy, analyze and synthesize complex
decision scenarios by solving decision-making problems. This problem will help the DM by selecting a suitable vehicle
and appropriate route for transporting the products from sources to destinations to minimize the transportation costs with
fixed charges and maximize profits in the economic and business sectors. The proposed approach limitations include the
time complexity in handling higher dimensional problems. Our future research will focus on such issues. This study has
a formulation of four-dimensional fixed charge TP under neutrosophic environment, where the single objective that is
transportation cost is considered. In real-world situations, DMs meet with multiple conflicting objectives which provides
themwith a comprehensive set of profits. So, wemust understand the presence of numerous criteria that can improvemulti-
criteria decision-making problems. For the future perspective in this topic from our point of view, researchers may extend
to neutrosophic four-dimensional fixed charge fractional TP, neutrosophic multi-item multi-objective four-dimensional
fixed charge TP, neutrosophic multi-stage multi-objective four-dimensional fixed charge TP and neutrosophic multi-level
four-dimensional multi-item fixed charge TP. In spite of this, one can formulate the other types of neutrosophic numbers.
The proposed approach have been illustrated with two sources, two demands by two conveyances through two routes. In
the future, these can be illustrated for large data sets. This approach is not limited to transportation problems, it can be
applied to the decision-making problems such as assignment problem and travelling salesman problem.
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