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Abstract: Combo overdamp-oscillatory system plays an important role in natural phenomena in many engineering
problems. In this paper, fifth order nonlinear damped-oscillatory differential system is studied to investigate an asymptotic
analytical approximate solution in the fashion of overdamp-oscillations via an extension of the Krylov-Bogoliubov-
Mitropolskii (KBM) method. The proposed method is demonstrated by its applications on a Duffing oscillators in the
combined form of overdamp and oscillatory effects. The result obtained by the presented extended technique good
agreement with the numerical solutions of the fourth order Runge-Kutta method.
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1. Introduction

Nonlinear oscillating phenomena have a lot of significant applications in several aspects of physics as well as other
natural and various fields of applied sciences especially in engineering fields. In the last few decades, various efficient and
powerful methods have been established by diverse groups of dynamic researchers to construct the analytical approximate
solutions of physically important non-linear equations !'**. Among the methods, the Krylov-Bogoliubov-Mitropolskii
(KBM) (Bogoliubov and Mitropolskii "'; Krylov and Bogoliubov ) method is a vastly reliable technique to investigate
analytical approximate solutions of nonlinear systems with both small and large nonlinearity. However, the process was
invented for resulting of the periodic solutions of second order nonlinear systems with small nonlinearities, Popov *
prolonged the method to explore the solutions of the damped oscillatory nonlinear model. Murty and Deekshatulu !
presented a process via Bogoliubov’s scheme to procure the transient response of an over-damped nonlinear model. Owing
to physical impact, Mendelson ' re-experienced Popov’s results. Murty ' presented a unified KBM technique for finding
approximate solutions of second order nonlinear models, which covers the un-damped, damped, and over-damped cases.
Bojadziev and Hung "' affianced the KBM method to explore approximate solutions of damped oscillations demonstrated
by a 3-dimensional time-dependent structure. Sattar ™ reputed an asymptotic solution of a second order critically damped
nonlinear model. Alam ' projected a novel perturbation scheme to find the analytical approximate solution of nonlinear
model with large damping and then Alam """ prolonged the method for n-th order nonlinear model which covers over-
damped and critically damped. Alam and Sattar """ presented a unified method for finding a solution of third order damped
oscillatory and over-damped nonlinear model. Akbar et al. "' investigated a procedure for deciphering fourth order over-
damped nonlinear model. Later, Akbar et al. "' prolonged the procedure for damped oscillatory nonlinear model in the
case when the four eigenvalues are complex conjugates. Akbar "*! also investigated the solution of fourth order nonlinear
systems in which two of the eigenvalues are real and negative and the rest of the two are complex conjugates. Recently,
Akbar and Siddique "' investigated schemes to derive the analytical approximate solutions (damp-oscillatory, overdamp
model respectively) of fifth-order weakly nonlinear oscillatory model by extending the KBM method. More other
researches are performed in diverse scheme on nonlinear ODEs / PDEs """,

In this research, we aimed to investigate asymptotic approximate solutions of fifth order overdamped oscillatory
nonlinear model involving two of the eigen-values are complex conjugates and the other three are real and negative.
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2. The method

In this section, we consider a fifth order weakly nonlinear overdamped-oscillatory ordinary differential system in the
form of

d’x & dix
—+ > c.—+cx=—¢f(x, t),
dts “ ldl‘l 5 f( ) @)

where ¢ is a tiny valued parameter, f(x, ¢) is the nonlinear function, ¢;; i =1, 2,..., 5 are the characteristic parameters of the

5 5 5 5 5
system defined by ¢, =Y A, ¢, = D A4, ¢; = D AA A, ¢, = Y AAAA and ¢; = [ 4 where —A,, —i,, —s, =i,
i=1 i,j=1 i,j.k=1 i,jk,l=1 i=1
i#j i#j#k i# jk#l

—As, are the eigenvalues of the unperturbed equation (1).

When ¢ = 0 i.e, unperturbed equation yields the solution,
> -t (2)
x(t, 0) =Zaj’oe 7,
j=1

where a;, j =1, 2,..., 5 are random constants.

For the constraint ¢ # 0, we look for a solution in accordance with Shamsul '™, of the form
> wy 3)
X(t, ‘9) = Zaj(t)e ! +‘9u1(a1: ay, -+, ds, t)+”',
j=1
where each a; ; j =1, 2,..., 5, frequently agreed with the conditions
a;()=ed;(ay, ay, -+, as, 1)+ -, 4)

Keeping our attention on the first little terms 1, 2,..., m in the series expansions (3) and (4), we estimate the functions
uyand 4, ;7 =1, 2,..., 5 such that @; ; j = 1, 2,..., 5, execution in (3) and (4), fulfill the differential equation (1) with an
accuracy of ¢”"'. Nevertheless, the solution can be acquired up to the correctness of any order of approximation, by
reason of the rapidly-arising complication expressions for the manipulation of the formulae, the target solution, in general,
impeding to first order. To manipulate these unknown parameters, it is expected that u, exclude fundamental terms which
are involved in the series (3) at order &’.

Differentiating x(¢, €) five times with respect to ¢ and plugging x(¢, ¢€) and their derivatives in (1) together with the
relations (4) and, then equating the coefficients of &, we attain

5 5 5
d -4 d
[T +2pm+ 2 CIT =2+ a4, == e, apeees a5, 0, s
j=1 t Jj=l1 k=1,j#k

t

5
where /© = f(x,) and x, = Y. a,(t)e”".

j=1
The function /' can be prolonged in a Taylor series (see Murty and Deekshatulu ' for details) as:

) 5
) _ m; —(ﬂ112.1+ﬂ12/12+“'+m52.5)t
f - Z Fm1,"'mszai ‘e :
i=1

To obtain the solution of eq.(1), it has been proposed in (Shamsul 2003) ""*! that u, exclude the fundamental terms. To

do this we have to separated the eq.(5) into six equations for unknown functions u, and 4; ; j = 1, 2,..., 5 (see [17, 18] for
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details ).
Substituting the functional values and equating the coefficients of e j=12,.,5, we obtain

5 0.....00 5
—Ait i_ — m; —(myAy+mydy -+ +mss )t
¢ Z(dt ﬂll +ii)Al - z les"'ms Zai € . (6)
=2 my=—00,+, /M5 ==0 i=1
m3=nmy, m=my+1
P 5 d 0.....00 5 (2 B .
—At —_— = — m; _—(myA +myly+---+ms t
oY G e Y B Yare -
i=1,i#2 1) =00, -, Il =—00 i=1
m3=m4,m1:m2—1
P 5 d .....00 5 (2 h .
—43t - _ —_ my —(m A+ - msAs )t
¢ Z (dl 23 +l")A3 - Z le>"‘m5 Zai e . (8)
i=1,i#3 M) ==00,++, M5 =—0 i1
my=my,m3=my+1
1 5 d 0.....00 5 (i h 2
A4l - — m; —(mA+myAy+......... +mg t
i YN R VIEES YD 3 |
i=liz4 My =—%0,M5=—%0 i=1 )
ml=m2,m3=m4—1
2 4 d 0.....00 5 (i h .
st m;  —(mAy+mydy ... Ams A5t
€ —— A+ A )4 =— F a2 Fs 5 )
D=5+ Ay > F, >4 o
i=1 1) =—00- - + 1115 =—00 i=1
my=my , m3=ny
and
5 d 0.....00 5 (2 ., o
—_ —-— m; —(mA +myty+......... +ms t
Z(dt+/1i)ul_ > le‘mmSZai e ) (11)
i=1 1y =—00- 15 =—0 i=1

where u' avoid the terms for m, =m, £ 1, my=m, £ 1, m, = m,, my; = m,.

Solving (6) to (11), we obtain 4,, 4,...., 45 and u.

We shall be able to transform (3) to the exact formal KBM '* solution by relieving a, = Ee"", a, = Eef"", a, = ée“"Z
and a, = ge""”z . Herein a, b are amplitudes and ¢,, @, are phase variables. 2 2 2

3. Example
As an example of the above procedure, we are going to consider the Duffing type equation of fifth order
d’x & d'x 3
—+ ) ¢;——+Csx=—¢€X",
dt5 12:1: i dr (12)

here f(x, t) =x". 5

We have 1 = (Zaie’i"'){
or i1
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FO =gl M £3alae PR 4 3q,a5e” MR 4 gl Rt
+ 3a12a3e7(2/11+’13)t + 3a12a4e_(2ﬂ‘+’14)’ + 3a12a567(2ﬂ1”15)t
+ 6611‘126136_(/11Mﬁ%ﬁ)t + 6a1aza4€7(ﬁl+%+l“)t + 66116126156_(’11”2*'/15 )t

+ 3a22a3e7(2’12”3)t + 3a§a4e_(212+’14)[ + 3a§a5e7(2’17”5)t

+3aa; 2oy 3y a’e TR L 3 gle A
13)
+ 6a1a3a4ei(ll+ﬂs+l4)t + 661141341537(/11+23M§)t + 661161461567(}”'“14”5)[
+3a2asze_(’12+2’13)t + 3a2a42e_(12+“4)’ + 3a2a52€—(ﬂz+2/15)t
+6ayasae” 2 4 6aya,a5e” ) 1 6ayazase )
+a33€ +3a a,e —(2 A+t +3aya o Uat220)t 26_3,141
+3atase” P 4 6aza,ase” BTSN L 302 gen (Pt
+3a3a52e7(23+215)t +3agale BB L 30307
Thus the equations (6) to (11) takes the form
MY (= - (2i+ip )t A+t
IZZZ(t A+ )4 ==3afae —6a,aza,e 4 14
1
ot - 2~ (4+24)t (N + A+ 24t
e Z (——-A4 + )4, =-3aa5e —6a,a;a,e W)t as)
i=1,i#2
2 d 2 205+, A
e D (=X A4y =343 age” PP 6 a,aze MR
i=lies At (16)
5y ,
e M Z (—— Ay + A)A, = 3azaie” B _6gia,a,e” R 17
i=l,i#4
& d
e—ﬂszz(z — As + A)As = —6a1a2ase_(’11”2”5)’ _ 6a3a4a5e‘(’13+’14+’15)’. (s)

i=l1

and
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5. 4 ., —(24+45)t
Yot A =—aie ™ + a3 4 3atane Y s 3aage A 4 3afase
i=1

. —(2A+45)t
+ 3a22a3e_(2/12+13)t + Elc122a4e7(2’1fr Dy 30225153

~(W+22s)t
+3a16132€_u"+223)t + 3&1161426_(1] +22)1 + 361161526
+ 6a1a3ase_(ﬂ‘+ﬂ‘“+15)’ " 6a1a4a5e_(’1‘+’14+’15)’
(19)
(A +225)1

+3a2a2e_%+213)[ + 3a2a26_%+u“)t + 3a2a526
3 4
+6a,a,ase” ) 4 6ayaza5e” RSN

+ age_%t + aieiM“t + 3a32ase_(u3+’15)’ + 3a2ase_(u4+’15)’

=3t
+ 3a3a526_(’1“+2/15)t + 3a4a52e_(’14+2’15)t + 3a§'e )

Again solving the equations (14) to (18) and inserting 4, =k, — w, 4, =k, + @, 1, =k, —iw,, 1, =k, +iw, and 15 = ¢,
we obtain

4= 3“12 aze_Zklt
-
2k — )Gk —ky — ) + @3)} {3k — &) — oy}
B 6a1a3a4672k2’
2ky — )k +hy — ) + @3}k + 2k, — &) — @}
_ 3a1a§e_2k"
20k + @) {3k —ky + @) + @3)} {3k — ) + o}
B 6a2a3a4e_2k2t
2ky + @) {(ky +hy + @) + @3)} {(ky + 2k, — &) + oy}
4= 3a32a4e_2k2t

_2(k2 — 10y ){(3ky —ky) + (@ —i,)}{Bky —ky) — (@0 +i@y)} {(Bky = &) — i, }

3 6a1a2a3efzklt
2(ky —iw)){(ky + ky) + (o =iy} (kg + hy) = (0 + i)} {(2ky + Ky — &) — i, }
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)
3ayaze ot

_2(k2 +10,)){(3ky —ky) + (o +i0,))}{Bky —ky) — (@ —i0,)}{Bk, = &) +iw, }

A4_

2kt
6a,a,a,e

- 2(ky +i)){(ky + ky) + (o + i)} {(ky + ky) — (0 — i)} {(2ky + ey = &) +iw, }

2kt 2kt
6a,a,ase 6asa,ase

{( +E — oDk —hy + 6+ @2} Ay + &) + 0D {2y~ +E) + 02}

A=

Here u, is a small perturbed term and has also very minor contribution to the solution but it is laborious to solve (19)
for u,. So we neglect the scheming of u,. Now inserting 4; ; j = 1, 2,..., 5 in the equations (4) and using

1 1 1, 1, .
alzgaegﬁ‘, azzgae ¢',a3=5be¢2,a4=5be % and a5 =c we obtain

a=s(la’e™M + Lab*e ™), b=g(mb e ™" + mya*be M),

¢51 — g(n]aze—Zklt +n2b26—2k2t)’ ¢£2 — g(q]bze*2kzt +q2a2e*2kll),
and

2kt

¢= g(plazce 2kt ),

+ p,b*ce (20)

where

(ky + @)k = &+ ) (Bk, — k)’ + & + @3 + 2043k, —ky))
o3 +(ky = ky) 3k = £ — Bk —ky)* + @ + @7 —20,(3k; —ky)) ’
16 | (kf — o) {3k — &) —af } {3k — k) +(@f +@3)" = (0 +@3)(3k — k)

(ky — o)k +2ky = E— ) {(ky + k) + o + @3 =20, (ky +ky)}
3 +(ky + o)k + 2k, = E— )ik + k)" + of + 0] +20,(k +k,)}

l - 5

PA| (- o)k + 2k -6 — 0t (K + k) +(0F + @) — 20l + 02k + kD))
(ky + @)k, = &+ @) {3k —ky)* + o + @3 +200,(3ky — k)}

n = 3 ~(k — )3k =& — ) {Bky —ky)* + @ + @3 =20, (3ky —ky)

16 | (K — PGBk — &) — a7} Bk —h)t + (@ + @) —2(0f + 023k — )} |
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—(ky — )k +2ky — & — )k +k2)2 +0)12 "‘0)22 =20, (k +ky)
— o)k +2ky = &) = } {(ky + k) + (@ +@3) = 2(@f + @3 )ky +hy)* Y|

(ky + o))k +2ky = &+ o) (K +k2)2 +0)12 +a’zz + 2, (k +ky)}
=S
8|2

(4kyoy + ko, — k2a)1)(9k12 =3kiky =3k +kyE + a’12 — W)
— o)) {3k — k)" = (0 +0,)’ 1Bk — k) — (0, — 0,)*} {3k - &) — ]}

(3k12 —kiky + 0)12 + @0, )6k — kyo =3k, — & + 0, &) +
m P _g
G

(2kyw, — kyw, + kjw)){(ky + ky ) (ky + 2k, = &) + (012 + W, }
— o))+, = (0 =0} {(k + k) = (0 + )} {(ky + 2k, - ) — ' }

(kkey + 13 + 0F — 0,0,) 2k, + 3y, + k@, + 2y 0, — /& — 0,E) —
e =
G

(4hy, = ki@, + k@) (9K3 =3kiky —3ky& + ki + ) — )
—03)){Bky — k) — (@ —0,)"} {Bky — k) — (0 + @) H(Bky — &) — a3} |

(3k22 —kiky + ‘022 + @0, )(6ky 0, — k0, =3k 0, + 0§ — 0,8) —
_ 3

(k12 +kiky + ‘022 +00,) 2ky0, + 3k 0, =2k o, — ko, + 0, - 0,8)
3 ~(k o + 2k @5 + ky0,) {(ky + ey )2k + ky =€) + 03 — 0y,

TR oD k) (@ — ) (k) — (@ + @)} (k4 Ky & — 2} |
p Z_E !
L 2+ &) — o))k —ky + & + 02}
and
3 1
Py =

2k + ) + ) H 2k~ + EY + a2}

Equations (20) are nonlinear and have no exact solutions. We can solve (20) taking a, b, ¢, ¢, and ¢, are constants in

the right-hand sides as ¢ is very minor, d, b, ¢, ¢, and @, are petite varying functions of time. This conjecture was charity
by Murty et al. " to solve the similar nonlinear equations. The solution is thus
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ke  kyt
3(1-e )+12a0b02(1 e )

2k, 2k, )

a(t) =ay +&(la

1_6*2/(2[) (1_6*21{1[)
b(t)=b +8mb3(—+ma2b —_—),
(1) = by + &(m;b, 2k, 24y Dy 2k, )
2kt eyt
2(1-e) 2(1-e™)
t)= +e(may” ———+n,by" ———2),
o (1) D0 (may 2k, 200 2k, )
l_e—2k2t) (l_e—Zklt)
N=@y0+¢& bZ(—+ a,’ ~—),
@, (1) =@, o + &(q1by 2k, 9> 2k, )
and
2kt 2yt
2 (I=e™) 2 (I-e™)
c(t)=cy +e(pyay co——+ p,by"cg ——). 21
() =cy+e(pag ey 2% P20y € 2% ) 21)
Finally, we obtain the solution in the form
x(t) = acosh(ewyt + @) + beos(ayt + ¢, ) +ce . (22)

Here (22) is the first order approximate solution of eq. (12), where a, b, ¢, ¢, and ¢, are given by (21).

4. Result and discussion

In order to check the accuracy of an analytical approximate solution obtained based on KBM method, we have
compared our obtained results (by perturbation) to those obtained by the fourth order Runge-Kutta method for different
sets of initial conditions. Besides, we have also computed the Pearson correlation between the perturbation results and
the corresponding numerical results and shown that they are strongly correlated. From the figures we observed that our
perturbation solution agrees with numerical results suitably for different initial conditions.

At first, for k, = 1/3, k,=0.25, w, =0.15, w, = \/g, ¢=0.5and ¢=0.1, x(¢, &) has been computed (22), in which a, b, c,
¢, and @, by the equation (21) with initial conditions

ay =0.25, by = 0.25, ¢, = 0.25, ¢y =% and ¢, =%

d*x(0)
dr?

dx(0) _

1.e, x(0)=0.751566, = —0.550235, =-0.82637

3 4
ddxgo)=2.101o99 and %=3.655849.
X t

In this section, the perturbation results obtained by the solution (22) and the corresponding numerical results obtained
by a fourth order Runge-Kutta method with a small time increment 0.5, are plotted (Figure 1). The correlation between the
results is 0.999037.

Cont iporary Math tics 250 | Harun Or ROShid, etal.




0.8
0.7
0.6
0.5

. 04
0.3 N
02 \l

O AV

0 M —

0 10 20 30

t

Serise 1

,,,,,,,,,,,, Serise 2

Figure 1. Perturbation solution plotted by solid line and numerical solution plotted by dotted line

Finally, for k, = 1/3, k, = 0.25, o, = %, W, = %, &=0.5and e =0.1, x(¢, €) has been computed (22), in which a, b, ¢, ¢,
and ¢, by the equation (21) with initial conditions

ay=05,b,=0.5, ¢, =05, ¢ =% and ¢, =%

2
e x(0)=1503132, FO __ 203219, & xgo) =-1.556837,
dt dt
3 4
d x§0) — 4132355 and & xgo) =7.362476.
dt dt

In this section, the perturbation results obtained by the solution (22) and the corresponding numerical results obtained
by a fourth order Runge-Kutta method with a small time increment 0.5, are plotted (Figure 2). The correlation between the
results is 0.998661.

2
1.5
1
) N \ ——— Serise 1
) n
U\‘[\M 777777777777 e
0 P i" L f T L
-0.5

Figure 2. Perturbation solution plotted by solid line and numerical solution plotted dotted line

5. Conclusion

An asymptotic analytical approximate solution of a fifth order overdamped-oscillatory nonlinear differential systems
is presented via the theory of KBM * method in this article. The correlation coefficients are also calculated between
the derived solution of the presented method and the fourth order Runge-Kutta method of the considered problem. The
accuracy of the obtained result is compared with numerical results for different initial conditions and found excellent
coincidence in each condition. We also observed that the results are strongly correlated.
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