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Abstract: The objective of this research is to develop integer-valued generalized autoregressive conditional 
heteroscedasticity (INGARCH) models to represent the weekly incidence of cellulitis cases in relation to two exogenous 
variables: seasonality and the weekly average of either relative humidity or maximum temperature. The key to the 
proposed model is its capacity to explain overdispersion and lag dependence. For predictions and model parameters, 
we employ the Bayesian Markov Chain Monte Carlo (MCMC) approach, as supported by both a simulation study 
and an empirical study. To assess different models, we apply the deviance information criterion (DIC) criterion to the 
weekly cellulitis case sample data with two independent variables. In addition, we offer a one-week prediction to help 
Mahasarakham and Roi-Et Hospitals manage the increasing volume of hospital admissions by estimating the weekly 
cellulitis case incidence rate.
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1. Introduction
Bacterial infections of the subcutaneous fat layer and the lower layer of the dermis cause cellulitis. Patients present 

with fever, chills, and fatigue, along with a rash that is swollen, red, hot, unclear, and painful. The rash can spread wider, 
but not as quickly as with erysipelas. Possible complications include infections in the bloodstream, inflamed lymph 
nodes, glomerulonephritis, etc. In general, infection-related tissue disease occurs along the skin, even without any 
wounds. The causes of cellulitis come from two common types of bacteria: Streptococcus and Staphylococcus. Once 
infected, the skin will cause pain, heat, swelling, and redness, and then the area can spread quickly. 

Factors that increase the risk of developing cellulitis include age, congenital diseases, occupational history, gender, 
and exposure to various environments. Variations in temperature can also affect the likelihood of infectious illness 
transmission. The incidence of cellulitis increases during the summer and fall in Australia. Cellulitis is most common 
in outpatient and emergency departments. According to the 2006 report on the incidence of cellulitis in the United 
States, there were approximately 2,500 cellulitis cases per 100,000 people per year, especially in men and the elderly. 
The death rate from cellulitis disease worldwide is approximately 0.7-1.8%. The rate of hospital admissions for patients 
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with cellulitis in the United States also increased with increasing environmental temperatures as the average monthly 
temperature increased [1]. Even short periods of elevated weather may increase the incidence of cellulitis [2]. The 
highest incidence of cellulitis overall occurs in subtropical and temperate climates [3]. There is a seasonality to the 
incidence of cellulitis, and a significant part of this seasonality appears to be related to increased temperatures [1]. 

Studies on the rates of people admitted to hospital outpatient and inpatient departments have drawn interesting 
attention. Numerous research endeavors employ diverse statistical methodologies to examine the prevalence of 
cellulitis. For instance, descriptive research in the outpatient department of Sai Noi Hospital revealed that there are 9.1% 
more patients with skin infections than non-infectious skin illnesses, with cellulitis accounting for 2.564% [4]. Cellulitis 
has a high correlation with the average monthly temperature. The incidence of cellulitis grew by 3.47% with rising 
temperatures, peaking in July-September and declining in December-February, according to the linear regression model 
[3]. Furthermore, hospitalized instances of cellulitis associated with rising temperatures are more likely to increase if the 
average temperature exceeds 90 °F, according to logistic regression models [5].

In public health service regions 7-10 in northeastern Thailand, the number of patients in subcutaneous infection 
outbreaks increased noticeably between 2014 and 2018. The majority of people work in the agricultural sector, which 
carries a significant risk of infection. Those with wounds or underlying medical conditions are more susceptible to 
infection during the rainy season [6, 7]. The statistical data indicates that during the rainy season, particularly in June 
and September, there is a tendency for the number of cellulitis patients seeking treatment at Roi-Et and Mahasarakham 
Hospital to increase. Cellulitis-related hospitalization rates are rising in Roi-Et and Mahasarakham Hospital, which 
is consistent with each province’s elevated climatic factors. Therefore, we are interested in examining the cellulitis 
incidence in relation to two meteorological factors using time series analysis.

Numerous disciplines, including economics, epidemiology, and accident investigation, gather time series counts 
with copious amounts of data. Typically, they exhibit overdispersion and a non-normal distribution. We have run a 
number of statistical analyses on a chronologically sorted set of counts. Over the past ten years, modelers working with 
integer-valued GARCH (INGARCH) models have become interested in this overdispersion control technique. Ferland 
et al. [8] offers an INGARCH model with a Poisson distribution. Fokianos [9] provides an overview of significant 
advancements in the fields of counting and time series analysis. Zhu [10] gives either under- or over-dispersive 
count data with extended Poisson INGARCH models. To reduce overdispersion, Khamthong et al. [6] provides an 
INGRACHX model of the weekly incidences of necrotizing fasciitis.

Our goal in this work is to develop an INGARCH model that will account for the weekly incidence of cellulitis 
cases in relation to two exogenous variables: seasonality and relative humidity or temperature. With a modified Poisson 
distribution, the suggested model will be more adaptable for identifying data with a lower mean than variance. The first 
approach is more adaptable in terms of accounting for time-series counts. Furthermore, we offer a one-week head start, 
which facilitates prompt treatment planning to prevent death and significantly lower the prevalence of disability. We 
perform one-week prediction and parameter estimation for the suggested models using Bayesian approaches. Numerous 
studies have employed Bayesian techniques to effectively estimate parameters for time series of counts; they include 
Chen and Lee [11, 12], Chen et al. [13], Khamthong et al. [6]. 

The organization of this study runs as follows: Using a modified Poisson distribution, Section 2 implements the 
INGARCHX model in terms of two exogenous variables. For assessing the suggested model parameters, Section 
3 presents the MCMC method and Bayesian inference techniques, as well as provides predictions, diagnostic tests, 
and model comparisons. Section 4 provides simulation studies to assess the suggested models. Section 5 presents an 
empirical study of weekly cellulitis cases from four datasets, with analytical findings derived from the models used. 
Section 6 contains concluding remarks.

2. INGARCHX models with two exogenous variables
Assume Y is a random variable with two parameters, φ  and θ, specified over an integral value that is not negative. 

From Consul and Jain [14], we can define a generalized Poisson (GP) distribution as follows:
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where m (≥ 4) is the biggest positive integer, θ + φm > 0 for φ  < 0, and max(−1, −θ/m) ≤ φ  < 1 are the other variables. 
For the GP distribution, the variance and mean are:
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When φ  = 0, that is, E(Y ) = Var(Y ) = θ, the GP distribution transforms into the conventional Poisson distribution 
with mean θ. We consider that {Yt} denotes the time series of the weekly incidence of cellulitis cases and {Xi, t}, i = 
1, 2 denotes two exogenous variables, where X1, t represents the weekly average of the highest temperature or relative 
humidity, and X2, t is the season period. We set the rainfall season to run from May to September, and alternate seasons 
are selected using the following dummy variables:

2,

1, {May, June, July, August, September} mod (12)
0, otherwise.t

t
X

≡
= 


 

Let us assume that the distribution of Yt |Ft −1, Xt is a GP distribution with two parameters, (θ, φ ). Thus, the 
generalized Poisson distributive INGARCH model (GP-INGARCHX) is as follows:

1| , ~ GP( , ),  (1 ) ,t t t t t tY θ φ θ φ θ∗ ∗
− = − X
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The following are the usual conditions for the covariance, stationarity, and mean parameters:

0 1 1 1 10, , 0, 1, 0, 1, 2.i iα α β α β γ> ≥ + < ≥ =

Likewise, the GP-INGARCHX model becomes a Poisson-distributive INGARCHX (P-INGARCHX) model when 
φ  = 0, as follows:

1| , ~ Poi( ),t t t tY θ− X
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3. Bayesian inference
We apply the Bayesian method outlined below to obtain the model parameters for the INGARCHX models. 

Consequentially, the conditional probability function in Eq. (1) is as follows:

(1)

(2)

(3)
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where θ1 represents the output intensity and ϑ = (α, φ , θ1)' is the vector of all unknown parameters, with α = (α0, α1, 
β1, γ1, γ2)'. We assume that the parameter φ  has a uniform priority, where an indicator I(A) is the set of φ  satisfying the 
condition 0 ≤ φ  < 1. To give the necessary bounds on α, we use a uniform prior on the parameters α, which limits a 
constraint in Eq. (2)

( ) ( ),p I B∝α

where B satisfies Eq. (2)’s requirements. We observe that φ  and θ1 have priors that, respectively, follow beta and gamma 
distributions. In other words, φ  ~ Beta(b1, b2) and θ1 ~ Gamma(a1, a2), with the scale parameters being a2 and b2 and the 
shape parameters being a1 and b1.

For every group, the conditional posterior density is equal to the probability function times the prior density of that 
group, as follows:

( | , , ) ( | , ) ( | ),i ip p p≠ ≠∝Y X Y Xϑ ϑ ϑ ϑ ϑ

with ϑi standing for each parameter group, p(ϑi) for its prior density, and ϑ≠ i for the vector containing all model 
parameters, excluding ϑi. We use the following parameter groups to draw inferences: (i) φ ; (ii) θ 1; (iii) α, and assume 
that the parameter groups are priority independent.

Specifically, for the models provided in Eqs. (1) and (3), the conditional posterior distributions of φ , θ 1 and α are as 
follows:

(i) The conditional posterior distribution for φ  is:

1( | , , , ) ( | , ) ( ).p p pφ θ φ∝Y X Y Xα ϑ

(ii) The conditional posterior distribution for θ 1 is:

1 1( | , , , ) ( | , ) ( ).p p pθ φ θ∝Y X Y Xα ϑ

(iii) The conditional posterior distribution for α is:

1( | , , , ) ( | , ) ( ).p p pφ θ ∝Y X Y Xα ϑ α

Note: Eqs. (1) and (3) use the identical MCMC process for the INGARCHX model, with the exception of 
generating the φ  in Eq. (3).

3.1 Predicting

We therefore utilize the present observation Yt for one week ahead of the estimation for the purpose of anticipating 
{Yt + j,  j ≥ 1} by augmenting each MCMC sample iteration by one step. Upon exceeding the upper bound of the posterior 
predictive distribution of the 95% credible interval, Yt + 1 yields the following prediction density for the model estimate 
for the next week:

1 1( | , ) ( | , , ) ( | , )t tp Y p Y p d+ += ∫Y X Y X Y Xϑ ϑ ϑ
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where the provided distribution is followed by the conditional predictive distribution p(Yt +1|Y, X, ϑ [i ]), and N and M 
denote the sample sizes of total iterations and the burn-in, respectively.

3.2 Diagnostic test and choosing model

Following the fitting of several promising models, we consider the diagnostic and model selection. The deviance 
information criterion (DIC) combines complexity and goodness of fit metrics, both of which rely on deviance, to assess 
the relative fit of many competing models. Spiegelhalter et al. [15] defines the DIC as follows:

DIC ,DD p= +

where pD = D̄ − D(ϑ̃), ϑ̃  is the posterior mean of ϑ, and  D̄ + pD = Eϑ |Y [D(ϑ)]. The MCMC procedure produces the DIC 
value as a byproduct. The smallest value DIC is the favorite among all competing models. We employ two of them to 
choose the best model among all the competing models.

We use the standardized residuals [16] to assess the fit of the proposed INGARCHX models in Eqs. (1) and (3):
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For υt and υt
2, the mean and variance of these residuals with insignificant sequential correlation should be about 0 

and 1, respectively. The model makes the assumption that the given model is reliable.

4. Study by simulation
We currently perform simulation studies of Bayesian estimation to assess the MCMC procedure’s effectiveness. 

With a sample size of 500, we simulate the following two particular models:

 1 1: | , ~ GP( , ), (1 ) ,t t t t t tY θ φ θ φ θ∗ ∗
− = − F X

1 1 1, 2, 1 0.4 0.2 0.2 0.3t t t t tY X Xθ θ− −= + + + +

 2 1: | , ~ Poi( ),t t t tY X θ− 

1 1 1, 2, 1 0.2 0.2 0.2 0.3t t t t tY X Xθ θ− −= + + + +

For both models M1 and M2, we randomly select the variable X1, t as an integer given a normal distribution N(4, 
1). Let X1, t represent the relative humidity or maximum temperature on a weekly average. We are now setting a dummy 
variable X2, t, which is defined as follows:

2, 

1, {5, 6, 7, 8, 9} mod (12)
0, otherwise.t

t
X

≡
= 


We establish the following hyperparameters for the sensitivity analysis: the prior φ  ~ Beta(20, 80), the prior θ1, and 
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θ1 ~ Gamma(5, 1). For models M1 and M2, we provide the following initial values: α = (0.2, 0.1, 0.1, 0.1, 0.1)'. Lastly, 
we choose the sample sizes for the burn-in and the whole iteration: M = 8,000 and N = 30,000, respectively. We simulate 
500 replications and only save the fifth iteration of the sample period in order to make a choice about the proposed 
models.

Table 1. Simulation results obtained from 500 replications of models M1 and M2

Model M1 M2

Par. True Mean Std 2.5% 97.5% CP True Mean Std 2.5% 97.5% CP

α0 1.0 1.1244 0.4224 0.3440 1.9651 0.978 1.0 1.0324 0.3646 0.3481 1.7454 0.974

α1 0.4 0.3944 0.0434 0.3096 0.4795 0.980 0.2 0.1929 0.0437 0.1087 0.2798 0.952

β1 0.2 0.1812 0.0798 0.0393 0.3438 0.990 0.2 0.1868 0.1060 0.0219 0.4161 0.988

γ1 0.2 0.2015 0.0849 0.0493 0.3742 0.988 0.2 0.2069 0.0687 0.0773 0.3444 0.958

γ2 0.3 0.3386 0.1615 0.0628 0.6814 0.976 0.3 0.3253 0.1316 0.0896 0.5993 0.962

φ 0.1 0.1016 0.0179 0.0685 0.1385 1.000

Table 1 shows true values and simulation results. For models M1 and M2, these are the average posterior mean, 
standard error, and 95% Bayesian credibly intervals over 500 replications. The true values’ coverage probabilities 
(CP) are the percentages of 95% posterior intervals produced by MCMC iterations. There is at least a 95% confidence 
level between the true values and the values covered by the posterior means of both models. The simulation results 
demonstrate the validity of the posteriors calculated using the suggested sampling strategy. Each of the 500 replications 
of the MCMC algorithm accurately discovers φ .

5. Analytical findings
In order to examine the INGARCHX models, we take into account the weekly time-series incidence of cellulitis 

cases from January 1, 2014, to December 31, 2020 (366 weeks in total) at Roi-Et Hospital and Mahasarakham Hospital. 
We consider two types of cellulitis patient records: outpatients (OPD) for Roi-Et Hospital, which stands for DS1, and 
inpatients (IPD) for Mahasarakham Hospital, which stands for DS2. Consider the time series plot of weekly counts 
and barcharts for datasets DS1 and DS2 in Table 2, as shown in Figures 1 and 2. Table 2 shows summary statistics for 
weekly cellulitis cases for two datasets, DS1 and DS2. It is evident that the variance of the DS1 and DS2 datasets is 
greater than their mean. As a result, DS1 and DS2 show signs of overdispersion.

Table 2. Weekly cellulitis case summary statistics

Dataset Hospital Type Mean Var Min Q1 Median Q3 Max

DS1 Roi-Et OPD 5.82 12.55 0 3 5 8 20

DS2 Mahasarakham IPD 14.79 44.28 1 10 14 18.75 40
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Figure 1. Time series: weekly cellulitis cases (top panel) and Barchart (bottom panel) for DS1
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Figure 2. Time series: weekly cellulitis cases (top panel) and Barchart (bottom panel) for DS2

Figure 3. DS1: average maximum temperature and average relative humidity (top and bottom panels, respectively)
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Figure 4. DS2: average maximum temperature and average relative humidity (top and bottom panels, respectively)

For two independent variables, we consider the meteorological data in Roi-Et and Maha Sarakham provinces 
obtained from the Meteorological Office. These are relative humidity, maximum temperatures, and seasonality. We 
now take relative humidity and maximum temperature as weekly averages, as shown in Table 3. Table 3 presents 
summary statistics for the weekly average maximum temperature and the weekly average relative humidity. These two 
independent variables can plot time series as shown in Figures 3-4.

Table 3. Weekly meteorological variable summary statistics

Province Dataset Mean Median Min Max

Roi Et
Average relative humidity (%) 72.10 71.10 44.57 91.57

Average maximum temperature (°C ) 27.85 28.25 19.71 35.14

Maha Sarakham
Average relative humidity (%) 72.56 72.43 47.86 90.57

Average maximum temperature (°C ) 27.98 28.43 19.49 35.37
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Dummy variables are in the seasonal data set for both the rainy (May-September) and other seasons. This is the 
seasonal variable, X2,  t. We set X2,  t to be a dummy variable with a value of 1 and 0 for the rainy season and otherwise, 
respectively, as follows:

2, 

1, {5, 6, 7, 8, 9} mod (12)
0, Otherwise.

 tX
≡

= 


In practice, we divided the cellulitis cases in Rot-Et Hospital and Mahasarakham Hospital into four datasets: DS1-
1, DS1-2, DS2-1, and DS2-2, as given in Table 4.

Table 4. Classification for four weekly datasets

Hospital Dataset Classification

Roi-Et
DS1-1 The weekly cellulitis cases include the weekly mean relative humidity and seasonality.

DS1-2 The weekly cellulitis cases include the weekly maximum mean temperature and seasonality.

Mahasarakham
DS2-1 The weekly cellulitis cases include the weekly mean relative humidity and seasonality.

DS2-2 The weekly cellulitis cases include the weekly maximum mean temperature and seasonality.

These two weekly independent variables, X1 and X2, are not multicollinear, which indicates that all two variables 
can help describe weekly cellulitis cases, as shown in Tables 5 and 6. Therefore, to model cellulitis cases in Rot-Et and 
Mahasarakham Hospital, we can simultaneously use X1 and X2, and we can also see that each dataset of two variables 
correlates independently. For convenience in evaluating the model parameters in equations (1) and (3), we transform 
either the weekly average relative humidity variable or the weekly average maximum temperature variable, X1, t, to be:

1, 1, 
1, (1)

min( )
, 1, , t t

t
XX

X X
X t n

S
∗ −
= = …

where S (1)
XX is used in place of the standard deviation of X1, t.

Table 5. Correlation matrices of variables for DS1-1 and DS2-1

Province Roi-Et Maha Sarakham

Variable Y X1 X2 Y X1 X2

Y 1 0.40 0.14 1 0.34 0.20

X1 0.40 1 0.44 0.34 1 0.43

X2 0.14 0.44 1 0.20 0.43 1

Y: DS1-1 (DS2-1); X1: average relative humidity; X2: seasonal
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Table 6. Correlation matrices of variables for DS1-2 and DS2-2

Province Roi-Et Maha Sarakham

Variable Y X1 X2 Y X1 X2

Y 1 0.21 0.15 1 0.06 0.20

X1 0.21 1 -0.11 0.06 1 -0.11

X2 0.15 -0.11 1 0.20 -0.11 1

Y: DS1-2 (DS2-2); X1: average relative humidity; X2: seasonal

Table 7. Bayesian parameter estimations INGARCHX models for DS1-1

Model GP-INGARCHX P-INGARCHX

Par. Mean Median Std 2.5% 97.5% Mean Median Std 2.5% 97.5%

α0 0.6457 0.6369 0.3574 0.0411 1.3776 0.7016 0.6913 0.3594 0.0733 1.3966

α1 0.2310 0.2298 0.0412 0.1528 0.3157 0.2631 0.2625 0.0399 0.1860 0.3392

β1 0.3930 0.3970 0.0883 0.2050 0.5558 0.4281 0.4328 0.0727 0.2771 0.5595

γ1 0.0754 0.0685 0.0496 0.0037 0.1817 0.0812 0.0763 0.0530 0.0046 0.1915

γ2 0.9689 0.9529 0.2384 0.5330 1.4598 1.1474 1.1330 0.2326 0.7374 1.6412

φ 0.1625 0.1618 0.0243 0.1148 0.2122

DIC -3,534.3025 -3,522.1964

Table 8. Bayesian parameter estimations INGARCHX models for DS1-2

Model GP-INGARCHX P-INGARCHX

Par. Mean Median Std 2.5% 97.5% Mean Median Std 2.5% 97.5%

α0 0.6153 0.6037 0.3367 0.0554 1.3018 0.7113 0.7213 0.3739 0.0533 1.4432

α1 0.2305 0.2295 0.0423 0.1514 0.3173 0.2647 0.2641 0.0422 0.1825 0.3473

β1 0.4183 0.4213 0.0829 0.2536 0.5677 0.4448 0.4490 0.0704 0.3015 0.5743

γ1 0.0461 0.0436 0.0292 0.0023 0.1092 0.0481 0.0442 0.0319 0.0021 0.1140

γ2 0.9540 0.9389 0.2307 0.5372 1.4230 1.1405 1.1234 0.2314 0.7105 1.6293

φ 0.1634 0.1635 0.0244 0.1160 0.2124

DIC -3,534.4578 -3,520.8808
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Table 9. Bayesian parameter estimations INGARCHX models for DS2-1

Model GP-INGARCHX P-INGARCHX

Par. Mean Median Std 2.5% 97.5% Mean Median Std 2.5% 97.5%

α0 0.4510 0.4537 0.1208 0.2121 0.6852 0.6229 0.6234 0.1797 0.2706 0.9799

α1 0.2633 0.2636 0.0183 0.2283 0.2984 0.3037 0.3032 0.0220 0.2626 0.3487

β1 0.5976 0.5977 0.0247 0.5496 0.6455 0.6097 0.6101 0.0289 0.5513 0.6646

γ1 0.0414 0.0410 0.0163 0.0099 0.0743 0.0291 0.0288 0.0126 0.0060 0.0547

γ2 0.6658 0.6633 0.0867 0.4961 0.8444 0.8989 0.8980 0.0985 0.7068 1.0897

φ 0.1562 0.1562 0.0156 0.1256 0.1867

DIC -18,915.1266 -18,905.2867

Table 10. Bayesian parameter estimations INGARCHX models for DS2-2

Model GP-INGARCHX P-INGARCHX

Par. Mean Median Std 2.5% 97.5% Mean Median Std 2.5% 97.5%

α0 0.2473 0.2467 0.0960 0.0629 0.4382 0.3700 0.3708 0.1089 0.1549 0.5780

α1 0.2618 0.2618 0.0202 0.2222 0.3019 0.2921 0.2918 0.0218 0.2481 0.3350

β1 0.6077 0.6078 0.0278 0.5522 0.6620 0.6285 0.6289 0.0258 0.5771 0.6784

γ1 0.0451 0.0453 0.0123 0.0213 0.0690 0.0377 0.0373 0.0152 0.0090 0.0679

γ2 0.7111 0.7109 0.1173 0.4849 0.9490 0.9555 0.9578 0.1203 0.7155 1.1894

φ 0.1570 0.1567 0.0161 0.1262 0.1886

DIC -18,913.0231 -18,908.2205

Tables 7-10 provide Bayesian estimates of INGARCHX models for datasets: DS1-1, DS1-2, DS2-1, and DS2-2. 
These Bayesian estimates consist of posterior means, medians, standard errors, and 95% credible intervals. All Bayesian 
parameter estimates for each dataset correspond to the offered models. 

To monitor the convergence of all parameters of the fitted GP-INGARCHX model, we present two plots: trace 
and ACF plots, as shown in Figures 5-6. Overall, the evidence supports the convergence of the MCMC method. 
The outcomes are satisfying, and the convergence is clear for each dataset (DS1-1, DS1-2, DS2-1, and DS2-2), as 
demonstrated through ACF plots. The ACF plots reduce the autocorrelations on MCMC iterations.
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Figure 5. Trace and ACF plots of the MCMC estimates DS1-1 and DS1-2 in the GP-INGARCHX model
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Figure 6. Trace and ACF plots of the MCMC estimates DS2-1 and DS2-2 in the GP-INGARCHX model
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We take into consideration two models proposed in equations (1) and (3) for model comparison. According to the 
last row in Tables 7-10, the model that fits the data the best among the two competing models for DS1-1, DS1-2, DS2-1, 
and DS2-2 is the one with the lowest DIC values. All four datasets favor the model GP-INGARCHX.

Figure 7. The study employed four datasets to perform diagnostic tests using standardized residuals on the selected models. These datasets included 
time series (1a-4a), histograms (1b-4b), and ACF plots (1c-4c) for DS1-1, DS1-2, DS2-1, and DS2-2, respectively

We use the standardized residuals in the target model’s posterior estimations to test the diagnostic model’s 
appropriateness using the Ljung-Box statistic. To assess the standardized residuals from Lags 1 to 20, use the Ljung-
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Box statistics. The residuals indicate that, as Table 11 shows, the squared series is unable to reject the fitted model at the 
0.05 significant level. Figure 7 displays the autocorrelation plots (1a)-(4a) for the standard residual time series, (1b)-(4b) 
for the standard residual histogram, and (1c)-(4c) for every best model. The residuals exhibit near-zero dispersion.

To predict the incidence one week ahead for all datasets, we use the best-fitted model. In Figures 8-9, the blue 
line shows the upper bound of the 95% credible interval for the prediction of all datasets, and the vertical solid lines 
represent Yt +1. The red triangles represent the observed counts that are greater than the upper bound of prediction for all 
DS1-1, DS1-2, DS2-1, and DS2-2, which reflect the forecasting. We can observe that the red triangles specify at most 
2 weeks of differences for DS1 and DS2. That is, the rate of exceeding the upper bound probability of 95% of datasets, 
DS1-1 (DS2-1) and DS1-2 (DS2-2), is almost equal.

Figure 8. Utilizing the GP-INGARCHX model, DS1-1 and DS1-2 forecast one week in advance. The red triangles on DS1-1 and DS1-2 show that the 
observed numbers are higher than the upper bound of the 95% Bayesian credible intervals, which is in line with the prediction. The blue line shows 
the predictions for datasets DS1-1 and DS1-2. The solid line refers to Yt+1
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Table 11. Ljung-Box Q statistics of the standarized residuals based on the best-fitting models

Dataset DS1-1 DS1-2 DS2-1 DS2-2

Lag Q p-value Q p-value Q p-value Q p-value

1 0.738 0.390 0.625 0.429 0.110 0.739 0.043 0.836

4 1.728 0.786 1.554 0.817 1.066 0.900 1.036 0.904

8 3.849 0.871 3.793 0.875 4.861 0.772 3.620 0.900

12 14.058 0.297 14.137 0.292 6.760 0.873 5.436 0.942

16 17.036 0.383 16.911 0.391 10.875 0.817 8.912 0.917

20 20.351 0.436 20.676 0.416 17.015 0.652 15.144 0.768

Figure 9. Utilizing the GP-INGARCHX model, DS2-1 and DS2-2 forecast one week in advance. The red triangles on DS2-1 and DS2-2 show that the 
observed numbers are higher than the upper bound of the 95% Bayesian credible intervals, which is in line with the prediction. The blue line shows 
the predictions for datasets DS2-1 and DS2-2. The solid line refers to Yt +1
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Our findings indicate that the incidence of weekly cellulitis patients in the outpatient department of Roi-Et Hospital 
and in the inpatient department of Mahasarakham Hospital related to weather variables tends to increase significantly. 
The rate of exceedance probability of the upper bound of prediction is 10.45% and 11.05% for DS1-1 and DS1-2, and 
9.86% and 10.14% for DS2-1 and DS2-2. The majority is between May and September (rainy season), representing 
at least 5.97% and 5.48% for Roi-Et and Mahasarakham Hospital, respectively. This reseacrh points out that the 
predictions of the incidence of weekly cellulitis cases via the GP-INGARCHX model are significantly close. Hence, 
climate conditions such as relative humidity, temperature, and season have a significant effect on the increased incidence 
of cellulitis disease, which is consistent with patient data coming to receive services at both Roi-Et and Mahasarakham 
Hospitals.

6. Conclusion
This study proposes an INGARCH model for weekly cellulitis associated with climale variables such as seasonality, 

the weekly average maximum temperature, and relative humidity. The proposed model manages overdispersion and 
lagging dependencies, which is a crucial aspect. For modeling, inference, and prediction, we use Bayesian Markov 
Chain Monte Carlo (MCMC) approaches. The simulation results generated with the proposed MCMC approach provide 
accurate estimates and conclusions for each model parameter in the INGARCHX models. Furthermore, we compare 
our results with those of the two competing models using anticipated higher thresholds and model credibility intervals. 
Using a generalized Poisson, we are able to effectively use the INGARCHX model to describe the features of the 
weekly incidence of cellulitis and two meteorological variables across all datasets.

Our research reveals that two exogenous factorstemperature, relative humidity, and seasonhave a major impact on 
the high incidence of cellulitis. These findings align with the patient data from the Mahasarakham and Roi-Et hospitals. 
Predicting the probability that the counts would recur based on available data is one technique to help explain the 
features and evaluate the time series of the counts that needs more research. For count data, interest modeling takes into 
account time series data with various distributions (e.g., Poisson and a negative binomial) on a daily, weekly, monthly, 
and annual basis.

In order to characterize various statistical properties, the researcher can choose from a variety of INGARCHX 
modeling variations that use different distributions to account for the dataset under examination, whether it is linear 
or nonlinear. Furthermore, the number of variables in the model may rise or fall in accordance with the validity and 
usefulness of the count data.
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