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Abstract: Precisely forecasting rainfall precipitation is an intricate and crucial challenge faced by numerous weather
forecasters. In this study, we conducted an examination of different statistical models to assess their efficacy in predicting
monthly rainfall precipitation. The objective of this study was to develop a combined model that could enhance the
accuracy of such forecasts. To achieve this, we gathered monthly rainfall time series data spanning from January 1901
to December 2017 in Tamil Nadu, India. To enhance the accuracy of rainfall precipitation prediction, we employed a
parallel hybrid strategy, combining univariate forecast models. Our proposed forecasting model was compared with other
established models, including Seasonal Auto-Regressive Integrated Moving Average (SARIMA), Holt-Winters Additive
(HWA)model, Holt model, Exponential Smoothing (ETS) model, and Feed Forward Neural Network (FFNN) model. The
results indicate that our proposedmodel outperformed the other models, demonstrating its superior forecasting capabilities.
The proposed model yielded an RMSE value of 0.6403, MSE value of 0.4101, MAE value of 0.3998, NSE value of 0.5924,
sMAPE value of 0.7172, and an R-value of 0.7761. A paired t-test was conducted to compare the performance metrics of
the proposed model with those of the baseline models. The result shows that this model is statistically significant. Since,
It p-value less than 0.05. These findings lead us to the conclusion that the proposed model is well-suited for analyzing
and forecasting climatological factors and climatic extremes.
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Abbreviation
ACF Autocorrelation Function
AIC Akaike Information Criterion
ARIMA Autoregressive Integrated Moving Average
ETS Exponential Smoothing
FFNN Feed Forward Neural Network
MSE Mean Squared Error
MLP Multi-Layer Perceptron
PACF Partial Autocorrelation Function
RMSE Root Mean Square Error
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MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
R Correlation Coefficient
NSE Nash-Sutcliffe Efficiency
sMAPE Symmetric Mean Absolute Percentage Error
SARIMA Seasonal Autoregressive Integrated Moving Average
HWA Holt Winter’s Additive model
TN Tamil Nadu
HW Holt Winters
ANN Artificial Neural Network
OGD Open Government Data
SD Standard Deviation
CV Coefficient of Variance
ADF Augmented Dickey-Fuller Test
MA Moving Average
SMA Seasonal Moving Average
SAR Seasonal Autoregressive
WN White Noise
NNAR Neural Network Auto Regressive
CNN Convolutional Neural Networks
LSTM Long Short-Term Memory
IoT Internet of Things

1. Introduction
In this study, we delve into the critical realm of rainfall prediction, a pivotal area of research in environmental

science and hydrology. Rainfall plays a fundamental role in shaping ecosystems, influencing agricultural productivity,
and determining water resource management strategies [1]. Understanding and accurately predicting rainfall patterns are
therefore essential for effective planning and decision-making in various sectors.

Our research aims to contribute to this field by exploring and evaluating robust algorithms for rainfall prediction. By
harnessing advanced computational techniques and leveraging comprehensive datasets, we seek to enhance the accuracy
and reliability of rainfall forecasts. This endeavor is motivated by the imperative to address the challenges posed by climate
variability and change, which underscore the urgency of improving predictive capabilities in hydrological modeling [2, 3].

The impact of monsoon seasons, such as the summer monsoon affecting power generation and industrial sectors, as
well as the winter monsoon influencing agricultural production, further underscores the importance of accurate rainfall
predictions [4, 5]. Insufficient or excessive rainfall can significantly impact crop yields and people’s daily lives.

To address this, a time-series approach is employed to statistically and graphically analyze the data, select suitable
forecastingmodels, predict future values, and control specificmethodologies [6].Many researchers have utilized statistical
techniques to address hydrological issues [7, 8], highlighting the significance of statistical modeling in testing, predicting,
and decision-making based on hydrological data [9]. Univariate data, consisting of variable observations recorded at
distinct time intervals, has been utilized to develop various modeling and prediction approaches for hydrological data,
including rainfall precipitation [4, 5, 10].

Numerous studies have confirmed the appropriateness of statistical models for hydrologic time series modeling,
particularly in areas with meteorological time series data [2, 3, 11]. When selecting forecasting models for rainfall
prediction, factors such as efficiency, effort, cost, and ease of use of the model’s outputs are considered [3].

The Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model, introduced by Box et al. [6] is a
widely used univariate time series model for forecasting. It is known for its precision, flexibility, and ability to capture
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intricate time series patterns. The SARIMA model, denoted as ARIMA (p, d, q)(P, D, Q)12, incorporates autoregressive
and moving average components to identify patterns in quasi-time series [12–14]. In hydrological cycle forecasting using
univariate time series data, particularly for rainfall, the SARIMAmodel has proven effective in various regions worldwide
[3, 15]. Studies, such as Valipour [16, 17], have demonstrated the superior forecasting performance of SARIMA models
compared to ARIMA models for long-term runoff forecasts.

Another model that excels in climatological prediction is the Holt-Winters (HW) model. Holt [18] modified
exponentially weighted moving averages to incorporate trend and seasonal variation in the data. The Holt-Winters model
is commonly employed for forecasting seasonal data, and various variants of this model, including the Holt-Winters
Additive (HWA) model, have been utilized to analyze and forecast seasonal rainfall patterns [4].

Artificial Neural Networks (ANNs) are computational models modeled after the human brain, created to identify
patterns and generate predictions. For rainfall prediction, ANNs can effectively model complex relationships between
different meteorological variables and rainfall amounts [19]. They are especially advantageous for their capability to
manage non-linear data and detect intricate patterns. Consequently, researchers have frequently employed ANN models
for rainfall forecasting [20–22]. In this study, the Feed Forward Neural Network (FFNN)model is utilized for precipitation
prediction.

Additionally, the exponential smoothing model, a univariate time series model, is employed to analyze the level,
trend, and seasonal components of the data. The Holt model [18] is a modified version of weighted moving averages that
incorporates trend and seasonal variations.

Before conducting statistical analyses, it is crucial to validate the accuracy and quality of the time series data, making
any necessary corrections. This ensures robustness in subsequent modeling phases.

To further enhance forecasting accuracy and reduce vulnerability to weather changes and seasonal patterns, forecasts
from multiple accurate forecasting systems can be integrated. The concept of combined forecasts, introduced by Bates
and Granger [23], involves assigning weights to individual forecasting methods. Combined forecasts have been shown to
reduce errors by averaging distinct forecasts [24–26], making them valuable when uncertainty surrounds the choice of the
best forecasting technique. Various researchers, including Winkler and Makridakis [27], have contributed significantly
to combined forecasts of univariate time series models [28, 29]. Such an approach allows for increased accuracy with
minimal effort and time.

Despite recent advancements in rainfall forecasting, current models often exhibit insufficient accuracy and reliability,
particularly in regions with complex terrain and variable weather patterns. This study aims to develop a robust and
scalable time-series-based rainfall prediction model. By leveraging historical weather data, geographic features, and
atmospheric variables, the model seeks to enhance forecasting precision and provide timely predictions. Integrating
advanced algorithms and utilizing comprehensive datasets, this research addresses existing shortcomings to improve the
reliability of rainfall predictions. Ultimately, these enhancements aim to support informed decision-making and mitigate
risks associated with precipitation variability.

In this study, we propose a novel combined model, employing a parallel hybrid approach that combines the SARIMA
and HWA models for rainfall precipitation prediction in Tamil Nadu, India. By compensating for the shortcomings of
individual models, this framework enhances the forecasting model’s capabilities and optimizes the weights assigned to
each model to maximize forecast accuracy.

2. Materials and methodology
2.1 Materials

Tamil Nadu (TN) is a state situated in the southern region of India, spanning between 8°33’0” N-12°36’0” N latitude
and 73°20’0” E-80°0’0” E longitude. Figure 1 shows the study area and location of Tamil Nadu, India. Climatically, TN
falls within the semi-arid to dry semi-humid zone. The state experiences two distinct monsoon seasons: the Southwest
monsoon from June to September and the Northeast monsoon from October to December. The average annual rainfall in
TN is approximately 945 mm, with the Northeast monsoon contributing the most precipitation. Fluctuations in rainfall
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patterns significantly impact TN’s water budget, making accurate rainfall prediction essential for mitigating the risks of
drought and flooding.

Figure 1. Study area and location of Tamil Nadu, India

Monthly rainfall precipitation data for TN, India were obtained from the Open Government Data Platform India
(OGD) at https://data.gov.in/rainfall-india. The time series data spanning from January 1901 to December 2017 were
utilized for forecasting purposes. R software was employed for data analysis. The rainfall time series data were divided
into training and testing datasets. The training dataset consisted of 70% of the total data, encompassing the period from
January 1901 to December 1982, while the testing dataset comprised the remaining 30% from January 1983 to December
2017. Table 1 provides an overview of basic statistical measures, includingminimum, maximum,mean, standard deviation
(SD), and coefficient of variance (CV), for the observed dataset, training dataset, and testing dataset, respectively.
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Table 1. Statistical Analysis of Rainfall Data

Minimum Maximum Mean SD CV

Rainfall data 0.1 436.1 78.451 70.074 89.321
Training data 0.1 436.1 79.344 69.96 88.172
Testing data 0.1 379.8 73.98 73.13 98.849

Data analysis reveals the presence of a seasonal component in the time series, with October and November
consistently receiving the highest rainfall each year. Trend and seasonality are two key components of time-series datasets.
The dataset exhibits a trend value of 0.1, indicating a slight or weak trend, while the seasonal strength value is 0.6,
indicating a significant level of seasonality. Figure 2 illustrates the components of the dataset.

Figure 2. Decomposition of monthly rainfall time series data

2.2 Methodology
2.2.1Normalizing the data

Prior to implementing forecasting models, the data must undergo pre-processing to address anomalies, incomplete
data, or inaccuracies often encountered in data-driven modeling methodologies [30]. Data normalization is a crucial
process for scaling input features to a standard range, thereby enhancing the efficiency of forecasting model training. In
this study, we employed Min-Max normalization, a widely recognized technique for scaling data to a specified range,
typically [0, 1]. This method is particularly effective for handling rainfall data. By transforming the data to a [0, 1]
range, Min-Max normalization ensures that each data point contributes equally to the analysis, thereby improving the
performance of machine learning models and facilitating more efficient data management. To normalize the time series
data, the following formula is utilized:

Contemporary Mathematics 3656 | K Karthikeyan, et al.



Norm(X) =
(X −Min(X))

Max(X)−Min(X)
. (1)

Here, X is time-series data, Min(X) is the minimum of X , Max(X) is the maximum of X , and Norm(X) is normalized
X . The normalized precipitation time series data is then used for model computation and prediction, referred to as
precipitation time series data.

2.2.2SARIMA model

The SARIMA (Seasonal Auto-Regressive Integrated Moving Average) model is considered the most suitable
forecasting model for analyzing and predicting univariate time series data [12, 31]. This model effectively captures hidden
components within the data through correlation-based approaches. The process for predicting rainfall precipitation in
Tamil Nadu, India using the SARIMAmodel involves the following steps: stationarity check, identification, and selection.
Stationarity is a crucial criterion for developing a SARIMA model that exhibits consistent mean and autocorrelation
patterns over time. Stationary data enhances the model’s productivity [31]. The stationarity of the data is assessed using
the Augmented Dickey-Fuller (ADF) test, and the model order is determined by analyzing the ACF (Auto-Correlation
Function) and PACF (Partial Auto-Correlation Function) plots of the data.

The general SARIMA (p, d, q)(P, D, Q)s.

ϕ(B)ϕ(Bs)(1−B)d(1−Bs)DZt = θ(B)θ(Bs)εt (2)

ϕ(B) = 1−ϕ1B−ϕ2B2 −·· ·−ϕpBp (3)

(The p order for the AR term),

θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq (4)

(The q order for the MA term),

ϕ(Bs) = 1−ϕ1Bs −ϕ2B2s −·· ·−ϕPBPs (5)

(The P order for the seasonal AR term),

θ(Bs) = 1+θ1Bs +θ2B2s + · · ·+θQBQs (6)

(The Q order for the seasonal MA term).
Here, B represents the backward shift operator,Φ(B) denotes the autoregressive (AR) term of order p, θ(B) represents

the moving average (MA) term of order q, (1−B) represents the seasonal autoregressive (SAR) term of order P, and
(1−Bs) represents the seasonal moving average (SMA) term of order Q. The error term is denoted as εt ∼WN(0, σ2),
where WN represents white noise with a mean of 0 and variance of σ2. The quasi number, s, is the absolute value which
is always higher than one.
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Here µ is 0, if d or D is greater than 0.
After determining the model, the Akaike Information Criterion (AIC) was used to determine the most efficient model

ordering.
The AIC calculating formula is given below:

AIC(c) = n∗ ln(MSE)+2c.

Where n is the total sum of time series data needed for evaluation and c reflects the amount of variables taken into
account in models. Mean square error is abbreviated as MSE. The parameter estimation process is performed using
maximum likelihood approaches. In the final stage, the validity and predictive accuracy of the chosen model are assessed
using in-sample and out-of-sample forecasts. For model evaluation and point forecasting, we use package “forecast” in
R software.

2.2.3Holt Winter Additive (HWA) model

The Holt-Winters Additive (HWA) model, a weighted moving average approach, is utilized to assess the level, trend,
and seasonality of the data [32]. The equations for this model applied to a series Xt with period (m) are:

At = γ(Xt −Ct−m)+(1− γ)(At−1 +Bt−1) (7)

Bt = α(At −At−1)+(1−α)Bt−1 (8)

Ct = β (Xt −At)+(1−β )Ct−m (9)

Fn(h) = An +hBn +Cn+h−m (10)

Here At is the smoothing estimate of level, Bt is the smoothing estimate of trend, and Ct is the smoothing estimate
of seasonality at time t. γ , α , and β are smoothing parameters. These are used to differentiate the impact of new and
previous observation data. In Equation (10), An represents the level of the time series data at time n and Bn represents
the trend of the time series data at time n. hBn is the trend and Cn+h−m is the seasonal effect (i.e., for yearly data m = 12,
Cn+h−12 is the predicted seasonal in the given month of the last year). We use the forecast package in R software for model
evaluation and point forecasting.

2.2.4Feed Forward Neural Networks (FFNN)

Feed Forward Neural Networks (FFNN), a type of Artificial Neural Network (ANN) model, are highly effective in
capturing the nonlinear components often present in real-world time series data [33]. These models are inspired by the
connections between neurons in the human brain and employ artificial neurons connected in layers. The Neural Network
Auto Regressive (NNAR) model is a specific type of ANN model used for complex nonlinear prediction. NNAR models
are denoted as NNAR (p, k), where p represents the delayed input values and k signifies the number of hidden layers.
The seasonal variant of NNAR is denoted as NNAR (p, P, k). FFNNs utilize linear combination functions and activation
functions, with information flowing only in one direction without recurrent or backward connections. Each layer consists
of neurons, and there are no connections between neurons within the same layer [21]. Typically, NNAR models use a
single hidden layer in the neural network. This simplicity helps in reducing the risk of overfitting, making the model
easier to train and interpret. The ”neuralnet” function from the R package is employed to train the FFNN model, include
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automatic selection of lag and hidden layer size based on the data. This helps in optimizing the model parameters for
better forecasting performance.

The neural network model employed in this study consists of a single hidden layer with 64 neurons and uses the
ReLU activation function. This architecture was selected based on preliminary experiments that indicated it provides
a good balance between model complexity and computational efficiency. The model’s key hyperparameters include a
learning rate of 0.001, a batch size of 32, and 100 training epochs, optimized using the Adam algorithm.

2.2.5Proposed methodology

Bates and Granger [23] introduced an advanced combination method known as the parallel hybrid framework, which
involves creating a linear hybrid model by combining the forecast values of individual models. In this framework, the
output of the hybridmodel is a linear composite of the predictions from differentmodels, with appropriate weights assigned
to each model using various weight calculation methods. Some of these methods include simple averaging of forecast
values, reciprocal of Mean Squared Error (MSE), and reciprocal of forecast squared errors [24, 28]. In a recent study
by Najafabadipour et al. [29], time series models were combined using specific weights derived from the least squares
method.

As discussed earlier, existing univariate rainfall forecasting techniques have their limitations, which can raise
concerns about the performance of distribution networks when relying on these methods for rainfall projections. To
improve the accuracy of predicted rainfall, we propose a hybrid forecasting model applicable to Tamil Nadu, India.

The generalized structure of the parallel hybrid framework is given by:

fcombined, t = ϕ(w1 f̃1, t , w2 f̃2, t , . . . , wn f̃n, t), t = 1, 2, . . . , T (11)

where, ϕ is the combination function, wi f̃i, t (i = 1, 2, . . . , n) indicates the weighted forecasted value of each individual
model at time t, and n is the number of individual-based models [33]. After applying the original data to each individual
model, the final forecast is obtained by multiplying each predicted value by the calculated weights. In this study, different
statistical models are combined, and the optimal weights are derived based on the forecast errors of the individual models.
The weights are calculated using the variance-covariance matrix method [5].

In this study, we combine two statistical models: HWA and SARIMA. The combination of forecasting models is
based on the accuracy of each individual model. The parallel combination of the two statistical models is obtained using
Equation (13), where the sum of the weights is equal to one. This method, known as the error-based weighting method,
allows us to represent the forecasting error using Equation (17). The outputs of both prediction models are combined
using the following equation:

Yt =
2

∑
i=1

wi fi, t (t = 1, 2, . . . , n) (12)

= w1 · forecasted value of SARIMA+w2 · forecasted value of HWA (13)
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Ecombined, t = Xt −Yt (14)

= Xt −
2

∑
i=1

wi fi, t (15)

= Xt − (w1 f1, t +w2 f2, t) (16)

= w1(Xt − f1, t)+w2(Xt − f2, t) (17)

Where w1 and w2 are the weights for SARIMA forecast and HWA forecast respectively, which are calculated by the
variance-covariance method. fi, t is the ith model’s forecast value. The weights are calculated as follows [33]:

w1 =
var(e2)− cov(e1, e2)

var(e1)+var(e2)−2 · cov(e1, e2)
(18)

w2 =
var(e1)− cov(e1, e2)

var(e1)+var(e2)−2 · cov(e1, e2)
(19)

Here, e1 and e2 are error values of the first forecast model and second forecast model, respectively. To find out w1

and w2, we calculate var(e1), var(e2), and cov(e1, e2). Then using Equations (18) and (19), we obtain w1 and w2. var(e1)

and var(e2) are calculated by subtracting the average error value of the selected model set from each value in the set,
squaring each difference, and then dividing the sum of the squared values by the total number of values in the data set.
The covariance cov(e1, e2) considers the error value sets of both prediction models.

2.2.6Performance statistics for model evaluation

For model evaluation, several performance statistics are considered, including Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Mean Squared Error (MSE), symmetric Mean Absolute Percentage Error (sMAPE), Nash-
Sutcliffe Efficiency (NSE), and Correlation Coefficient (R).

RMSE=
1
n

√
n

∑
i=1

(Xi −Yi)2 (20)

MAE=
1
n

n

∑
i=1

|Xi −Yi| (21)

MSE=
1
n

n

∑
i=1

(Xi −Yi)
2 (22)

sMAPE=
1
n

n

∑
i=1

|Xi −Yi|
(|Xi|+ |Yi|)/2

×100 (23)
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NSE= 1− ∑n
i=1(Xi −Yi)

2

∑n
i=1(Xi − X̄)2 (24)

R =
∑n

i=1(Xi − X̄)(Yi − Ȳ )√
∑n

i=1(Xi − X̄)2
√

∑n
i=1(Yi − Ȳ )2

(25)

Here, Xi represents the observed data, Yi represents the forecasted values, and n denotes the set of observed data. A
low RMSE and MSE, as well as high R and NSE values, indicate better prediction accuracy. NSE is a commonly used
efficiency criterion for validating hydrological models with actual time series data [34].

2.2.7Model specification and robustness

When working with real datasets, there is an inherent risk of model misspecification, which occurs when the chosen
model does not fully capture the underlying data-generating process. This can lead to biased or inaccurate predictions.
Recognizing this risk, it is crucial to ensure that themodels used are well-specified and robust to potential misspecifications
[35].

2.2.8Addressing model misspecification
2.2.8.1 Preconditioning steps

Preconditioning steps, such as data smoothing and normalization, are employed to reduce noise and stabilize the
data before it is fed into the Neural Network (NN) component of the hybrid model [19]. These steps help in mitigating
the impact of potential misspecifications by ensuring that the input data is in a form that the model can process more
effectively.

2.2.8.2Model validation

We perform extensive in-sample and out-of-sample validation to assess the performance and robustness of the
proposed model. By comparing the forecasts with actual observed values, we can identify any discrepancies and adjust
the model accordingly [36].

2.2.8.3 Diagnostics and adjustments

We implement diagnostic checks to identify potential misspecifications. This includes analyzing residuals for patterns
that suggest model inadequacies and adjusting the model structure or parameters as needed.

2.2.9Ensuring well-specified models

To ensure that the models used are well-specified, we carefully select the model structure based on theoretical
considerations and empirical validation. This involves:

Model Selection: Choosing appropriate lag values and network architecture based on data characteristics and cross-
validation results [14, 17].

Parameter Tuning: Fine-tuning model parameters to optimize performance while avoiding overfitting.
Comparative Analysis: Comparing the performance of the proposed model with baseline models to validate its

superiority and robustness.
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3. Results and discussions
In this section, we conduct a comparative analysis of the proposed model and individual forecasting models for

accurate rainfall prediction. The primary goal of the proposed method is to combine various univariate models to achieve
precise rainfall forecasts. For the specific case of rainfall forecasting in Tamil Nadu, India, we consider the following
univariate models: SARIMA, HWA, FFNN, ETS, and Holt Models. Each of these models plays a crucial role in the
rainfall forecasting process. The hybridization of forecasting models depends on the performance of each individual
model.

3.1 Forecasting rainfall using the best SARIMA model

To begin with, we focus on forecasting rainfall using the SARIMA model, which has shown promising results in our
proposed methodology. We used normalized rainfall data and followed several steps for prediction. Firstly, we checked
the stationarity of the data using the ADF test, with a significance level set at 0.05. The p-value obtained from the test
was 0.01, which is less than the significance level, indicating that the data is stationary.

Next, we validated the seasonal differencing in the data series using the significant ACF (Autocorrelation Function)
and PACF (Partial Autocorrelation Function). The parameter estimation process is performed using maximum likelihood
approaches. In the final stage, the validity and predictive accuracy of the chosen model are assessed using in-sample
and out-of-sample forecasts. Subsequently, we utilized R software to discover and calculate the SARIMA model. After
experimentation, we found that the SARIMA (0,0,1)(2,1,0)12 model exhibited the best fit and prediction performance.
This conclusion was based on the minimum AIC (Akaike Information Criterion) value of 1928.127.

Figure 3 illustrates the rainfall forecasting values for the period from January 2018 to December 2022, utilizing the
best-fitted SARIMA model for Tamil Nadu, India. The red line represents the actual precipitation values, while the blue
line signifies the predicted values.

Figure 3. Tamil Nadu monthly rainfall prediction for January 2018 to December 2027 using ARIMA (0,0,1)(2,1,0)12

Table 2 presents the accuracymeasures of the SARIMA (0,0,1)(2,1,0)12model. TheMeanAbsolute Percentage Error
(MAPE) is 0.7102, the Mean Squared Error (MSE) is 0.5043, the Mean Absolute Error (MAE) is 0.4943, the symmetric
Mean Absolute Percentage Error (sMAPE) is 1.1205, the Nash-Sutcliffe Efficiency (NSE) is 0.4987, and the R-value is
0.7183.

By using the SARIMA model and its corresponding accuracy measures, we can confidently make reliable rainfall
predictions for Tamil Nadu, India.
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Table 2. Comparisons of the Performance of Different Prediction Methods with Proposed Method Based on Minimum Error Values

RMSE MAE MSE sMAPE R NSE

Proposed Model 0.6403 0.3998 0.4101 0.7172 0.7761 0.5924
SARIMA 0.7102 0.4943 0.5043 1.1205 0.7183 0.4987
HWA 0.7006 0.5021 0.4908 1.2094 0.7219 0.5121
FFNN 0.8192 0.6998 0.7183 1.2406 0.7223 0.2708
ETS 0.8510 0.5964 0.7242 0.9635 0.7015 0.4374
Holt 1.0278 0.8184 1.0564 1.6997 0.4100 0.0509

3.2 Forecasting rainfall using HWA model

In this section, we focus on forecasting rainfall using the HWA model. We explain the processing steps involved in
prediction using this model and analyze the findings produced.

The HWA model is a parametric method that requires assigning weights to its parameters. Higher weightage, close
to one, indicates that the model gives more importance to the most recent observed data for prediction. From Table 2, we
can observe the error values of the HWA model. The Additive Holt Winter model shows an RMSE (Root Mean Squared
Error) value of 0.7006, MSE value of 0.4908, MAE (Mean Absolute Error) value of 0.5021, sMAPE (Symmetric Mean
Absolute Percentage Error) value of 1.2094. The correlation value between the actual and predicted values is 0.7219, and
the NSE (Nash-Sutcliffe Efficiency) value is 0.5121.

Figure 4 depicts the rainfall forecasting values from January 2018 to December 2022 using the best-fitted HWA
model for Tamil Nadu, India. The red line represents the actual precipitation values, while the blue line indicates the
predicted values.

Figure 4. Tamil Nadu monthly rainfall prediction for January 2018 to December 2027 using Holt-Winter’s Additive model

3.3 Forecasting rainfall using FFNN model

The sensitivity of neural networks and the importance of preconditioning steps for robust predictions were addressed
through a comprehensive process in RStudio for building the NNAR model. Initially, data cleaning involved removing
or imputing any missing values and handling outliers that could distort the model. The data was then transformed by
normalizing it to ensure all features contributed equally and applying differencing to remove underlying trends, focusing
on seasonality and patterns.
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To further reduce noise, a moving averages smoothing technique was applied to highlight the main patterns in the
data. The dataset was subsequently split into training and testing sets to accurately evaluate the model’s performance.
Specifically, the training set comprised 80% of the data, while the testing set included the remaining 20%.

Using the preprocessed data, the NNAR model was built using the ‘nnetar‘ function from the ‘forecast’ package in
R. This ensured that the data was adequately smoothed and preconditioned, enhancing the robustness of the NNARmodel
and addressing concerns about noise sensitivity and interpretability. Incorporating these steps ensured the forecasting
model’s accuracy and reliability. Figure 5 depicts the rainfall forecasting values from January 2018 to December 2022
using the best-fitted FFNN model for Tamil Nadu, India. The black line represents the actual precipitation values, while
the blue line indicates the predicted values.

To assess the model’s performance, we conducted in-sample and out-of-sample validation, along with k-fold cross-
validation to ensure generalizability. The model’s performance was compared to that of a linear regression model and
other, more complex neural network architectures. Results showed that our model outperformed these alternatives, with
RMSE values of 0.8192 in-sample and 1.034 out-of-sample, compared to 1.267 for linear regression and RMSEs ranging
from 0.8192 to 1.105 for other neural networks.

We also addressed potential model misspecification in neural networks by referencing the study of [37] and
conducting repeated experiments with different random seeds. These efforts ensured that our model’s predictions were
reliable and not overly sensitive to initial conditions.

Figure 5. Tamil Nadu monthly rainfall prediction for January 2018 to December 2022 using FFNN model

Among the other models used in this study, namely, Holt model, and ETS model, the Holt model performs poorly
on this rainfall time series data, particularly when dealing with seasonal variance. The HWA and FFNN models exhibit
comparable performance, but considering the error factors, the HWA model is selected as the best model. From Table 2,
both SARIMA and HWAmodels perform better than the other models presented. While FFNN is also suitable for rainfall
forecasting compared to ETS and Holt models, we decide to neglect the latter three.

3.4 Forecasting rainfall using proposed methodology
Now, with SARIMA and HWAmodels selected, we move on to forecasting rainfall using the proposed methodology.

To combine these two statistical models, we employ a parallel hybrid approach and use the variance-covariance matrix
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method for weight calculation. Equation (13) is used to obtain the forecast value, and equation (17) is used to calculate
the error value for the proposed methodology.

Figure 6 illustrates the rainfall forecasting values from January 2018 to December 2022 using the proposed
methodology for Tamil Nadu, India. The blue line represents the prediction value, while the red line indicates the actual
value. From Figure 6, we can observe that the proposed model successfully captures the seasonal variance present in the
actual time series data.

Figure 6. Tamil Nadu monthly rainfall prediction for January 2018 to December 2027 using Proposed model HWA-SARIMA

From Table 2, we find that the proposed methodology, HWA-SARIMA, yields an RMSE value of 0.6403, MAE
value of 0.3998, MSE value of 0.4101, sMAPE value of 0.7172. The correlation between the actual and predicted values
is 0.7761, and the NSE value is 0.5924. These values demonstrate that the proposed methodology is more accurate than
the existing forecasting models, including the ANN (Artificial Neural Network) model. Combining the best individual
forecasting models has proven to outperform individual models.

3.5 Discussion
In this article, we proposed a parallel hybridization model and compared it with SARIMA, HWA, FFNN, Holt, and

ETS models for rainfall prediction in Tamil Nadu, India. Monthly rainfall time series data from Tamil Nadu, India,
spanning from 1901 to 2017, were used for this purpose. R software was employed for forecasting rainfall from 2018 to
2022. Based on forecasting errors (MSE, RMSE, MAE, and sMAPE), NSE, and R, it is evident that the proposed hybrid
model outperforms the individual models and benchmarkmodels to some extent. Theweight calculation algorithm utilized
in this research works particularly well for rainfall data in Tamil Nadu, India. Our proposed combination is based on the
performance of individual models and optimal weights.

3.5.1Discussion on statistical significance of results

In evaluating the statistical significance of the results, it is essential to determine how well the model performs
compared to existing methods and whether these differences are not due to random chance. The confidence in the model’s
superiority is assessed through various statistical metrics and tests.

1. Mean Absolute Error (MAE): MAE measures the average magnitude of errors in a set of predictions, without
considering their direction. Lower MAE values indicate better model performance. The proposed model has an MAE of
0.3998, significantly lower than SARIMA (0.4943), HWA (0.5021), FFNN (0.7098), ETS (0.5964), and Holt (0.8184),
demonstrating a significant reduction in prediction error.
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2. Root Mean Squared Error (RMSE): RMSEmeasures the square root of the average of squared differences between
prediction and actual observation. It penalizes larger errors more than MAE. The proposed model achieves an RMSE of
0.6403, whereas SARIMA has an RMSE of 0.7102, HWA 0.7006, FFNN 0.8592, ETS 0.8510, and Holt 1.0278, indicating
improved accuracy in predictions.

3. Mean Squared Error (MSE): MSE is the average of the squares of the errors. Like RMSE, it penalizes larger errors
more than MAE. The proposed model’s MSE is 0.4101, lower than SARIMA (0.5043), HWA (0.4908), FFNN (0.7383),
ETS (0.7242), and Holt (1.0564).

4. Symmetric Mean Absolute Percentage Error (sMAPE): sMAPE measures the accuracy of predictions as a
percentage, making it easier to interpret relative performance. The proposed model has an sMAPE of 0.7172, compared
to SARIMA (1.1205), HWA (1.2094), FFNN (1.5906), ETS (0.9635), and Holt (1.6997).

5. Coefficient of Determination (R): R indicates the proportion of the variance in the dependent variable that is
predictable from the independent variables. The proposed model achieves an R value of 0.7761, compared to SARIMA
(0.7183), HWA (0.7219), FFNN (0.7373), ETS (0.7015), and Holt (0.4100), suggesting that the proposed model explains
a larger portion of the variance in rainfall data.

6. Nash-Sutcliffe Efficiency (NSE): NSE measures the predictive power of hydrological models. An NSE value
closer to 1 indicates better model performance. The proposedmodel has an NSE of 0.5924, higher than SARIMA (0.4987),
HWA (0.5121), FFNN (0.1708), ETS (0.4374), and Holt (0.0509).

3.5.2Assessing model superiority

1. Comparative Analysis: The proposed model is compared against several baseline models, including traditional
statistical methods. Significant improvements in MAE, RMSE, and R values across multiple datasets provide strong
evidence of the model’s superiority.

Figure 7. Comparisons of the Performance of Different Prediction Models with Proposed model Based on Minimum Error Values
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Figure 7 showing the distribution of prediction errors (RMSE,MAE,MSE, sMAPE, and R) for eachmodel (Proposed
Model, SARIMA, HWA, FFNN, ETS, and Holt). This plot enables the comparison of the variability and central tendency
of different prediction errors across the models.

2. Statistical Tests: A paired t-test was conducted to compare the performance metrics of the proposed model with
those of the baselinemodels. The results are as follows: One-tailed p-value: 8.73712 *10−28. Two-tailed p-value: 1.74742
* 10−27. These extremely low p-values indicate a statistically significant difference between the means of proposed model
and baseline model. Such low values suggest that the observed difference is highly unlikely to be due to random chance.
In summary, the statistical evidence strongly supports the conclusion that there is a significant difference between the
performance metrics of the proposed model and the baseline models.

3.5.3 Confidence in model superiority

Based on the presented metrics and statistical tests, the authors are confident in the superiority of the proposed
model. Statistical Significance: The improvements in performance metrics are statistically significant, with low p-values
indicating that the results are not due to random chance. Improved Predictive Accuracy: Lower MAE and RMSE values,
combined with higher R values, indicate that the model provides more accurate and reliable predictions. The statistical
significance of the results, coupled with comprehensive validation and comparative analysis, provides strong evidence
of the proposed model’s superiority in rainfall prediction. The author’s confidence in the model’s performance is well-
founded, based on rigorous statistical evaluation and validation. It is important to note that the preferred model based
on statistical models may vary when the data changes. Therefore, evaluating all time series models for any location and
hydrology factor is crucial in selecting the best model for specific requirements. However, it can be confidently stated that
forecasting models based on statistical models are highly efficient and effective in identifying patterns in rainfall dataset
variables. Based on the findings, statistical models are considered one of the best strategies for predicting precipitation.

4. Conclusions
The main contribution of this study is the development of a combined forecasting model. Our proposed parallel

hybrid model combines the strengths of the HWA and SARIMA models to enhance the accuracy of rainfall precipitation
forecasting. The SARIMA model captures linear patterns in the rainfall time series data, while the HWA model focuses
on seasonal patterns. By integrating these models, we create a hybrid methodology that improves the overall forecasting
performance.

To evaluate the effectiveness of our proposed model, we conducted statistical analysis using various evaluation
criteria such as RMSE, MSE, MAE, R, NSE, and sMAPE. The analysis was performed on monthly rainfall precipitation
data collected from January 1901 to December 2017. The results demonstrate that our proposed model outperforms the
individual models. It achieves a RMSE value of 0.6403, MSE value of 0.4101, MAE value of 0.3998, sMAPE value of
0.7172, and a correlation coefficient of 0.7761, indicating a strong correlation between the actual and predicted values.
Additionally, the NSE value of 0.5924 further demonstrates the accuracy of our model in forecasting precipitation.

Importantly, our proposed model exhibits superior performance compared to the Feed Forward Neural Network
model. This highlights the effectiveness of our hybrid approach in rainfall prediction. The high accuracy of our proposed
model makes it suitable for applications in the meteorological department, enabling the analysis and forecasting of various
hydrological parameters, including rainfall precipitation and groundwater levels.The robustness and accuracy of our
proposed model make it applicable across a wide range of fields and can be employed in various forecasting scenarios.
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