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Abstract: Consider a function of two variables f (ξ , t). In addition, assume the following expansions for it and its
derivatives:

f (ξ , t) =
∞

∑
i, j=0

ai, jPi(ξ )Q j(t),

Dp1
ξ Dp2

t f (ξ , t) = f (p1, p2)(ξ , t) =
∞

∑
m, ν=0

a(p1, p2)
m, ν Pm(ξ )Qν(t), a(0, 0)

i, j = ai, j.

Considering the three variables’ function f (ξ , t, z), and assume the following expansions

f (ξ , t, z) =
∞

∑
i, j, k=0

ai, j, k Pi(ξ )Q j(t)Rk(z),

Dp1
ξ Dp2

t Dp3
z f (ξ , t, z) = f (p1, p2, p3)(ξ , t, z) =

∞

∑
m, ν , ℓ=0

a(p1, p2, p3)
m, ν , ℓ Pm(ξ )Qν(t)Rℓ(z),

where a(0, 0, 0)
i, j, k = ai, j, k and Pi(ξ ), Q j(t) and Rk(z) are Hermite, Laguerre, Jacobi and Bessel polynomials. We state

and prove explicit formulae of a(p1, p2)
m, ν and a(p1, p2, p3)

m, ν , ℓ as a linear combination of ai, j and ai, j, k, i, j, k = 0, 1, 2, . . . ,
respectively. Using the moments of orthogonal polynomial,
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ξ m1Pi(ξ ) =
2m1

∑
n1=0

am1, n1(i)Pi+m1−n1(ξ ),

tm2Q j(t) =
2m2

∑
n2=0

am2, n2( j)Q j+m2−n2(t),

zm3Rk(z) =
2m3

∑
n3=0

am3, n3(k)Rk+m3−n3(z),

we find the coefficients b(p1, p2, m1, m2)
i, j and b(p1, p2, p3, m1, m2, m3)

i, j, k in the two expansions

ξ m1tm2 Dp1
ξ Dp2

t f (ξ , t) = ξ m1tm2 f (p1, p2)(ξ , t) =
∞

∑
i, j=0

b(p1, p2, m1, m2)
i, j Pi(ξ )Q j(t),

ξ m1tm2zm3 Dp1
ξ Dp2

t Dp3
z f (ξ , t, z) = ξ m1tm2zm3 f (p1, p2, p3)(ξ , t, z)

=
∞

∑
i, j=0

b(p1, p2, p3, m1, m2, m3)
i, j, k Pi(ξ )Q j(t)Rk(z).

We apply these findings to reduce partial differential equations by converting polynomial coefficients to recursive
formulas in the solution’s expansion coefficients.

Keywords: orthogonal polynomials, connection and linearization coefficients, moments formulas, generalized hypergeo-
metric functions

MSC: 42C10, 33A50, 33C25, 33D45

1. Introduction
Several authors have demonstrated a keen interest in researching special functions and orthogonal polynomials (OPs).

These mathematical concepts have numerous applications in diverse domains, such as science, mathematics, engineering,
and statistics; see, for example [1–3]. In approximation theory and numerical analysis, the role of OPs arises, particularly
for treating differential equations (DEs); see, for example [4–11]. In addition, many contributions employ the different
special polynomials to treat some models that arise in the applied science; see for example [12–14]. The derivation of
several formulas concerned with the different OPs is the backbone of employing these polynomials in different types of
DEs; see, for example [15–17].

Classical orthogonal polynomials (Hermite, Laguerre, Jacobi, and Bessel) are utilized widely in various fields
of physics and mathematics [18, 19]. For a long time, these polynomials have been utilized in numerical analysis
and approximation theory for problems involving two and three dimensions, see [20, 21]. Furthermore, multivariable
polynomials are prevalent in various practical contexts. For example, they are used in the calculation of multiple integrals
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[22], in addressing connection problems involving multivariable polynomials such as Appell [23], in the expansion of
solid harmonics in Rν in the field of statistical mechanics.

Over the past decades, several researchers have focused on extending the concept of classical orthogonal polynomials
(OPs) as solutions of a differential equation (DE) from a single variable to multiple variables. Classical bivariate OPs are
the polynomial solutions of second-order partial DEs that include polynomial coefficients. Krall and Sheffer [24] were
the first to address this issue when they examined second-order partial DEs with OPs as eigenfunctions. Kim et al. [25]
discussed DEs that possess solutions as a product of two well-known OPs in a single variable. Suetin [26] provided a
straightforward method for deducing a second-order partial DEs that is fulfilled by the product of two classical OPs, each
depending on a single variable. However, certain scholars have shown that these polynomials may fulfill higher-order
partial DEs. For example, Fernández et al. [27] have discussed this in their work on OPs. Ronveaux and Rebillard [28]
presented a methodology for constructing multivariable polynomials by utilizing several series of OPs in a single variable.
Dunkl and Xu [29] provide numerous examples of OPs in multiple variables. The majority of these polynomials, although
not all, are expressed using the classical OPs of a single variable. Additionally, many of these cases involve expanding
OPs from two variables to a higher number of variables.

Several researchers have utilized spectral methods that rely on classical and double classical OPs to solve numerically
partial DEs; see, for example [30–36]. This situation motivated the researchers to develop algorithms to solve the partial
differential/difference equations with varying coefficients by transforming them into suitable recursive formulas followed
as in [37–40] for the continuous case and as in [41–44] for the discrete case.

As far as we are aware, there are nowell-known or identifiable formulae in the literature for the expansion coefficients
of general-order derivatives of arbitrary functions of two or three variables or the evaluation of the expansion coefficients
of the moments of high-order derivatives of these functions in terms of the product of two or three classical OPs (Hermite,
Laguerre, Jacobi, and Bessel polynomials). These formulae are similar to those obtained in [45, 46] for double classical
OPs of continuous variables for the various classes of Jacobi polynomials. While previous works, such as those referenced
in [47–50], explore the expansion and connection coefficients of classical orthogonal polynomials, our paper introduces a
unique approach by deriving recursive and explicit formulas that have not been addressed comprehensively in prior studies.
This distinction allows for more efficient calculations and broader applications. Additionally, our work extends the
existing results by considering a wider class of polynomial products. Specifically, we provide formulas that can be applied
to a diverse set of classical orthogonal polynomials, thereby enhancing the applicability of the results across different
mathematical contexts. Another reason is that many mathematical and scientific issues can be studied theoretically and
numerically by expanding arbitrary polynomials or two- or three-variable functions into a collection of OPs and their
derivatives and moments.

This paper follows the following structure: Section 2 gives relevant properties of classical OPs. In Section 3, we
give relevant properties of a product two one-variable classical orthogonal polynomials,

{Fm, ν(ξ , t) : Fm, ν(ξ , t) = Pm(ξ )Qν(t), Pm(ξ ), Qν(t) ∈ T},

where T = {Pν(ξ ) : Hermite, Laguerre, Jacobi and Bessel polynomials}. In Section 4, we give and prove a theorem that
states three expressions for the coefficients of general-order partial derivatives of expansion in Fmν(ξ , t) in terms of the
coefficients of the original expansion. How to generate the recursive formulas ai, j in the expansion

f (ξ , t) =
∞

∑
i, j=0

ai, j Fi, j(ξ , t),

where f (ξ , t) is function of two variables ξ and t, is the target of Section 5. Sections 6 and 7 present two uses of the
presented study, which provides a symbolic algebraic approach (via Mathematica) to construct the recursive formulas for
the coefficients that arise, respectively, in the two problems:
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(ξ + t)ν = ∑
i+ j≤ν

ai, j(ν)Fi, j(ξ , t), Pν(aξ +bt) = ∑
i+ j≤ν

ai, j(ν)Fi, j(ξ , t).

Extension to expansion in a product three one-variable classical OPs are also given in Section 8. In Section 9, we
discuss how to generate the recursive formulas for ai, j, k, in the expansion

f (ξ , t, z) =
∞

∑
i, j, k=0

ai, j, k Fi, j, k(ξ , t, z),

where

{Fm, ν , ℓ(ξ , t, z) : Fm, ν , ℓ(ξ , t, z) = Pm(ξ )Qν(t)Rℓ(z), Pm(ξ ), Qν(t), Rℓ(z) ∈ T}.

We present two uses of the work that employ an algebraic symbolic method, namely Mathematica, in Sections 10
and 11. The goal of these programs is to build the recursive formulas for the coefficients in the two problems:

(ξ + t + z)ν = ∑
i+ j+k≤ν

ai, j, k(ν)Fi, j, k(ξ , t, z),

Pν(aξ +bt + cz) = ∑
i+ j+k≤ν

ai, j, k(ν)Fi, j, k(ξ , t, z).

Section 12 summarizes the main findings and concludes our investigation, highlighting the benefits, limitations, and
potential improvements of our algorithm and suggestions for future work.

2. Some properties of classical OPs
Let {Pν(ξ )} is classical orthogonal family (the Hermite, Laguerre, Jacobi and Bessel polynomials) each of degree ν

in ξ ∈ [a, b], then meets the DE [47]

σ(ξ )y′′(ξ )+ τ(ξ )y′(ξ )+λν y(ξ ) = 0, (1)

where τ(ξ ) and σ(ξ ) are two polynomials with degrees no greater than one and two, respectively, and λν =−ντ ′(ξ )−
1
2

ν(ν −1)σ ′′(ξ ). These polynomials satisfy the following orthogonality property:

b∫
a

ρ(ξ )Pm(ξ )Pk(ξ )dξ = δm, k hm, m, k = 0, 1, 2, . . . , (2)

where ρ(ξ ) satisfies
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D[σ(ξ )ρ(ξ )] = τ(ξ )ρ(ξ ),

assuming the specified condition

σ(ξ )ρ(ξ )ξ k|ξ=a, b = 0, k ≥ 0,

is satisfied. In addition, the constant hν is given by

hν = (−1)ν ν!kν Bν

b∫
a

(σ(ξ ))ν ρ(ξ )dξ ,

where the constant kν is the leading coefficient of Pν(ξ ) and Bν is called the normalization constant, that appears in the
Rodrigues formula

Pν(ξ ) =
Bν

ρ(ξ )
Dν [(σ(ξ ))ν ρ(ξ )].

The four referred polynomials: Hermit Hν(ξ ), Laguerre L(θ)
ν (ξ ), Jacobi J(θ , ζ )

ν (ξ ) and Bessel Y (θ)
ν (ξ ), can be

expressed in terms of the hypergeometric functions as [39]:

Hν(ξ ) = (2x)ν
2F0

[
−ν/2, λ +ν , −(ν −1)/2

−
; −1/ξ 2

]
,

L(θ)
ν (ξ ) =

(θ +1)ν
ν! 1F1

[
−ν

θ +1
; ξ

]
, θ >−1,

J(θ , ζ )
ν (ξ ) =

(θ +1)ν
ν! 2F1

[
−ν , −ν +θ +ζ +1

θ +1
;

1−ξ
2

]
, θ , ζ >−1,

Y (θ)
ν (ξ ) = 2F0

[
−ν , ν +θ +1

−
; −ξ

2

]
, ξ ̸= 0, θ ̸=−2, −3, . . . ,

and (z)ν is the Pochhammer function defined as:

(z)ν =
Γ(z+ν)

Γ(z)
.
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According to Koepf and Schmersau [39], the current work relies heavily on the following two recursive formulas:

ξ Pν(ξ ) = θν Pν+1(ξ )+ζν Pν(ξ )+ γν Pν−1(ξ ), P−1(ξ ) = 0, P0(ξ ) = 1, ν ≥ 1, (3)

Pν(ξ ) = θ̄ν DPν+1(ξ )+ ζ̄ν DPν(ξ )+ γ̄ν DPν−1(ξ ), ν ≥ 0. (4)

Remark 1 For the expressions of σ(ξ ), τ(ξ ), ρ(ξ ), λν , hν , θν , ζν , γν , θ̄ν , ζ̄ν , γ̄ν , one may consult [39] to the
different OPs.

If we consider a function f (ξ ) that may be expressed as an infinite series of classical OPs Pν(ξ ) as

f (ξ ) =
∞

∑
ν=0

aν Pν(ξ ), (5)

then we can express Dp f (ξ ) =
dp f (ξ )

dxp as

f (p)(ξ ) = Dp f (ξ ) =
∞

∑
ν=0

a(p)
ν Pν(ξ ), a(0)ν = aν , (6)

subsequently, a recursive formula incorporating the expansion coefficients of successive derivatives of f (ξ ) can be derived.
Now, we have

D

[
∞

∑
ν=0

a(p−1)
ν Pν(ξ )

]
=

∞

∑
ν=0

a(p)
ν Pν(ξ ). (7)

Based on (7), we get the following recursive formula

θ ν−1a(p+1)
ν−1 +ζ ν a(p+1)

ν + γν+1a(p+1)
ν+1 = a(p)

ν , p ≥ 0, ν ≥ 1. (8)

Lemma 1 For ν , p ∈ Z with ν ≥ p, we have

DpPν(ξ ) =
ν−p

∑
k=0

Ck, p(ν)Pk(ξ ), (9)

which is equivalent to

a(p)
ν =

∞

∑
k=0

Cp, ν(ν + k+ p)aν+k+p, (10)

and Ck, p(ν) are known coefficients.
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Proof. Starting with (9), and Dp to (5), we get

Dp f (ξ ) =
∞

∑
ν=p

aν DpPν(ξ ). (11)

Making use of (9) and performing some calculations lead to

Dp f (ξ ) =
∞

∑
ν=0

[
∞

∑
k=0

Cp, ν(ν + k+ p)aν+k+p

]
Pν(ξ ). (12)

The two formulas (6) and (12) imply (10).
Now, inserting (10) into (6) gives (12). Performing some computations on (12) and identifying the result with (11),

formula (9) can be obtained. This completes the proof.
The expressions of Ck, p(ν) for Laguerre L(θ)

ν (ξ ), Jacobi J(θ , ζ )
ν (ξ ), Hermit Hν(ξ ) and Bessel Y (θ)

ν (ξ ), are given in
Doha [48, 49, 51] and Doha and Ahmed [52], respectively. In addition, explicit formulas of am, ν( j) in the expansion

ξ mPj(ξ ) =
2m

∑
ν=0

am, ν( j)Pj+m−ν(ξ ), j ≥ 0, m ≥ 0, (13)

are given there. Moreover, it is proved in these papers that am, ν( j) meet the recursive formula

am, ν( j) = θ j+m−ν−1am−1, ν( j)+ζ j+m−ν am−1, ν−1( j)+ γ j+m−ν+1am−1, ν−2( j), ν = 0, 1, . . . , 2m, (14)

with a0, 0( j) = 1, am−1, −ℓ( j) = 0, ∀ ℓ > 0, am−1, r( j) = 0, r = 2m−1, 2m.
Consider a classical OPPj(ξ ), the expansion coefficients of themoments of a general order derivative of any function,

expressed in terms of its original expansion, are shown by the following theorem:
Theorem 1 [48, 49, 51, 52] Let f (ξ ), f (p)(ξ ) and ξ mPj(ξ ) have the expansions (5), (6) and (13) respectively, and

consider the formula

ξ m

(
∞

∑
i=0

a(p)
i Pi(ξ )

)
=

∞

∑
i=0

b(p, m)
i Pi(ξ ), (15)

then b(p, m)
i are expressed as
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b(p, m)
i =



m−1

∑
k=0

am, k+m−i(k)a
(p)
k +

i

∑
k=0

am, k+2m−i(k+m)a(p)
k+m, 0 ≤ i ≤ m,

m−1

∑
k=i−m

am, k+m−i(k)a
(p)
k +

i

∑
k=0

am, k+2m−i(k+m)a(p)
k+m, m+1 ≤ i ≤ 2m−1,

i

∑
k=i−2m

am, k+2m−i(k+m)a(p)
k+m, i ≥ 2m.

(16)

Corollary 1 It is easy to derive the formula

b(p, m)
i =

2m

∑
r=0

am, r(r+ i−m)a(p)
r+i−m, i ≥ 0. (17)

3. Some properties of a product two one-variable classical OPs
Let {Pm(ξ )} and {Qν(t)} are two classical orthogonal families of degree m and ν in the variables ξ ∈ I and t ∈ J

respectively. A product two one-variable classical OPs is defined as follows

Fm, ν(ξ , t) = Pm(ξ )Qν(t). (18)

These polynomials are satisfying the orthogonality relation [26, p.37-41]

∫ ∫
G

Fm, ν(ξ , t)Fk, s(ξ , t)Ω(ξ , t)dξ dy = δm, kδν , s
P
hm

Q
hν , m, ν , k, s = 0, 1, . . . , (19)

where G = {(ξ , t) : ξ ∈ I and t ∈ J} and, Ω(ξ , t) =
P
ρ (ξ )

Q
ρ (t), (ξ , t) ∈ G. Suetin [26, p.38-41] gave a simple way to

conclude a second order PDE satisfied by Fm, ν(ξ , t). In view of this conclusion, we can put this PDE-depending on the

polynomials coefficients
P
σ (ξ ),

Q
σ (t),

P
τ (ξ ) and

Q
τ (t), and the constants

P
λ m,

Q
λ ν -in the form [26, p.39-41]

[
P
σ (ξ )

∂2

∂ξ 2+
Q
σ (t)

∂2

∂ t2+
P
τ (ξ )

∂
∂x

+
Q
τ (t)

∂
∂y

+(
P
λ m +

Q
λ ν)

]
Fm, ν(ξ , t) = 0. (20)

Also, he gave a convenient name for these polynomials, which consists of two sections related to the names of Pm(ξ )
and Qν(t), i.e. Name of Pν(ξ )-Name of Qν(t).

Let f (ξ , t) be a continuous function defined on the domain G, and let it have continuous and bounded partial
derivatives of any order concerning its variables ξ and t. We can write
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f (ξ , t) =
∞

∑
m, ν=0

am, ν Pm(ξ )Qν(t), (21)

f (p, q)(ξ , t) = Dp
ξ Dq

t f (ξ , t) =
∞

∑
m, ν=0

a(p, q)
m, ν Pm(ξ )Qν(t), a(0, 0)

m, ν = am, ν . (22)

In view of relation (4), with assumptions that

Dξ

∞

∑
m, ν=0

a(p−1, q)
m, ν Pm(ξ )Qν(t) =

∞

∑
m, ν=0

a(p, q)
m, ν Pm(ξ )Qν(t), (23)

and

Dt

∞

∑
m, ν=0

a(p, q−1)
m, ν Pm(ξ )Qν(t) =

∞

∑
m, ν=0

a(p, q)
m, ν Pm(ξ )Qν(t), (24)

we derive the recurrences

P
θ̄ m−1 a(p, q)

m−1, ν+
P
ζ̄ m a(p, q)

m, ν +
P
γ̄m+1 a(p, q)

m+1, ν = a(p−1, q)
m, ν , m, p ≥ 1, ν , q ≥ 0, (25)

and

Q
θ̄ ν−1 a(p, q)

m, ν−1+
Q
ζ̄ ν a(p, q)

m, ν +
Q
γ̄ν+1 a(p, q)

m, ν+1 = a(p, q−1)
m, ν , ν , q ≥ 1, m, p ≥ 0. (26)

Remark 2 The symbols
P
θ̄ m,

P
ζ̄ m,

P
γ̄m,

P
λ m,

P
σ (ξ ),

P
τ (ξ ) and

P
ρ (ξ ) are the corresponding data regarding to the

polynomials Pm(ξ ).

,4. Relation between the coefficients a(m
p,

ν
q) and am ν, and explicit formula for the

The principal aim of this section is to prove two results. The first gives the expression of a(p, q)
m, ν in terms of am, ν .

The second expression represents the expansion coefficients of the moments of general order derivatives of any function
of two variables in terms of its original expansion, Pm(ξ )Qν(t)

m1tm2 f (p, q)(ξ , texpansion coefficients of ξ )

.
Theorem 2 The coefficients a(p, q)

m, ν are related to the coefficients a(0, q)
m, ν , a(p, 0)

m, ν and the original coefficients am, ν by
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a(p, q)
m, ν =

∞

∑
i=0

P
Cpm (p+m+ i)a(0, q)

p+m+i, ν , p ≥ 1, (27)

a(p, q)
m, ν =

∞

∑
j=0

Q
Cqν (q+ν + j)a(p, 0)

m, q+ν+ j, q ≥ 1, (28)

a(p, q)
m, ν =

∞

∑
i=0

∞

∑
j=0

P
Cpm (p+m+ i)

Q
Cqν (q+ν + j)ap+m+i, q+ν+ j, p, q ≥ 1, m, ν ≥ 0, (29)

where the formulae of
P

Cpm (p+m+ i) and
Q

Cqν (q+ν+ j) can be defined according to the expressions ofCk, p(ν) regarding
to Laguerre L(θ)

ν (ξ ), Jacobi J(θ , ζ )
ν (ξ ), HermitHν(ξ ) and BesselY

(θ)
ν (ξ ) polynomials which are given in Doha [48, 49, 51]

and Doha and Ahmed [52], respectively.
Proof. Eq. (22) can be written as

f (p, q)(ξ , t) =
∞

∑
m=0

b(p, q)
m (t)Pm(ξ ), (30)

where

b(p, q)
m (t) =

∞

∑
ν=0

a(p, q)
m, ν Qν(t), (31)

while holding y and q constant. Lemma 1 allows us to conclude that

b(p, q)
m (t) =

∞

∑
i=0

P
Cpm (p+m+ i)b(0, q)

p+m+i(t). (32)

In virtue of (31) and (32), the following formula can be obtained

∞

∑
ν=0

a(p, q)
m, ν Qν(t) =

∞

∑
ν=0

[
∞

∑
i=0

P
Cpm (p+m+ i)a(0, q)

p+m+i, ν

]
Qν(t), (33)

which implies that

a(p, q)
m, ν =

∞

∑
i=0

P
Cpm (p+m+ i)a(0, q)

p+m+i, ν , p ≥ 1.

Formula (27) is now proved.
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By maintaining ξ and p constant and repeating the same steps with Eq. (22), it can be demonstrated that formula
(28) is also true. Formula (29) can be obtained by just plugging (4.1) into (28). With this, we have proved Theorem 2.

Remark 3 The corresponding theorems of Doha [45, 50, 53] and Doha et al. [46] in the cases of double Chebyshev,
Legender, ultraspherical and Jacobi polynomials, respectively, can be obtained from our Theorem 2 by taking the suitable
polynomials Pm(ξ ) and Qν(t).

Corollary 2 Let f (ξ , t) and f (p, q)(ξ , t) be expanded as in (21) and (22), respectively, and also assume that

ξ m1Pi(ξ ) =
2m1

∑
ℓ1=0

P
am1, ℓ1 (i)Pi+m1−ℓ1(ξ ), (34)

tm2Q j(t) =
2m2

∑
ℓ2=0

Q
am2, ℓ2 ( j)Q j+m2−ℓ2(t), (35)

and

ξ m1tm2

(
∞

∑
i, j=0

a(p, q)
i, j Pi(ξ )Q j(t)

)
=

∞

∑
i, j=0

b(p, q, m1, m2)
i, j Pi(ξ )Q j(t), (36)

then b(p, q, m1, m2)
i, j are expressed as

b(p, q, m1, m2)
i, j =

2m1

∑
ℓ1=0

2m2

∑
ℓ2=0

P
am1, ℓ1 (ℓ1 + i−m1)

Q
am2, ℓ2 (ℓ2 + j−m2)a(p, q)

ℓ1+i−m1, ℓ2+ j−m2
, i, j ≥ 0, (37)

where the formulae of Pam1, ℓ1 (ℓ1+ i−m1) and
Q
am2, ℓ2 (ℓ2+ j−m2) can be defined according to the expressions of am, ν( j)

regarding to Laguerre L(θ)
ν (ξ ), Jacobi J(θ , ζ )

ν (ξ ), Hermit Hν(ξ ) and Bessel Y (θ)
ν (ξ ) polynomials which are given in Doha

[48, 49, 51] and Doha and Ahmed [52], respectively.
Proof. Corollary 1, together with formula (34), yields

I(p, q, m1, m2) = tm2
∞

∑
j=0

(
∞

∑
i=0

a(p, q)
i, j ξ m1Pi(ξ )

)
Pj(t) = tm2

∞

∑
i=0

∞

∑
j=0

b(p, q, m1)
i, j Pi(ξ )Pj(t), (38)

where

b(p, q, m1)
i, j =

2m1

∑
ℓ1=0

P
am1, ℓ1 (ℓ1 + i−m1)a(p, q)

ℓ1+i−m1, j . (39)

Using Corollary 1 and formula (35) enables one to write (38) as
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I(p, q, m1, m2) =
∞

∑
i=0

Pi(ξ )

(
∞

∑
j=0

b(p, q, m1)
i, j tm2Pj(t)

)
=

∞

∑
i, j=0

b(p, q, m1, m2)
i, j Pi(ξ )Pj(t), (40)

where

b(p, q, m1, m2)
i, j =

2m2

∑
ℓ2=0

Q
am2, ℓ2 (ℓ2 + j−m2)b(p, q, m1)

i, ℓ2+ j−m2
. (41)

By substituting (39) into (41), we obtain (37) and complete the proof of corollary.

5. Establishing the recursive formulas for the expansion coefficients in series of a
product two of classical OPs
Assume that f (ξ , t) can be expanded as in (21), and suppose it meets the linear non-homogeneous partial DE

m

∑
i=0

ν

∑
j=0

pi, j(ξ , t) f (i, j)(ξ , t) = g(ξ , t), (42)

where
{

pi, j(ξ , t)
}

0≤i, j≤ν are polynomials in ξ and t with pm, 0, p0, ν ̸= 0, and

g(ξ , t) =
∞

∑
i, j=0

gi, j Pi(ξ )Q j(t), (43)

with known gi, j, then applying Theorem 2 and Corollary 2 or repeated use of relations (25) and (26) and using (42), we
obtain the following recursive formula of order (d1, d2),

d1

∑
i=0

d2

∑
j=0

θi, j(r, k)ar+i, j+k = ζ (r, k), r, k ≥ 0, (44)

where θi, j(r, k), i = 0, 1, . . . , d1, j = 0, 1, . . . , d2, are polynomials in r and k with θd1, 0(r, k), θ0, d2(r, k) ̸= 0.
An example dealing with a non-homogeneous partial DE is considered to clarify the application of the results

obtained.
Example 1 Consider the non-homogeneous partial DE

ξ uξ − t ut +(ξ − t)u = ξ 2 − t2 +ξ − t, u(0, t) = y, u(ξ , 0) = ξ . (45)

If ξ 2 − t2 +ξ − t and u(p, q)(ξ , t) are expanded as follows
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ξ 2 − t2 +ξ − t = ∑
i+ j≤2

di, jPi(ξ )Q j(t), (46)

u(p, q)(ξ , t) =
∞

∑
i, j=0

a(p, q)
i, j Pi(ξ )Q j(t), p, q = 0, 1, (47)

then our ability to apply partial DE (45) on (47) and using Corollary 2 lead to the following equation

P
θ i−1 a(1, 0)

i−1, j+
P
ζ i a(1, 0)

i, j +
P
γ i+1 a(1, 0)

i+1, j−
Q
θ j−1 a(0, 1)

i, j−1−
Q
ζ j a(0, 1)

i, j −
Q
γ j+1 a(0, 1)

i, j+1

+
P
θ i−1 ai−1, j+

P
γ i+1 ai+1, j +(

P
ζ i −

Q
ζ j)ai, j−

Q
θ j−1 ai, j−1−

Q
γ j+1 ai, j+1 = di j.

(48)

In the next, we find the recursive formula satisfied by the expansion coefficients ai, j in two different cases for Pi(ξ )
and Q j(t):

Case 1 The expansion of u(ξ , t) in Bessel-Bessel polynomials, Y (θ)
i (ξ ).Y (ζ )

j (t) In this problem, Eq. (48) takes the
form

2(i+θ)
(2i+θ −1)2

(a(1, 0)
i−1, j +ai−1, j)−

2θ
(2i+θ −2)(2i+θ)

a(1, 0)
i, j

− 2i
(2i+θ +2)2

(a(1, 0)
i+1, j +ai+1, j)−

2( j+ζ )
(2 j+ζ −1)2

(a(0, 1)
i, j−1 +ai, j−1)

+
2ζ

(2 j+ζ −2)(2 j+ζ )
a(0, 1)

i, j +
2 j

(2 j+ζ +2)2
(a(0, 1)

i, j+1 +ai, j+1)

−
(

2θ
(2i+θ −2)(2i+θ)

− 2ζ
(2 j+ζ −2)(2 j+ζ )

)
ai, j = di j,

(49)

where
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di, j =



2(ζ +1)
(ζ +2)2

− 2(θ +1)
(θ +2)2

, i = 0, j = 0,

−2ζ
(ζ +2)(ζ +4)

, i = 0, j = 1,

−4
(ζ +3)2

, i = 0, j = 2,

2θ
(θ +2)(θ +4)

, i = 1, j = 0,

4
(θ +3)2

, i = 2, j = 0,

0, otherwise.

Based on (27) and (28) with (49) and after doing some calculations, the following recursive formula can be obtained:

(η0i − γ0 j)ai, j +η1iai+1, j +η2iai+2, j +η3iai+3, j +η4iai+4, j

− γ1 jai, j+1 − γ2 jai, j+2 − γ3 jai, j+3 − γ4 jai, j+4 = ci, j,

(50)

where

η0i =2[(2i+θ +1)5]
−1(i+θ +1)3,

η1i =[(2i+θ +2)5]
−1(i+θ +2)2[4i3 +(20+4θ)i2 +(32+12θ +θ 2)i+(16+6θ +θ 2)],

η2i =− [(2i+θ +3)5]
−1(i+θ +3)(i+2)

×
[
(8+4θ)i2 +(40+28θ +4θ 2)i+(48+47θ +12θ 2 +θ 3)

]
,

η3i =− [(2i+θ +4)5]
−1(i+2)2

×
[
4i3 +(40+8θ)i2 +(144+52θ +5θ 2)i+(144+86θ +16θ 2 +θ 3)

]
,

η4i =−2[(2i+θ +5)5]
−1(i+2)3,
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γ0 j, γ1 j, γ2 j, γ3 j and γ4 j are obtained from η0i, η1i, η2i, η3i and η4i, respectively, by replacing each of i and θ with j and
ζ respectively, and the coefficients ci, j are given by

ci, j =



2
(ζ +3)
(ζ +4)2

−2
(θ +3)
(θ +4)2

, i = 0, j = 0,

−2(ζ +2)
(ζ +4)(ζ +6)

, i = 0, j = 1,

−4
(ζ +5)2

, i = 0, j = 2,

2(θ +2)
(θ +4)(θ +6)

, i = 1, j = 0,

4
(θ +5)2

, i = 2, j = 0,

0, otherwise.

To reach the solution of the example, we solve the recursive formula of (50) which is given explicitly by

ai, j =



A0B0 −
2(θ +ζ +4)
(θ +2)(ζ +2)

, i = 0, j = 0,

A1B0 +
2

(θ +2)
, i = 1, j = 0,

A0B1 +
2

(ζ +2)
, i = 0, j = 1,

AiB j, otherwise,

(51)

where Ai = Ii(θ), Bi = Ii(ζ ), i ≥ 0,

Ii(θ) =


2(θ +2)−1

0F1 [−; θ +3; 2] , i = 0,

(−1)i+12i

(i−1)!(i+θ +1)i
1F2 [i+1; i, 2i+θ +2; 2] , i ≥ 1.

Case 2 The expansion of u(ξ , t) in Laguerre-Laguerre polynomials, L(θ)
i (ξ ).L(ζ )

j (t)
In this case, Eq. (48) takes the form
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− (i+θ +1)(a(1, 0)
i+1, j +ai+1, j)+(2i+θ +1)a(1, 0)

i, j − i(a(1, 0)
i−1, j +ai−1, j)

+( j+ζ +1)(a(0, 1)
i, j+1 +ai, j+1)− (2 j+ζ +1)a(0, 1)

i, j + j(a(0, 1)
i, j−1 +ai, j−1)

+(2i−2 j+θ −ζ )ai, j = di, j,

(52)

where

di, j =



(θ +1)(θ +3)− (ζ +1)(ζ +3), i = 0, j = 0,

2ζ +5, i = 0, j = 1,

−2, i = 0, j = 2,

2θ +5, i = 1, j = 0,

2, i = 2, j = 0,

0 otherwise.

Eqs. (25) and (26) become

a(p, q)
i, j − a(p, q)

i−1, j = a(p−1, q)
i, j , p ≥ 1, q ≥ 0, (53)

a(p, q)
i, j − a(p, q)

i, j−1 = a(p, q−1)
i, j , p ≥ 0, q ≥ 1. (54)

Now, repeated use of relations (53) and (54) to eliminate the coefficients a(1, 0)
i−1, j, a(1, 0)

i, j , a(1, 0)
i+1, j, a(0, 1)

i, j−1, a(0, 1)
i, j and

a(0, 1)
i, j+1 yields:

(3i−3 j+θ −ζ )ai, j −2(i+θ +1)ai+1, j − iai−1, j +2( j+ζ +1)ai, j+1 + jai, j−1 = fi j, i, j ≥ 0, (55)

where

fi j = di, j −di−1, j −di, j−1 +di−1, j−1, i, j ≥ 0.

The solution of (55) is
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ai, j =


2−(θ+ζ+4)(θ +1)(ζ +1)+(θ +ζ +2), i = 0, j = 0,

2−(θ+ζ+5)θ(ζ +1)−1, i = 1, j = 0,

2−(θ+ζ+5)ζ (θ +1)−1, i = 0, j = 1,

2−(θ+ζ+i+ j+4)(θ − i+1)(ζ − j+1), otherwise.

(56)

Lemma 4 Hermite and Jacobi polynomials can also solve the case above; however, the details are not provided here.

6. The expansion of (ξ + t)ν as a multiple series in a product two of classical OPs
In this problem

(ξ + t)ν = ∑
i+ j≤ν

ai, j(ν)Pi(ξ )Q j(t), (57)

we have u(ξ , t) = (ξ + t)ν satisfies the homogeneous partial differential equation

ξ uξ + t ut −ν u = 0, (58)

then our ability to apply partial DE (58) on (57) and apply Corollary 2 leads to the following equation:

P
θ i−1 a(1, 0)

i−1, j+
P
ζ i a(1, 0)

i, j +
P
γ i+1 a(1, 0)

i+1, j+
Q
θ j−1 a(0, 1)

i, j−1+
Q
ζ j a(0, 1)

i, j +
Q
γ j+1 a(0, 1)

i, j+1 −nai, j = 0. (59)

6.1 The connection between (ξ + t)ν and Double Hermite polynomials

Consider the connection formula

(ξ + t)ν = ∑
i+ j≤ν

ai, j(ν)Hi(ξ )H j(t), (60)

Eq. (59) becomes

1
2

a(1, 0)
i−1, j(ν)+(i+1)a(1, 0)

i+1, j +
1
2

a(0, 1)
i, j−1(ν)+( j+1)a(0, 1)

i, j+1 −ν ai, j(ν) = 0. (61)

In the case of Hermite-Hermite polynomials, formula (29) becomes

a(p, q)
m, ν = 2p+q p!q!

(p+m
p

)(q+ν
q

)
am+p, ν+q, p, q ≥ 0. (62)
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Application of formula (62) with (61), gives

(ν − i− j)ai, j(ν)−2(i+1)2ai+2, j(ν)−2( j+1)2 ai, j+2(ν) = 0, i, j = ν −1, ν −2, . . . , 0, (63)

with ai, j(ν) = 0, i+ j > ν , a−1, j(ν) = ai, −1(ν) = 0, aν , 0(ν) = 2−ν and a0, ν(ν) = 2−ν . Eq. (63) can be solved to give

ai, j(ν) =



ν!2−ν 2(ν−i− j)/2

i! j!
(

ν − i− j
2

)
!
, (ν − i− j) even,

0, (ν − i− j)odd.

(64)

Specifically, Eq. (60) becomes for the case y = 0.

ξ ν =
ν

∑
i=0

(ν−i) even

ν!

2ν i!
(

ν − i
2

)
!
Hi(ξ ),

which coincides with the result obtained by Rainville [54, p.194] and Sánchez-Ruiz and Dehesa [55, p.159].

6.2 The link between (ξ + t)ν and Double Laguerre polynomials

In this problem

(ξ + t)ν = ∑
i+ j≤ν

ai, j(ν)L
(θ)
i (ξ )L(ζ )

j (t), (65)

Eq. (59) turns into

(i+θ +1)a(1, 0)
i+1, j(ν)− (2i+θ +1)a(1, 0)

i, j (ν)+ ia(1, 0)
i−1, j(ν)+( j+ζ +1)a(0, 1)

i, j+1(ν)

− (2 j+ζ +1)a(0, 1)
i, j (ν)+ j a(0, 1)

i, j−1(ν)+ν a(0, 0)
i, j (ν) = 0.

(66)

Now, repeated use of relations (53) and (54) to eliminate a(0, 1)
i, j−1(ν), a(0, 1)

i, j , a(0, 1)
i, j+1(ν), a(1, 0)

i, j , a(1, 0)
i−1, j(ν) and a(1, 0)

i+1, j(ν)
yields

(ν − i− j)ai, j(ν)+(i+θ +1)ai+1, j(ν)+( j+ζ +1)ai, j+1(ν) = 0, i, j = ν −1, ν −2, . . . , 0, (67)

with ai, j(ν) = 0, i+ j > ν , a−1, j(ν) = ai, −1(ν) = 0 and aν , 0(ν) = a0, ν(ν) =
(−1)ν

ν!
. Eq. (67) can be solved to give
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ai, j(ν) =


(−ν)i+ j(θ +ζ +2)ν

(θ +ζ +2)i+ j
, i+ j ≤ ν ,

0, otherwise.

(68)

For the special case y = 0, Eq. (65), after some calculations lead to into

ξ ν =
ν

∑
i=0

(−1)i ν!Γ(ν +θ +1)
(ν − i)!Γ(i+θ +1)

L(θ)
i (ξ ),

which coincides with the result in Rainville [54, p.207] and Sánchez-Ruiz and Dehesa [55, p.159].
In view of the relation [47, p.51]

H2ν(ξ ) = (−1)ν 22ν ν!L(−1/2)
ν (ξ 2), (69)

we can obtain the following corollary.
Corollary 3 In the problem

(ξ 2 + t2)ν = ∑
i+ j≤ν

ai, j(ν)H2i(ξ )H2 j(t), (70)

ai, j(ν) can be expressed as

ai, j(ν) =


(ν!)24−i− j

(ν − i− j)!(i+ j)! i! j!
, i+ j ≤ ν ,

0, otherwise.

7. Connection problem in the sense of two variables
We consider the following connection problem

Fν(aξ +bt) = ∑
i+ j≤ν

ai, j(ν)Pi(ξ )Q j(t), (71)

where Fν , Pi and Q j are classical OPs. The work developed in Section 4 permits us to obtain a recursive formula satisfied
by the coefficients ai, j(ν), if we know a partial differential operator that cancels the left-hand side of (71).

7.1 The Hermite-Double Hermite connection problem

In this problem
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Hν

(
ξ + t√

2

)
= ∑

i+ j≤ν
ai, j(ν)Hi(ξ )H j(t), (72)

where Hν((ξ + t)/
√

2) satisfy the DE

[D2 −4(ξ + t)D+4ν ]Hν((ξ + t)/
√

2) = 0, (73)

the coefficients ai, j(ν) meet the recursive formula

(ν − i)ai, j(ν)− (i+1)ai+1, j−1(ν)−2(i+1)( j+1)ai+1, j+1(ν)− (i+1)2ai+2, j(ν) = 0,

i, j = ν −1, ν −2, . . . , 0,

(74)

with ai, j(ν) = 0, i+ j > ν , a−1, j(ν) = ai, −1(ν) = 0 and aν , 0(ν) = a0, ν(ν) = 2−ν/2. Eq. (74) can be solved to give

ai, j(ν) =


2−ν/2 ν!

i! j!
, i+ j = ν ,

0, i+ j ̸= ν ,

(75)

which is coherent with the result found in Abramowitz and Stegun [56, formula (22.12.8)] and Hansen [57, formula
(49.7.1)].

Hν

(
ξ + t√

2

)
= 2−ν/2

ν

∑
i=0

(
ν
i

)
Hν−i(ξ )Hi(t). (76)

7.2 The Laguerre-Double Laguerre connection problem

In this problem

L(θ+ζ+1)
ν (ξ + t) = ∑

i+ j≤ν
ai, j(ν)L

(θ)
i (ξ )L(ζ )

j (t), (77)

where L(θ+ζ+1)
ν (ξ + t) satisfy the differential equation

[(ξ + t)D2
ξ +(2+θ +ζ −ξ − y)Dξ +ν ]L(θ+ζ+1)

ν (ξ + t) = 0, (78)

the coefficients ai, j(ν) satisfy the recursive formula
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2(ν − i− j)ai, j(ν)+( j+ζ +1)ai, j+1(ν)+ jai, j−1(ν)− (ν − i+1)ai−1, j(ν)

− (ν +ζ − i)ai+1, j(ν) = 0, i, j = ν −1, ν −2, . . . , 0,

(79)

with ai, j(ν) = 0, i+ j > ν , a−1, j(ν) = ai, −1(ν) = 0 and aν , 0(ν) = a0, ν(ν) = 1. Eq. (79) can be solved to give

ai, j(ν) =

{
1, i+ j = ν ,
0, i+ j ̸= ν ,

(80)

which is coherent with the result found in Abromowitz and Stegun [56, formula (22.12.6)], Rounveaux and Rebillard [28,
formula (41)] and Hansen [57, formula (48.24.1)].

L(θ+ζ+1)
ν (ξ + t) =

ν

∑
i=0

L(θ)
i (ξ )L(ζ )

ν−i(t). (81)

Remark 5Multiple integrals using OPs in distinct variables, such as the integral in hydrogen, can be generated via
quantum mechanics [58].

J(p, m, a, b) =
∞∫

−∞

∞∫
−∞

(ξ + iy)mL(m)
p+m(ξ 2 + t2)Ha(ξ )Hb(t)e−(ξ 2+t2)dξ dy, (82)

related to the representation of the hydrogen atom wave functions into the Hermite oscillator wave function is where
a, b, p, and m are the positive integers.

The explicit form of J(p, m.a, b) is unknown. But firstly, the function (ξ + iy)m, i =
√
−1, can be immediately

written in Hermite polynomials [28, p.411],

(ξ + iy)m = 2−m
m

∑
ν=0

(
m
ν

)
iν Hm−ν(ξ )Hν(t).

Secondly, L(m)
p+m(ξ 2 + t2) can be expanded into a product of Laguerre polynomials, L(−1/2)

i (ξ 2), L(−1/2)
j (t2), using

(69), it can be expressed in terms of Hℓ(ξ )Hk(t). This manipulation implies that the integral (81) can be written in terms

of the integrals
∞∫

−∞

4
∏
i=1

Hni(s)e
−s2

ds, which can be computed as in Azor et al. [59, formula (58)].

8. Extension to a product three one-variable classical orthogonal polynomials
The product of three classical OPs is defined as follows

Fm, ν , r(ξ , t, z) = Pm(ξ )Qν(t)Rr(z), (83)
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where Pm(ξ ), Qν(t) and Rr(z) are three classical OPs of degrees m, ν and r in the variables ξ ∈ I, y ∈ J and z ∈ K
respectively. These polynomials satisfy the orthogonality relation

∫ ∫ ∫
G

Fm, ν , r(ξ , t, z)Fi, j, k(ξ , t, z)Ω(ξ , t, z)dξ dydz = δmiδν jδr k
P
hm

Q
hν

R
hr, k, ν , r = 0, 1, 2, . . . , (84)

where

G = {(ξ , t, z) : ξ ∈ I, t ∈ J and z ∈ K}, (85)

Ω(ξ , t, z) =
P
ρ (ξ )

Q
ρ (t)

R
ρ (z), (ξ , t, z) ∈ G. (86)

A partial DE satisfied by Fm, ν , r(ξ , t, z) has the form

[
P
σ (ξ )

∂2

∂ξ 2+
Q
σ (t)

∂2

∂ t2+
R
σ (z)

∂2

∂ z2+
P
τ (ξ )

∂
∂x

+
Q
τ (t)

∂
∂y

+
R
τ (z)

∂
∂ z

+(
P
λ m +

Q
λ ν +

R
λ r)

]
Fm, ν , r(ξ , t, z) = 0.

(87)

A convenient name for the polynomials Fm, ν , r(ξ , t, z) may be consist of three sections related to the names of
Pm(ξ ), Qν(t) and Rν(z), i.e., Name of Pm(ξ )-Name of Qν(t)-Name of Rr(z).

Let f (ξ , t, z) be a continuous function defined on the domainG, and have continuous and bounded partial derivatives
of any order concerning its variables ξ , t and z, then we can write

f (ξ , t, z) =
∞

∑
m, ν , ℓ=0

am, ν , ℓPm(ξ )Qν(t)Rℓ(z), (88)

f (p, q, r)(ξ , t, z) = Dp
ξ Dq

t Dr
z f (ξ , t, z) =

∞

∑
m, ν , ℓ=0

a(p, q, r)
m, ν , ℓ Pm(ξ )Qν(t)Rℓ(z), a(0, 0, 0)

m, ν , ℓ = am, ν , ℓ, (89)

where a(p, q, r)
m, ν , ℓ denote the expansion coefficients of f (p, q, r)(ξ , t, z) in terms of the product Pm(ξ )Qν(t)Rℓ(z). In view of

relation (4), with assumptions that

Dξ

∞

∑
m, ν , ℓ=0

a(p−1, q, r)
m, ν , ℓ Pm(ξ )Qν(t)Rℓ(z) =

∞

∑
m, ν , ℓ=0

a(p, q, r)
m, ν , ℓ Pm(ξ )Qν(t)Rℓ(z), (90)

Dt

∞

∑
m, ν , ℓ=0

a(p, q−1, r)
m, ν , ℓ Pm(ξ )Qν(t)Rℓ(z) =

∞

∑
m, ν , ℓ=0

a(p, q, r)
m, ν , ℓ Pm(ξ )Qν(t)Rℓ(z), (91)
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and

Dz

∞

∑
m, ν , ℓ=0

a(p, q, r−1)
m, ν , ℓ Pm(ξ )Qν(t)Rℓ(z) =

∞

∑
m, ν , ℓ=0

a(p, q, r)
m, ν , ℓ Pm(ξ )Qν(t)Rℓ(z), (92)

the following recursive formulas can be obtained:

P
θ̄ m−1 a(p, q, r)

m−1, ν , ℓ+
P
ζ̄ m a(p, q, r)

m, ν , ℓ +
P
γ̄m+1 a(p, q, r)

m+1, ν , ℓ = a(p−1, q, r)
m, ν , ℓ , m, p ≥ 1, ν , ℓ, q, r ≥ 0, (93)

Q
θ̄ ν−1 a(p, q, r)

m, ν−1, ℓ+
Q
ζ̄ ν a(p, q, r)

m, ν , ℓ +
Q
γ̄ν+1 a(p, q, r)

m, ν+1, ℓ = a(p, q−1, r)
m, ν , ℓ , ν , q ≥ 1, m, ℓ, p, r ≥ 0, (94)

R
θ̄ ℓ−1 a(p, q, r)

m, ν , ℓ−1+
R
ζ̄ ℓ a(p, q, r)

m, ν , ℓ +
R
γ̄ℓ+1 a(p, q, r)

m, ν , ℓ+1 = a(p, q, r−1)
m, ν , ℓ , ℓ, r ≥ 1, m,ν , p, q ≥ 0. (95)

The following theorem extends Theorem 2.
Theorem 3 The coefficients a(p, q, r)

m, ν , ℓ are related to the coefficients with the different superscripts and the original
ones am, ν , ℓ as

a(p, q, r)
m, ν , ℓ =

∞

∑
i=0

P
Cpm (p+m+ i)a(0, q, r)

p+m+i, ν , ℓ, (96)

a(p, q, r)
m, ν , ℓ =

∞

∑
j=0

Q
Cqν (q+ν + j) a(p, 0, r)

m, q+ν+ j, ℓ, q ≥ 1, (97)

a(p, q, r)
m, ν , ℓ =

∞

∑
k=0

R
Crℓ (r+ ℓ+ k) a(p, q, 0)

m, ν , r+ℓ+k, r ≥ 1, (98)

a(p, q, r)
m, ν , ℓ =

∞

∑
i=0

∞

∑
j=0

P
Cpm (p+m+ i)

Q
Cqν (q+ν + j)a(0, 0, r)

p+m+i, q+ν+ j, ℓ, p, q ≥ 1, (99)

a(p, q, r)
m, ν , ℓ =

∞

∑
i=0

∞

∑
k=0

P
Cpm (p+m+ i)

R
Crℓ (r+ ℓ+ k) a(0, q, 0)

p+m+i, ν , r+ℓ+k, p, r ≥ 1, (100)

a(p, q, r)
m, ν , ℓ =

∞

∑
j=0

∞

∑
k=0

Q
Cqν (q+ν + j)

R
Crℓ (r+ ℓ+ k) a(p, 0, 0)

m, q+ν+ j, r+ℓ+k, r ≥ 1, (101)

a(p, q, r)
m, ν , ℓ =

∞

∑
i, j, k=0

P
Cpm (p+m+ i)

Q
Cqν (q+ν + j)

R
Crℓ (r+ ℓ+ k)ap+m+i, q+ν+ j, r+ℓ+k, p, q, r ≥ 1. (102)
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Proof. Eq. (88) can be written as

f (p, q, r)(ξ , t, z) =
∞

∑
m=0

b(p, q, r)
m (y, z)Pm(ξ ), (103)

where

b(p, q, r)
m (y, z) =

∞

∑
ν , ℓ=0

a(p, q, r)
m, ν , ℓ Qν(t)Rℓ(z), (104)

while holding y, z, q, and r constant. Based on Lemma 1, we can infer that

b(p, q, r)
m (y, z) =

∞

∑
i=0

P
Cpm (p+m+ i)b(0, q, r)

p+m+i (y, z). (105)

Using (104) and (105), yields the formula

∞

∑
ν ,ℓ=0

a(p, q, r)
m, ν , ℓ Qν(t)Rℓ(z) =

∞

∑
ν , ℓ=0

[
∞

∑
i=0

P
Cpm (p+m+ i)a(0, q, r)

p+m+i, ν , ℓ

]
Qν(t)Rℓ(z), (106)

which implies that

a(p, q, r)
m, ν , ℓ =

∞

∑
i=0

P
Cpm (p+m+ i)a(0, q, r)

p+m+i, ν , ℓ, p ≥ 1,

and thus formula (96) is proved.
It can also be demonstrated that formulas (97) and (98) are valid by following the same steps with (88), keeping ξ , z,

p, r fixed and ξ , t, p, q fixed, respectively. Substituting (97) into (96) and (98), and substituting (96) into (98) give
formulae (99), (100) and (101). Formula (102) is obtained by substituting (96) into (101). This completes the proof of
Theorem 3.

Remark 6 The corresponding theorems of Doha [45, 50, 53] and Doha et al. [46] in the cases of triple Chebyshev,
Legender, ultraspherical and Jacobi, respectively, can be obtained from our Theorem 3 by taking the suitable polynomials
Pm(ξ ), Qν(t) and Rℓ(z).

Corollary 4 Assume that f (ξ , t, z) and f (p, q, r)(ξ , t, z) can be expanded respectively as in (88) and (89),
respectively,
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ξ m1Pi(ξ ) =
2m1

∑
ℓ1=0

am1, ℓ1(i)Pi+m1−ℓ1(ξ ), (107)

tm2Q j(t) =
2m2

∑
ℓ2=0

am2, ℓ2( j)Q j+m2−ℓ2(t), (108)

zm3Rk(z) =
2m3

∑
ℓ3=0

am3, ℓ3(k)Rk+m3−ℓ3(z), (109)

and

ξ m1tm2zm3

(
∞

∑
i, j, k=0

a(p, q, r)
i, j, k Pi(ξ )Q j(t)Rk(z)

)
=

∞

∑
i, j, k=0

b(p, q, r, m1, m2, m3)
i, j, k Pi(ξ )Q j(t)Rk(z), (110)

then the expansion coefficients b(p, q, r, m1, m2, m3)
i, j, k are given by

b(p, q, r, m1, m2, m3)
i, j, k =

2m1

∑
ℓ1=0

2m2

∑
ℓ2=0

2m3

∑
ℓ3=0

am1, ℓ1(ℓ1 + i−m1)am2, ℓ2(ℓ2 + j−m2)am3, ℓ3(ℓ3 + k−m3)

× a(p, q, r)
ℓ1+i−m1, ℓ2+ j−m2, ℓ3+k−m3

, i, j, k ≥ 0.

(111)

Proof. The proof is similar to that of Corollary 2.

9. Establishing the recursive formulas for the expansion coefficients in series of a
product three of classical OPs
Let f (ξ , t, z) be expanded as in (88), and let it meet the linear non-homogeneous partial DE

m

∑
i=0

ν

∑
j=0

r

∑
k=0

pi, j, k(ξ , t, z) f (i, j, k)(ξ , t, z) = g(ξ , t, z), (112)

where pi, j, k(ξ , t, z), i = 0, 1, . . . , m, j = 0, 1, . . . , ν , k = 0, 1, . . . , r, are polynomials in ξ , t and z such that
pm, 0, 0, p0, ν , 0, p0, 0, r ̸= 0, and assume that g(ξ , t, z) can be expanded as

g(ξ , t, z) =
∞

∑
i, j, k=0

gi, j, kPi(ξ )Q j(t)Rk(z), (113)

Contemporary Mathematics 4860 | W. M. Abd-Elhameed, et al.



are known, then applying Theorem 3 and Corollary 4 or repeated use of relations (93)-(95) along with (112) leads to the
following linear recursive formula of order (d1, d2, d3),

d1

∑
i=0

d2

∑
j=0

d3

∑
k=0

θi, j, k(r, s, l)ar+i, s+ j, l+k = ζ (r, s, l), r, s, l ≥ 0, (114)

where θi, j, k(r, s, l), i = 0, 1, . . . , d1, j = 0, 1, . . . , d2, k = 0, 1, . . . , d3 are polynomials in r, s and l such that
θd1, 0, 0(r, s, l), θ0, d2, 0(r, s, l), θ0, 0, d3(r, s, l) ̸= 0.

An example dealing with a non-homogeneous partial DE is considered to clarify the application of the results
obtained.

Example 2 Consider the non-homogeneous partial DE

ξ uξ −2t uy + zuz +(ξ −2t + z)u = (ξ −2t + z)(ξ + t + z+1),

u(0, t, z) = t + z, u(ξ , 0, z) = ξ + z, u(ξ , t, 0) = ξ + t.

(115)

If (ξ −2t + z)(ξ + t + z+1) and u(p, q, r)(ξ , t, z) are expanded as follows

(ξ −2t + z)(ξ + t + z+1) = ∑
i+ j+k≤2

di, j, kPi(ξ )Q j(t)Rk(z), (116)

u(p, q, r)(ξ , t, z) =
∞

∑
i, j, k=0

a(p, q, r)
i, j, k Pi(ξ )Q j(t)Rk(z), p, q, r = 0, 1, (117)

then our ability to apply partial DE (115) on (117) leads to the following equation

P
θ i−1 a(1, 0, 0)

i−1, j, k+
P
ζ i a(1, 0, 0)

i, j, k +
P
γ i+1 a(1, 0, 0)

i+1, j, k −2
Q
θ j−1 a(0, 1, 0)

i, j−1, k −2
Q
ζ j a(0, 1, 0)

i, j, k −2
Q
γ j+1 a(0, 1, 0)

i, j+1, k

+
R
θ k−1 a(0, 0, 1)

i, j, k−1+
R
ζ k a(0, 0, 1)

i, j, k +
R
γk+1 a(0, 0, 1)

i, j, k+1+
P
θ i−1 ai−1, j, k+

P
γ i+1 ai+1, j, k −2

Q
θ j−1 ai, j−1, k

−2
Q
γ j+1 ai, j+1, k+

R
θ k−1 ai, j, k−1+

R
γk+1 ai, j, k+1 +(

P
ζ i −2

Q
ζ j +

R
ζ k)ai, j, k = di, j, k.

(118)

In the next part, we find the recursive formula satisfied by the expansion coefficients ai, j, k in two different cases for
Pi(ξ ), Q j(t) and Rk(z):

Case 1 The expansion of u(ξ , t, z) in Triple Bessel polynomials.
In this problem

u(ξ , t, z) = ∑
i+ j+k≤ν

ai, j, k Y (θ)
i (ξ )Y (ζ )

j (t)Y (γ)
k (z), (119)
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Eq. (118) takes the form

2(i+θ)
(2i+θ −1)2

(a(1, 0, 0)
i−1, j, k +ai−1, j, k)−

2θ
(2i+θ −2)(2i+θ)

a(1, 0, 0)
i, j, k

− 2i
(2i+θ +2)2

(a(1, 0, 0)
i+1, j, k +ai+1, j, k)−

4( j+ζ )
(2 j+ζ −1)2

(a(0, 1, 0)
i, j−1, k +ai, j−1, k)

+
4 j

(2 j+ζ +2)2
(a(0, 1, 0)

i, j+1, k +ai, j+1, k)+
4ζ

(2 j+ζ −2)(2 j+ζ )
a(0, 1, 0)

i, j, k

+
2(k+ γ)

(2k+ γ −1)2
(a(0, 0, 1)

i, j, k−1 +ai, j, k−1)−
2γ

(2k+ γ −2)(2k+ γ)
a(0, 0, 1)

i, j, k

− 2k
(2k+ γ +2)2

(a(0, 0, 1)
i, j, k+1 +ai, j, k+1)−

[
2θ

(2i+θ −2)(2i+θ)

− 4ζ
(2 j+ζ −2)(2 j+ζ )

+
2γ

(2k+ γ −2)(2k+ γ)

]
ai, j, k = di, j, k,

(120)

where

di, j, k =



π1, 0(θ)π1, 0(ζ )−π1, 0(ζ )π1, 0(γ)+2π1, 0(θ)π1, 0(γ)

+
2

∑
i=1

(πi, 0(θ)−2πi, 0(ζ )+πi, 0(γ)), i = j = k = 0,

π2, 1(γ)+π1, 1(γ)[1+2π1, 0(θ)−π1, 0(ζ )], i = 0, j = 0, k = 1,

π2, 2(γ), i = 0, j = 0, k = 2,

−2π2, 1(ζ )−π1, 1(ζ )[2+π1, 0(θ)+π1, 0(γ)], i = 0, j = 1, k = 0,

−π1, 1(ζ )π1, 1(γ), i = 0, j = 1, k = 1,

π2, 1(θ)+π1, 1(θ)[1−π1, 0(ζ )+2π1, 0(γ)], i = 1, j = k = 0,

2π1, 1(θ)π1, 1(γ), i = 1, j = 0, k = 1,

−π1, 1(θ)π1, 1(ζ ), i = 1, j = 1, k = 0,

π2, 2(θ), i = 2, j = k = 0,

−2π2, 2(ζ ), i = 0, j = 2, k = 0,

0, otherwise,

where
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πν , i(θ) =
(ν

i

) (−1)ν−i2ν(2i+θ +1)Γ(i+θ +1)
Γ(ν + i+θ +2)

.

Using formulae (96)-(98) with (120) and after some calculations, the following recursive formula can be obtained

(η0i −2γ0 j +µ0k)ai, j, k +η1iai+1, j, k +η2iai+2, j, k +η3iai+3, j, k +η4iai+4, j, k

−2γ1 jai, j+1, k −2γ2 jai, j+2, k −2γ3 jai, j+3, k −2γ4 jai, j+4, k +µ1kai, j, k+1 +µ2kai, j, k+2

+µ3kai, j, k+3 +µ4kai, j, k+4 = ci, j, k,

(121)

where

η0i = 2[(2i+θ +1)5]
−1(i+θ +1)3,

η1i = [(2i+θ +2)5]
−1(i+θ +2)2[4i3 +(20+4θ)i2 +(32+12θ +θ 2)i+(16+6θ +θ 2)],

η2i =− [(2i+θ +3)5]
−1(i+θ +3)(i+2)

× [(8+4θ)i2 +(40+28θ +4θ 2)i+(48+47θ +12θ 2 +θ 3)],

η3i =− [(2i+θ +4)5]
−1(i+2)2

× [4i3 +(40+8θ)i2 +(144+52θ +5θ 2)i+(144+86θ +16θ 2 +θ 3)],

η4i =−2[(2i+θ +5)5]
−1(i+2)3,

where γ0 j, γ1 j, γ2 j, γ3 j and γ4 j are obtained from η0i, η1i, η2i, η3i and η4i, respectively, by replacing each i and θ with j
and ζ respectively, µ0k, µ1k, µ2k, µ3k and µ4k are obtained from η0i, η1i, η2i, η3i and η4i, respectively, by replacing each
i and θ with k and γ respectively, and ci, j, k are obtained from di, j, k by replacing each θ , ζ and γ with θ +2, ζ +2 and
γ +2, respectively.

This problem can be solved by solving the recursive formula (121), and its solution is given by
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ai, j, k =



A0B0C0 −
2

(θ +2)
− 2

(ζ +2)
− 2

(γ +2)
, i = j = k = 0,

A1B0C0 +
2

(θ +2)
, i = 1, j = k = 0,

A0B1C0 +
2

(ζ +2)
, i = 0, j = 1, k = 0,

A0B0C1 +
2

(γ +2)
, i = j = 0, k = 1,

AiB jCk, otherwise,

(122)

where Ai = Ii(θ), B j = I j(ζ ) and Ck = Ik(γ), i ≥ 0, such that Ii(θ) is given as in Example 1.
Remark 7 The solution to the previous example can also be derived by utilizing Hermite and Jacobi polynomials.

The details are omitted.
Case 2 The expansion of u(ξ , t, z) in Triple Laguerre polynomials
In this problem

u(ξ , t, z) = ∑
i+ j+k≤ν

ai, j, k L(θ)
i (ξ )L(ζ )

j (t)L(γ)
k (z), (123)

Eq. (118) takes the form

−(i+θ +1)(a(1, 0, 0)
i+1, j, k −ai+1, j, k)+(2i+θ +1)a(1, 0, 0)

i, j, k − i(a(1, 0, 0)
i−1, j, k +ai−1, j, k)

+2( j+ζ +1)(a(0, 1, 0)
i, j+1, k +ai, j+1, k)−2(2 j+ζ +1)a(0, 1, 0)

i, j, k +2 j(a(0, 1, 0)
i, j−1, k +ai, j−1, k)

−(k+ γ +1)(a(0, 0, 1)
i, j, k+1 −ai, j, k+1)+(2k+ γ +1)a(0, 0, 1)

i, j, k − k(a(0, 0, 1)
i, j, k−1 +ai, j, k−1)

+(2i−4 j+2k+θ −2ζ + γ)ai, j, k = di, j, k,

(124)

where the expression of di, j, k is similar to the above case such that

πν , i(θ) =
(−1)iν!(θ + i+1)ν−i

(ν − i)!
.

Eqs. (93)-(95) become
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a(p, q, r)
i, j, k − a(p, q, r)

i−1, j, k = a(p−1, q, r)
i, j, k , p, i ≥ 1, (125)

a(p, q, r)
i, j, k − a(p, q, r)

i, j−1, k = a(p, q−1, r)
i, j, k , q, j ≥ 1, (126)

a(p, q, r)
i, j, k − a(p, q, r)

i, j, k−1 = a(p, q, r−1)
i, j, k , r, k ≥ 1. (127)

Now, repeated use of relations (125)-(127) to eliminate the coefficients a(1, 0, 0)
i−1, j, k, a(1, 0, 0)

i, j, k , a(1, 0, 0)
i+1, j, k, a(0, 1, 0)

i, j−1, k, a(0, 1, 0)
i, j, k ,

a(0, 1, 0)
i, j+1, k, a(0, 0, 1)

i, j, k−1, a(0, 0, 1)
i, j, k and a(0, 0, 1)

i, j, k+1 yields

(3i−6 j+3k+θ −2ζ + γ)ai, j, k −2(i+θ +1)ai+1, j, k − iai−1, j, k

+2( j+ζ +1)ai, j+1 +2 jai, j−1, k −2(k+ γ +1)ai, j, k+1 − kai, j, k−1 = fi, j, k, i, j, k ≥ 0,

(128)

where

fi, j, k = di, j, k −di−1, j, k −di, j−1, k +di−1, j−1, k −di, j, k−1 +di−1, j, k−1 −di, j−1, k−1 +di−1, j−1, k−1, i, j, k ≥ 0,

Eq. (128) can solved to give

ai, j, k =



2−(θ+ζ+γ+6)(θ +1)(ζ +1)(γ +1)+(θ +ζ + γ +3), i = j = k = 0,

2−(θ+ζ+γ+7)θ(ζ +1)(γ +1)−1, i = 1, j = k = 0,

2−(θ+ζ+γ+7)ζ (θ +1)(γ +1)−1, i = 0, j = 1, k = 0,

2−(θ+ζ+γ+7)γ(θ +1)(ζ +1)−1, i = j = 0, k = 1,

2−(θ+ζ+γ+i+ j+6)(θ − i+1)(ζ − j+1)(γ − k+1), otherwise.

(129)

10. The expansion of (ξ + t)ν as a multiple series in a product three of classical
OPs
In this problem

(ξ + t + z)ν = ∑
i+ j+k≤ν

ai, j, k(ν)Pi(ξ )Q j(t)Rk(z), (130)

we have u(ξ , t, z) = (ξ + t + z)ν satisfies the homogeneous partial DE
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ξ uξ + yuy + zuz −ν u = 0, (131)

then our ability to apply partial DE (131) on (130) leads to the following equation

P
θ i−1 a(1, 0, 0)

i−1, j, k+
P
ζ i a(1, 0, 0)

i, j, k +
P
γ i+1 a(1, 0, 0)

i+1, j, k+
Q
θ j−1 a(0, 1, 0)

i, j−1, k+
Q
ζ j a(0, 1, 0)

i, j, k +
Q
γ j+1 a(0, 1, 0)

i, j+1, k

+
R
θ k−1 a(0, 0, 1)

i, j, k−1+
R
ζ k a(0, 0, 1)

i, j, k +
R
γk+1 a(0, 1, 1)

i, j, k+1 −ν ai, j, k = 0.

(132)

10.1 The link between (ξ + t + z)ν and Triple Hermite polynomials

In this problem

(ξ + t + z)ν = ∑
i+ j+k≤ν

ai, j, k(ν)Hi(ξ )H j(t)Hk(z), (133)

Eq. (132) takes the form

1
2

a(1, 0, 0)
i−1, j, k(ν)+(i+1)a(1, 0, 0)

i+1, j, k(ν)+
1
2

a(0, 1, 0)
i, j−1, k(ν)+( j+1)a(0, 1, 0)

i, j+1, k(ν)

+
1
2

a(0, 0, 1)
i, j, k−1(ν)+(k+1)a(0, 0, 1)

i, j, k+1(ν)−ν ai, j, k(ν) = 0,

(134)

and formula (102) becomes

a(p, q, r)
i, j, k = 2p+q+r p!q!r!

(p+i
p

)(q+ j
q

)(r+k
r

)
ap+i, q+ j, r+k, i, j, k, p, q, r ≥ 0. (135)

Application of formula (135) to (132), gives

(ν − i− j− k)ai, j, k(ν)−2(i+1)2ai+2, j, k(ν)−2( j+1)2 ai, j+2, k(ν)−2(k+1)2 ai, j, k+2(ν) = 0,

i, j, k = ν −1, ν −2, . . . , 0,

(136)

with ai, j, k(ν) = 0, i+ j+k > ν , a−1, j, k(ν) = ai, −1, k(ν) = ai, j, −1(ν) = 0 and aν , 0, 0(ν) = a0, ν , 0(ν) = a0, 0, ν(ν) =
2−ν . Eq. (136) can be solved to give
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ai, j, k(ν) =



ν!2−ν 3(ν−i− j−k)/2

i! j !k!
(

ν − i− j− k
2

)
!
, (ν − i− j− k) even,

0, (ν − i− j− k) odd.

(137)

In particular, and for the special case z = 0, Eq. (133), after some calculations, becomes in agreement with Eq. (60),
while for the case y = z = 0 we get the result obtained by Rainville [54, p.194] and Sánchez-Ruiz and Dehesa [55, p.159].

10.2 The link between (ξ + t + z)ν and Triple Laguerre polynomials

In this problem

(ξ + t + z)ν = ∑
i+ j+k≤ν

ai, j, k(ν)L
(θ)
i (ξ )L(ζ )

j (t)L(γ)
k (z), (138)

Eq. (132) takes the form

− ia(1, 0, 0)
i−1, j, k(ν)+(2i+θ +1)a(1, 0, 0)

i, j, k (ν)− (i+θ +1)a(1, 0, 0)
i+1, j, k(ν)

− ja(0, 1, 0)
i, j−1, k(ν)+(2 j+ζ +1)a(0, 1, 0)

i, j, k (ν)− ( j+ζ +1)a(0, 1, 0)
i, j+1, k(ν)

− ka(0, 0, 1)
i, j, k−1(ν)+(2k+ γ +1)a(0, 0, 1)

i, j, k (ν)− (k+ γ +1)a(0, 0, 1)
i, j, k+1(ν)

−ν ai, j, k(ν) = 0.

Now, repeated use of relations (125)-(127) to eliminate the coefficients a(1, 0, 0)
i−1, j, k(ν), a(1, 0, 0)

i, j, k (ν), a(1, 0, 0)
i+1, j, k(ν),

a(0, 1, 0)
i, j−1, k(ν), a(0, 1, 0)

i, j, k (ν), a(0, 1, 0)
i, j+1, k(ν), a(0, 0, 1)

i, j, k−1(ν), a(0, 0, 1)
i, j, k (ν) and a(0, 0, 1)

i, j, k+1(ν) yields

(ν − i− j− k)ai, j, k(ν)+(i+θ +1)ai+1, j, k(ν)+( j+ζ +1)ai, j+1, k(ν)+(k+ γ +1)ai, j, k+1(ν) = 0,

i, j, k = ν −1, ν −2, . . . , 0,

(139)

with ai, j, k(ν) = 0, i+ j+ k > ν , a−1, j, k(ν) = ai, −1, k(ν) = ai, j, −1(ν) = 0 and aν , 0, 0(ν) = a0, ν , 0(ν) = a0, 0, ν(ν) =
(−1)ν

ν!
. The solution of (139) is
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ai, j, k(ν) =


(−ν)i+ j+k(θ +ζ + γ +3)ν

(θ +ζ + γ +3)i+ j+k
, i, j, k ≤ ν ,

0, otherwise.

(140)

In particular, and for the special case z = 0, Eq. (138), after some calculations, becomes in agreement with Eq. (65),
while for the case y = z = 0 we get the result obtained by Rainville [54, p.207] and Sánchez-Ruiz and Dehesa [55, p.159].
In view of relation (69), we obtain the following corollary.

Corollary 5 In the problem

(ξ 2 + t2 + z2)ν =
∞

∑
i, j, k=0

ai, j, k(ν)H2i(ξ )H2 j(t)H2k(z), (141)

the coefficients ai, j, k(ν) are given by

ai, j, k(ν) =


ν!(3/2)ν 4−(i+ j+k)

(ν − i− j− k)! i! j!k! (3/2)i+ j+k
, i+ j+ k ≤ ν ,

0, otherwise.

(142)

Remark 8 In view of formulae (68) and (140), we can deduce that

(
k

∑
m=1

ξm

)ν

= ∑
i1+i2+···+ik≤ν

(−ν)i1+···+ik(θ1 + · · ·+θk + k)ν

(θ1 + · · ·+θk + k)i1+···+ik

k

∏
m=1

L(θm)
im (ξm), (143)

and using (69) leads to

(
k

∑
m=1

ξ 2
m

)ν

= ∑
i1+i2+···+ik≤ν

ν!(k/2)ν 4−(i1+···+ik)

(ν − i1 −·· ·− ik)!
k
∏

m=1
ik!(k/2)i1+···+ik

k

∏
m=1

H2im(ξm). (144)

Remark 9 In view of formulae (64) and (137), we can deduce that

(
k

∑
m=1

ξm

)ν

= ∑
(ν−i1−i2−···−ik) even

2−ν ν!k(ν−i1−i2−···−ik)/2

((ν − i1 −·· ·− ik)/2)!
k
∏

m=1
im!

k

∏
m=1

Him(ξm). (145)

11. Connection problem in the sense of three variables
In such case, we have to calculate ai, j, k(ν) in the problem
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Fν(aξ +bt + cz) = ∑
i+ j+k≤ν

ai, j, k(ν)Pi(ξ )Q j(t)Rk(z), (146)

where Fν , Pi and Q j are classical OPs. The work developed in Section 8 permits us to obtain a recursive formula satisfied
by the coefficients ai, j, k(ν), if we know a partial differential operator that cancels the left-hand side of (146).

11.1 The Hermite-Triple Hermite connection problem

In this problem

Hν

(
ξ + t + z√

3

)
= ∑

i+ j+k≤ν
ai, j, k(ν)Hi(ξ )H j(t)Hk(z), (147)

where Hν((ξ + t + z)/
√

3) satisfy the DE

[D2
ξ −6(ξ + t + z)Dξ +6ν ]Hν((ξ + t + z)/

√
3) = 0, (148)

the coefficients ai, j, k(ν) satisfy the recursive formula

6(ν − i)ai, j, k(ν)−6(i+1)ai+1, j−1, k(ν)−6(i+1)ai+1, j, k−1(ν)

−12(i+1)(k+1)ai+1, j, k+1(ν)−12(i+1)( j+1)ai+1, j+1, k(ν)

−8(i+1)2ai+2, j, k(ν) = 0, i, j, k = ν −1, ν −2, . . . , 0,

(149)

with ai, j, k(ν) = 0, i+ j+ k > ν , a−1, j, k(ν) = ai, −1, k(ν) = ai, j, −1(ν) = 0 and aν , 0, 0(ν) = a0, ν , 0(ν) = a0, 0, ν(ν) =
3−ν/2. Eq. (149) can be solved to give

ai, j, k(ν) =


3−ν/2 ν!

i! j!k!
, i+ j+ k = ν ,

0, i+ j+ k ̸= ν ,

(150)

which is coherent with the result found in Hansen [57, formula (49.7.1)].

Hν

(
ξ + t + z√

3

)
= 3−ν/2 ∑

i+ j+k=ν

ν!
i! j!k!

Hi(ξ )H j(t)Hk(z). (151)

11.2 The Laguerre-Triple Laguerre connection problem

In this problem
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L(θ+ζ+γ+2)
ν (ξ + t + z) = ∑

i+ j+k≤ν
ai, j, k(ν)L

(θ)
i (ξ )L(ζ )

j (t)L(γ)
k (z), (152)

where L(θ+ζ+γ+2)
ν (ξ + t + z) satisfy the DE

[(ξ + t + z)D2
ξ +(3+θ +ζ + γ −ξ − y− z)Dξ +ν ]L(θ+ζ+γ+2)

ν (ξ + t + z) = 0, (153)

the coefficients ai, j, k(ν) satisfy the recursive formula

2(ν − i− j− k)ai, j, k(ν)− (ν − i+1)ai−1, j, k(ν)+ jai, j−1, k(ν)

+ kai, j, k−1(ν)+(k+ γ +1)ai, j, k+1(ν)+( j+ζ +1)ai, j+1, k(ν)

− (ν − i+ζ + γ +1)ai+1, j, k(ν) = 0, i, j, k = ν −1, ν −2, . . . , 0,

(154)

with ai, j, k(ν) = 0, i+ j+k > ν , a−1, j, k(ν) = ai, −1, k(ν) = ai, j, −1(ν) = 0 and aν , 0, 0(ν) = a0, ν , 0(ν) = a0, 0, ν(ν) = 1.
Eq. (154) can be solved to give

ai, j, k(ν) =

{
1, i+ j+ k = ν ,
0, i+ j+ k ̸= ν ,

(155)

which is coherent with the result found in Hansen [57, formula (48.24.1)],

L(θ+ζ+γ+2)
ν (ξ + t + z) = ∑

i+ j+k=ν
L(θ)

i (ξ )L(ζ )
j (t)L(γ)

k (z). (156)

Remark 10 The examples chosen in Sections 5-7, 9-11 closely relate to famously discussed connection problems
in the literature regarding classical orthogonal polynomials. We specifically looked for PDEs that exhibit properties or
solutions that could be expressed in terms of these polynomials, thereby demonstrating the applicability of our derived
formulas for expansion and connection coefficients. Additionally, the chosen examples serve to effectively illustrate the
main concepts and results of our paper. Each example showcases particular features of our methodology, reinforcing the
theoretical contributions we make.

Remark 11 In view of formulae (77) and (156), we can deduce that

L(θ1+θ2+···+θk+k−1)
ν

(
k

∑
m=1

ξm

)
= ∑

i1+i2+···+ik=ν

k

∏
m=1

L(θm)
im (ξm). (157)

Remark 12 In view of formulae (75) and (150), we can deduce that
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Hν

(
1√
k

k

∑
m=1

ξm

)
= k

−
ν
2 ∑

i1+i2+···+ik=ν

ν!
k
∏

m=1
im!

k

∏
m=1

Him(ξm). (158)

Remark 13 We aim to highlight our algorithm’s systematic nature and simplicity for constructing linear recursive
formulas of the form (44) and (114). This algorithm can be implemented using symbolic language in any computer algebra
system, such as Mathematica Version 12.

12. Conclusion
This paper presented recursive and explicit formulas for the expansion and connection coefficients in the series

of classical orthogonal polynomial products. Our results enhance existing methodologies and provide computationally
efficient tools for practitioners working with these polynomials in various applications. We demonstrated the applicability
of our derived formulas through several examples of partial differential equations closely related to classical orthogonal
polynomials. The chosen examples illustrated the versatility and robustness of our methods, confirming their relevance
across different scientific fields. For future work, we plan to extend our results to encompass q-orthogonal polynomials,
allowing for exploring new problems in quantum calculus and other areas. This extension could reveal deeper connections
between classical and q-orthogonal systems. Also, we will focus on developing numerical algorithms based on our
formulas, enabling practical applications in computational mathematics and engineering. Implementing these algorithms
will facilitate testing and validation against existing numerical methods.
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