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Abstract: This research examines how degrees of freedom and covariancematrix configurations affectWishart distributed
matrix eigenvalue distributions. We use the energy distance metric to compare eigenvalue distributions in Identity,
Diagonal, and Structured covariance matrices. Through extensive simulations, we show that degrees of freedom and
covariance matrix architectures greatly affect eigenvalue dispersion and energy distance distributions. Statistical models
are more reliable with smaller, more stable distributions from higher degrees of freedom. We analyze the eigenvalue
distributions of NextEra Energy (NEE), Enphase Energy (ENPH), First Solar (FSLR), SunPower (SPWR), and Brookfield
Renewable Partners (BEP) stocks using this analytical methodology. Daily returns and covariance matrices were
calculated using daily closing prices from January 1, 2018, to January 1, 2023. Our findings support simulation studies
indicating larger degrees of freedom lead to more stable energy distance distributions.The findings of this study are useful
in finance, genetics, and environmental studies, where stability and variability of the covariance structure are important.
The requirement for higher-dimensional settings and real-world datasets to validate the theoretical framework are our
research’s constraints. This research expands Wishart distribution knowledge and provides a solid analytical foundation
for data analysis and model fitting in numerous scientific fields.
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Abbreviation
DoF Degrees of Freedom
ECDF Empirical Cumulative Distribution Function
ED Energy Distance
PCA Principal Component Analysis
PDF Probability Density Function
WDM Wishart Distribution Matrices
NEE NextEra Energ
ENPH Enphase Energ
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FSLR First Solar
SPWR SunPower
BRP Brookfield Renewable Partners

1. Introduction
TheWishart distribution is a standard tool in multivariate statistics due to its importance as a multivariate probability

distribution. JohnWishart first presented this distribution in 1928 [1]; it generalizes the matrix-variate gamma distribution
straightforwardly, if the data follow a multivariate normal distribution, then the sample covariance matrices will have this
distribution. The Wishart distribution has been the subject of thorough investigation within the literature of multivariate
analysis concerning its properties and theoretical foundations [2–4] such as spectral decomposition [5] and expected
Kullback-Leibler divergence [6] as well as provides practical value such as in [7]. Let X be a random positive definite
matrix with dimensions p× p. If X satisfies the probability density function (PDF), it is considered to adhere to a Wishart
distribution with parameters V and n. The PDF of X in the Wishart distribution is given by:

f (X; V, n) =
∣X ∣

n−p−1
2 exp(−1

2
tr(V−1X))

2
np
2 ∣V∣ n2 Γp(

n
2
)

, (1)

where V is an n × n positive definite matrix, v > n − 1 is the degrees of freedom, Γn(⋅) is the multivariate gamma
function, and tr(⋅) denotes the matrix trace. The probability distribution of the sample covariance matrix follows aWishart
distribution S = XX′, where the columns of X are i.i.d multivariate normal Nn(0, V). In this context, V represents the
population covariance matrix.

The expected value and variance of S are given by:

E[S] = vV (2)

Var(S) = v(V⊗V) (3)

where ⊗ denotes the Kronecker product.
Multivariate statistics use the Wishart distribution for covariance matrix estimation, uncertainty analysis, and

inference [8–10].TheWishart distributed data is a prior that pairs well with the inverse covariance matrix of a multivariate
normal random vector in Bayesian statistics [9]. It is commonly used in random matrix spectral theory [11]. Furthermore,
The Wishart distribution helps statisticians and machine learners to identify covariance matrices and uncertainty.
Various machine learning methods employ Wishart distributions to represent covariance patterns in multivariate data
and evaluate Rayleigh fading MIMO wireless channel performance in wireless communications [12, 13]. In finance,
Wishart-based covariance forecasts improve portfolio risk assessment [14]. Wishart-based stochastic volatility models
are used to analyze changes in financial time series covariance matrices [15]. Székely developed energy statistics to
assess distribution differences using “potential energy” [16]. The energy distance E between Wishart-distributed matrix
eigenvalue distributions is:

E = 1
2n

n

∑
i=1
(F1(λi)−F2(λi))2 (4)
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The empirical cumulative distribution functions (ECDFs) of eigenvalues from two Wishart-distributed matrices are
F1(λ) and F2(λ), with λi representing the i-th eigenvalue. This energy distance measure quantifies structural differences
in eigenvalue distributions, making Wishart-distributed data comparisons robust.

In this sense, the points of data that are statistically closer together have less “potential energy”, while those that are
farther away have more [17]. The metric of energy distance is applied to distinguish distributions and underlying statistical
analysis and inference [18]. Energy statistics can evaluate differences between samples or proposed distributions based
on observation distances [17]. These techniques are used for feature selection, nonparametric distribution equality tests,
and independence testing [19].

Energy distance based onWishart distribution eigenvalue distribution may be beneficial for distribution comparisons.
Instead of comparing individual components in the covariance matrices, this method measures the disparity between
the underlying structures of the distributions, as expressed by their eigenvalue distributions. High-dimensional Wishart
distributions may make conventional methods computationally costly or unintelligible because of to the “curse of
dimensionality”. The energy distance technique leverages the unique properties of eigenvalue distributions to provide
a precise and useful measure of dissimilarity across Wishart distributions, facilitating for comparisons and analysis in a
variety of application fields.

There are some problems with using Székely’s energy statistics directly with pairwise distances for Wishart
distributions, even though they provide a strong foundation. First, Euclidean distance is unsuitable because covariance
matrices, which express linear interactions between features, fall into non-Euclidean space. Additionally, by ignoring
the underlying structure and connections of the covariance matrices and instead computing element-wise differences
many valuable information would be lost. These distances also struggle to capture substantial differences across Wishart
distributions due to scaling sensitivity and transformation invariance. These difficulties need alternate ways like the
suggested energy distance based on eigenvalue distribution, which overcomes these constraints and uses distinctive
properties of eigenvalue distributionsfor discrepancy measurement.

The energy distance based on the eigenvalue distribution eliminates pairwise distance drawbacks. To address issues
with non-Euclidean space, such as information loss and scale sensitivity, we focus on Wishart distribution eigenvalue
distributions. By comparing empirical cumulative distribution functions (ECDFs) of eigenvalues, the energy distance
measures Wishart sample structural dissimilarity. Dissimilarities may be difficult to discover with pairwise distance.

2. Eigenvalue decomposition for wishart-distributed matrices
Understanding eigenvalue decomposition is crucial for understanding linear transformations in Wishart-distributed

matrices W with dimensions (n×n), where n indicates data dimensionality. The eigenvalues of W, λ1, λ2, . . . , λn, are
linked to their corresponding eigenvectors v1, v2, . . . , vn in non-increasing order, forming the eigenvector matrix V
with a dimension of (n×n). The decomposition procedure starts with the determination of the characteristic equation,
∣W−λ I∣ = 0, which results in the n eigenvalues, where λ represents an eigenvalue and I is the identity matrix matching
the dimensions of W.

Subsequently, for each derived eigenvalue λi, its corresponding eigenvector vi is determined by solving (W−λiI)vi =
0, a system ensuring non-trivial solutions due to the determinant condition of (W−λiI) being zero. Given the real and
symmetric nature of W in Wishart distributions, all λi are real and non-negative, and eigenvectors associated with distinct
eigenvalues are orthogonal, i.e., vT

i v j = 0 for i ≠ j. Ultimately, the eigenvalue decomposition of W is formulated as
W =V VT , where = diag(λ1, λ2, . . . , λn) andV consists of columns of eigenvectors. Decomposing the data represented
by W reveals its structure, including the variance (eigenvalues) and orientation (eigenvectors) of its major components.

2.1 Eigenvalues and eigenvectors in covariance matrix

Eigenvalue decomposition is essential for understanding matrix behaviors, especially in covariance matrices, where
eigenvalues and eigenvectors reveal data structure and variability. A covariance matrix, Σ, outlines linear relationships
between dataset features, forming a p× p square matrix for p features, where each element Σi j denotes the covariance
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between the i-th and j-th features. Eigenvalues (λi) of Σ, derived from solving the characteristic equation ∣Σ−λ I∣ = 0
where I is the identity matrix of corresponding dimensions, represent the variance amounts captured by linear data
transformations, highlighting the spread or dispersion. Each eigenvalue is associated with a non-zero eigenvector (vi),
defining the direction of maximum variance, obtained by solving (Σ−λiI)vi = 0, indicative of a homogeneous system.
Eigenvectors corresponding to distinct eigenvalues are orthogonal, satisfying vT

i v j = 0 for i ≠ j, thereby ensuring
independent variance directions in data space. The eigenvalue decomposition of Σ is Σ =V ΛV T , where V is the matrix of
eigenvectors and Λ is the diagonal matrix containing eigenvalues, which reveals the structure of the covariance matrix.
Further, Principal Component Analysis (PCA) uses eigenvalues and eigenvectors to emphasize the most significant
variance directions of the data, reducing dimensionality while preserving important information.

2.2 Energy distance for discrepancy between eigenvalue distributions

Energy distance, conceptualized by Székely, provides a quantitative measure for assessing the discrepancy between
probability distributions, adapted in this context to evaluate the differences between eigenvalue distributions fromWishart-
distributed matrices. Denote λ 1

i and λ 2
i as the i-th eigenvalues from two distinct Wishart-distributed matricesW1 andW2,

respectively, ordered non-increasingly. Let F1(λ) and F2(λ) represent the empirical cumulative distribution functions
(ECDFs) for the eigenvalues of W1 and W2, respectively. The ECDF at a specific value λ signifies the probability of
an eigenvalue being less than or equal to λ , with n indicating the dimensionality of the matrices. The energy distance
E between the two eigenvalue distributions is mathematically defined as in equation 4 where the discrepancy at each
eigenvalue level is accentuated by the differences in ECDFs at each λi, with larger discrepancies indicating greater
differences. The squared differences emphasize significant gaps, while summing across all n eigenvalues furnishes a
comprehensive assessment.

The normalization factor 1
2
ensures that the energy distance E remains non-negative and proportional to the count

of eigenvalues. A higher value of E suggests significant differences between the eigenvalue distributions of the two
matrices, indicative of a substantial discrepancy in their Wishart distributions. Conversely, a lower E reflects closer
similarity between distributions. This metric, distinct from the Frobenius norm, specifically addresses structures inherent
to eigenvalues, circumventing limitations associated with non-Euclidean space or loss of information, and thus provides
a robust measure for matrix dissimilarity by leveraging the unique properties of eigenvalue distributions.

This study is driven by the need for strong statistical techniques that appropriately represent covariance structure
variability and stability. This work uses the energy distance metric to thoroughly analyze how degrees of freedom and
covariance matrix structure impact eigenvalue distributions. This study helps construct robust statistical models for
finance, genetics, and environmental research by revealing how degrees of freedom and covariance structures impact
eigenvalue dispersion.

The discipline benefits conceptually and practically from this study. By explaining how degrees of freedom and
covariance matrix configurations affect eigenvalue dispersion, it improves Wishart distribution knowledge. It provides
useful insights for risk management and portfolio optimization in finance, genetics, and environmental research, where
stable covariance structures are crucial.

The energy distance metric is used to evaluate differences in Wishart-distributed matrix eigenvalue distributions
in this research. Significant simulations and real-world data analysis from the renewable energy industry corroborate
theoretical conclusions, linking theory and practice.

3. Simulation study
This simulation study examinesWishart distribution eigenvalue distribution energy distance undermany circumstances.

Different degrees of freedom (v) will be studied to understand how Wishart distribution and eigenvalue dispersion affect
energy distance.We used the dcor Python package developed by [20] for precise and efficient energy distance calculations.
An analysis will be conducted to assess the influence of various configurations of the theoretical covariance matrix
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(W0), including the identity matrix (W0 = I) for uncorrelated features with identical eigenvalues, a diagonal matrix
(W0 = diag(σ1, σ2, . . . , σn) for distinct variances per feature, and structured matrices with specific correlation patterns.
We will create n = 300 Wishart distributed matrices for each configuration and combination of parameters for statistical
simulation.

3.1 Exploration of scenarios impacting energy distance

Here, we focus on the impact of degrees of freedom (v) and theoretical covariance matrix structures W0 on energy
distance.

3.1.1Degrees of freedom (ν)

We investigate how seven degrees of freedom impact Wishart distribution and eigenvalue dispersion as follow:
ν = 3: Less degree of freedom leads to a more skewed distribution with a higher eigenvalue dispersion, which means

a less stable eigenvalue spectrum.
ν = 10: At this moderate degree of freedom, a predicted equilibrium between the eigenvalue spread and distribution

stability balances distribution features.
ν = 30: Higher degree of freedom denotes a distribution that approximates normality with a smaller eigenvalue

variance, indicating a more stable and less variable distribution.

3.1.2Theoretical covariance matrix (Σ0)

We investigate three covariance matrix configurations to determine their effect on energy distance in different data
interrelationships:

Identity Matrix (Σ0 = I): Symbolizes uncorrelated features with equal variance (diagonal elements equal to 1, and
off-diagonal elements being 0), leading to identical eigenvalues due to absent feature correlations.

DiagonalMatrix withVaried Elements (Σ0 = diag(σ1, σ2, . . . , σp)): This configuration, varying diagonal elements
(σi), introduces distinct variances per feature, from σ1 = 2 down to σp = 0.1, aiming to scrutinize the effect of a gradient
in variance on the eigenvalue distribution dynamics.

3.1.3Structured matrix with correlation patterns (W0)

Instills specific feature dependencies via a predefined structured covariance matrix, exemplified by:

W0 =
⎡⎢⎢⎢⎢⎢⎣

ω11 ω12 ω13

ω21 ω22 ω23

ω31 ω32 ω33

⎤⎥⎥⎥⎥⎥⎦
,

introducing discernible positive correlations between select features, thereby influencing the resultant eigenvalue
distributions compared to the initial scenarios.

Through these scenarios, we aim to unravel the nuanced responses of energy distance to alterations in the Wishart
distributions’ structure and parameterization.

Figure 1 shows the integrated visual analysis of the energy distance distributions of the eigenvalues in the Identity,
Diagonal and Structured scenarios and the selected degrees of freedom (DoF: 5, 10, 20). While Figure 2 provides a detailed
visualization of energy distance between eign values distributions for a broader range of degrees of freedom. The degree
of freedom (DoF) has a substantial impact on the dispersion and central tendency of distribution since bigger DoFs lead to
more reduced distributions. The structures of covariance matrices significantly impact the diversity of energy distance, as
the Diagonal and Structured scenarios reveal larger distributions at lower DoFs. Visualizing Wishart-distributed matrices
helps statistical modeling and analysis of high-dimensional data.
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Figure 1. Energy distance distributions across scenarios and selected degrees of freedom

Figure 2. Energy distance distributions across scenarios and seven degrees of freedom

The covariance matrix structure and degrees of freedom in dealing with energy distances in Wishart-distributed
matrices are shown to be strongly related. Specifically, matrices with fewer degrees of freedom have more energy
distance variability, which predicts more eigenvalue distribution deviations. Energy distance distributions decrease with
increasing degrees of freedom, thereby maintaining eigenvalue dispersion.In degrees of freedom, identity matrices vary
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little, whereas diagonal and structured matrices are more sensitive. This work shows a detailed relationship between
matrix structure and statistical properties, shedding light on Wishart distributions in multivariate statistical research.

3.2 Simulation methodology

We build Wishart distributed matrices with 300 samples for each scenario and degree of freedom for (n = 100).
These matrices’ eigenvalues are calculated, and Székely’s concept is used to calculate the energy distance between
configurations. This adequate technique offers a realistic statistical simulation that captures diversity in eigenvalue
distributions across settings as seen in Figure 3.

Figure 3. Flowchart of the simulation process

4. Real data analysis
4.1 Data collection and preparation

We examined the energy distance of renewable energy industry stock eigenvalue distributions in this research. The
companies analyzed were NextEra Energy (NEE), Enphase Energy (ENPH), First Solar (FSLR), SunPower (SPWR), and
Brookfield Renewable Partners (BRP). Yahoo Finance provided daily closing prices from January 1, 2018, until January
1, 2023. The percentage change in adjusted closing prices was used to generate daily returns for covariance matrix
calculations.

4.2 Methodology

We used the energy distance metric to compare distributions. It compares eigenvalue distributions of covariance
matrices formed from stock returns under different circumstances. Our analysis focused on DoF of 5, 10 and 20 and their
effects on energy distance distributions.Considered scenarios:

Identity Matrix Shows uncorrelated characteristics with identical eigenvalues.
Diagonal Matrix shows features’ unique variances.
Structured Matrix shows correlation patterns with non-diagonal members set to 0.5.
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Figure 4. Kernel density calculates energy distance distributions for eigenvalue distributions in Identity, Diagonal, and Structured situations with 5,
10 and 20 degrees of freedom. The graph shows how degrees of freedom and covariance structures affect energy distance measurements stability and
variability

In Figure 4, energy distance distributions are shown across several situations and degrees of freedom. Narrower
distributions indicate more stable eigenvalue distributions with more degrees of freedom. This figure confirms the
simulation findings regarding the influence of degrees of freedom on energy distance distributions. Higher degrees of
freedom narrow and stabilize energy distance distributions.

5. Discussion
Energy distance evolution inWishart-distributed matrices with variable degrees of freedom and covariance structures

is naturally conveyed through simulations. Parametric enhancements transform energy distances, conveniently appreciated
through spatial renditions. Energy distance distributions are larger for reduced degrees of freedom matrices, signifying
corresponding larger eigenvalue dispersions. As degrees of freedom increase, this behavior becomes progressively
ameliorated, leveling off for higher-degreematrices. The Structure of thematrix identity diagonal is disclosed asmediating
these distributions. Higher energy distances for both diagonal- and structured matrices identity matrices implies data
correlations and variances affect eigenvalue distributions. These phenomena deliver a comprehensive understanding of
differential eigenvalue distribution spread and similarity given influential factors, germane to Wishart distributions and
data covariance estimates. Cognizant patterns and narratives conform to theoretical presuppositions and portend distinct
multivariate statistical methodologies and data models.
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6. Conclusion
Using extensive simulations, we examined how degrees of freedom and covariance matrix architectures affect energy

distances in Wishart-distributed matrices. Degrees of freedom and covariance matrix topologies greatly affect eigenvalue
dispersion and energy distance distribution, according to our results. In particular, energy distance distributions decrease
as degrees of freedom rise, demonstrating eigenvalue spectra stability. Higher parameter values seem to stabilize and
consistent distributions, improving statistical model dependability.

In real-world data analysis, we examined the energy distance of the stock eigenvalue distributions of the renewable
energy sector. NextEra Energy, Enphase Energy, First Solar, SunPower, and Brookfield Renewable Partners were
examined. Yahoo Finance provided daily closing prices from January 1, 2018, until January 1, 2023. Daily covariance
matrix returns were calculated using adjusted closing price percentage changes.

The energy distance distributions in Figure 4 show that when there are more degrees of freedom, the eigenvalue
distributions get smaller and more stable. This supports the simulation results, showing that degrees of freedom affect
energy distance distributions.

These findings affect several disciplines. Financial risk management and portfolio optimization need to understand
covariance structure stability and variability. The findings may potentially improve statistical models in genetics,
environmental science, and other fields where data covariance is important. This work expands knowledge of Wishart
distributions and their applications by giving actual data to support theoretical expectations.

Despite its importance, this study has some drawbacks. Our simulations were limited to specified degrees of
freedom and covariance matrix topologies. This research should be extended to higher dimensions and more distributional
assumptions. Applying these insights to real-world datasets will also verify and improve this theoretical approach.
Wishart distributions were our entire focus to analyze their features and applications. Future research could benefit from
performing a comparison study between Wishart distributions with other distributions to further enhance the robustness
of the findings.

To confirm the practical application of these results, future research should expand this study to higher-dimensional
settings, investigate distributional assumptions, and apply these insights to real-world datasets.Future studies should
further examine the complex relationship between the energy discrepancy and eigenvalueMutual Information (MI) by [20]
to comprehend these statistical indicators better that may improve the Wishart-distributed matrix statistical methods by
studying these complicated interactions. Expanding the scope of this investigation could broaden multivariate statistical
analysis, especially Wishart distribution knowledge. To conclude, this work improves Wishart distribution theory and
strengthens simulation studies and current statistical research. We present a rigorous analytical approach to enhance data
analysis and model fitting in numerous scientific domains by studying the complex dynamics of eigenvalue distributions
under diverse circumstances.
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