
Contemporary Mathematics
http://ojs.wiserpub.com/index.php/CM/

Research Article

Three-Dimensional Multiphase Peristaltic Flow Through a Porous Me-
dium with Compliant Boundary Walls

Nouman Ijaz1, Ahmed Zeeshan2, Safia Batool1, M. M. Bhatti3* , Kh. S. Mekheimer4

1Department of Mathematics and Statistics, University of Lahore, (Sargodha Campus) Sargodha 40100, Pakistan
2Department of Mathematics and Statistics, FBAS, International Islamic University, Islamabad 44000, Pakistan
3Material Science, Innovation and Modelling (MaSIM) Research Focus Area, North-West University, Mafikeng Campus, Mmabatho,
South Africa

4Department of Mathematics, Faculty of Science (Men), Al-Azhar University, Nasr-City, Cairo, Egypt
E-mail: mmbhatti@sdust.edu.cn

Received: 20 May 2024; Revised: 26 September 2024; Accepted: 14 October 2024

Abstract: In this communication, we focus on the peristaltic propulsion ofmultiphase fluid flowing in a three-dimensional
rectangular channel with compliant walls. The flow is influenced by porosity and magnetic effects, and the formulation
is based on lubrication theory. The governing equations for both fluid and particulate phases are derived for continuity
and momentum, assuming a long wavelength (λ → ∞) and a creeping flow regime (Re → 0). Exact solutions of the
partial differential equations for both solid and liquid velocities are obtained using the eigenfunction expansion method.
We analyze the influence of several relevant parameters on the velocities and profiles graphically. It is found that fluid
velocity increases with greater damping and mass effects. Conversely, wall tension and wall elastance have an inverse
effect on velocity distribution. While wall tension tends to reduce the size of the boluses, wall stiffness tends to enhance
the trapping of boluses. Additionally, the size of the trapped bolus increases due to the combined effects of the magnetic
field and porosity.
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Abbreviation

U , V , W Velocity components
X , Y , Z Coordinate axis
x, y, z Dimensionless coordinate axis
t Time
p Fluid pressure
S Stress tensor
D Drag force
k Porosity
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c Wave velocity
a Channel’s half-width
b Amplitude
B0 Magnetic field strength
h Non-Dimensional wave
Re Reynolds number
M1 Suspension parameter
M Magnetic field

Greek symbols

χ1 Jeffrey parameter
µ Viscosity of the fluid
ρ Fluid density
ρ Particle volume fraction
λ Wavelength
η1 Wall rigidity
η2 Wall tension
η3 Mass characterizing
η4 Damping nature
η5 Wall elastance
ϕ Amplitude ratio
ϒ̇ Rate of strain
ϔ Retardation time
τt Elastic tension
τm Mass of the wall per unit area
τd Viscous damping
τb Fexural rigidity
τk Spring stiffness

Subscripts

p Particle phase
f Fluid phase

1. Introduction
The motion of fluid within a flexible channel (either circular or cylindrical) follows the principle of peristaltic

pumping. Peristalsis refers to the rhythmic contraction and relaxation of smooth walls in a sinusoidal wave pattern. This
mechanism is essential in various biological processes, such as the transport of urine from the kidneys to the bladder, the
movement of food through the esophagus, spermatozoa transport, the motility of the chyme in the intestines, and natural
oscillations within blood vessels. These examples illustrate the pervasive role of peristalsis in the human body.

From a mathematical and theoretical perspective, the analysis of peristaltic flow poses significant challenges,
particularly when accounting for viscous fluid behavior. Historically, the complexity of the governing equations has
hindered precise analytical solutions. However, with the introduction of various physical approximations, such as
long-wavelength and low-Reynolds number assumptions, researchers have been able to make substantial progress in
understanding peristaltic transport. These approximations simplify themathematicalmodeling, allowing formore tractable
solutions and providing deeper insights into the underlying fluid dynamics.
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In recent years, the study of both Newtonian and non-Newtonian fluids in peristaltic transport through tubes
has expanded significantly. Non-Newtonian fluids-such as blood, paint, and biological fluids-exhibit complex flow
characteristics, deviating from the classical Newtonian behavior. The study of these fluids is of paramount importance
in industrial processes and biological systems, where understanding their flow dynamics can lead to advancements in
medical technologies and engineering applications.

Mekheimer and Abd Elmaboud [1] investigated the mechanics of peristaltic motion in a fluid suspension containing
small particles within a channel, utilizing a regular perturbation series to solve the problem. Akram et al. [2] analyzed the
effects of lateral wall motion on the sinusoidal movement of small particles in a three-dimensional setup, incorporating slip
conditions. Nadeem et al. [3] explored the three-dimensional peristaltic flow mechanism using the lubrication approach
and provided a perturbation solution. Ellahi et al. [4] examined the influence of mass transfer on peristaltic motion in a
non-uniformly heated rectangular channel. Zeeshan et al. [5] studied peristaltic propulsion in a duct with bio-rheological
fluids, deriving exact solutions for the flow by solving the governing partial differential equations using the method of
separation of variables.

Prakash et al. [6] focused on the peristaltic pumping of nanofluids through a tapered channel in a porousmedium, with
applications in blood flow. Shit et al. [7] analyzed the pulsatile flow and heat transfer of blood in an overlapping vibrating
atherosclerotic artery using numerical methods. Nazeer et al. [8] presented an analytical study on heat transfer in peristaltic
flow through an asymmetric channel, considering laser and magnetic effects as a potential remedy for autoimmune
diseases. Choudhari et al. [9] investigated the multiple slip effects on magnetohydrodynamic (MHD) peristaltic blood
flow of a Phan-Thien-Tanner nanofluid through an asymmetric channel.

Peristaltic propulsion of non-Newtonian fluids is of particular importance in magnetohydrodynamics (MHD), which
has applications in controlling diseases such as cancer through its influence on human organs. MHD peristaltic flow is
also critical in various physical and industrial processes, though it remains highly nonlinear and complex to model. Riaz
et al. [10] discussed the peristaltic motion of a Carreau fluid under MHD in a rectangular channel with flexible walls,
obtaining results through graphical and physical parameter analysis. Hayat et al. [11] provided numerical results for
peristaltic motion in a rotating channel by solving the governing equations. Ellahi et al. [12] studied the peristaltic flow
of a Williamson fluid in a rectangular channel, finding that peristaltic pumping amplifies the propagation of sinusoidal
waves, leading to fluid flow instability. Numerical methods were employed to describe the pressure effects in such fluids,
and significant work has been done on the small intestine to observe peristaltic flow.

Xu et al. [13] examined electro-osmotic flow through a divergent channel, with applications in drug delivery systems.
Shah et al. [14] studied magnetized pulsatile blood flow through a porous tube under non-localized shear stress conditions.
Narla et al. [15] conducted a thermal analysis of peristaltic flow with electro-osmotic effects in microchannels. Bhandari
et al. [16] utilized a kinematic membrane transient model in conjunction with a viscoplastic model to examine periodic
contractions in microchannels. Further related studies can be found in references [17–19].

Motivated by the advancements in the literature and the significance of such flows, this study investigates the
influence of solid particles and magnetic fields on the peristaltic motion of an incompressible, laminar, non-Newtonian
Jeffrey fluid in a duct embedded with a porous medium. This research has broad applications in fluid machinery, including
solid machine pumps, toxic chemical transport, dust-fluid tube pumps, and medical devices such as heart-lung and dialysis
machines, which are based on peristaltic flow principles. The formulation of the problem is based on lubrication theory,
with the governing equations for both the fluid and particulate phases derived under the assumptions of a long wavelength
(λ → ∞) and a creeping flow regime (Re → 0). Exact solutions for the solid-liquid velocities are obtained using the Eigen-
function expansion method. The effects of several key parameters on velocity profiles are analyzed graphically, providing
insights into the behavior of both fluid and particle phases. Detailed graphical results highlight the critical dynamics and
their potential applications.
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2. Governing modelling
Consider a Jeffrey fluid with small particles suspended in a three-dimensional porous channel. The Jeffrey fluid is

characterized by its irrotational flow, constant density, and incompressibility. A symmetric peristaltic wave, described by
a sinusoidal function, propagates through the three-dimensional channel, as illustrated in Figure 1. The sinusoidal wave
moves with a speed c, has a wavelength λ , and an amplitude b, all under the influence of an applied magnetic field.

Figure 1. Structure of the particle-fluid peristaltic motion

The geometric configuration is aligned along the Z-axis and X-axis in the vertical and horizontal directions,
respectively, while the Y -axis is oriented laterally. The mathematical representation of the peristaltic wave can be
expressed as:

H(X , t) = Z =±a±bsinα, α = kl
(
X − ct

)
, kl =

2π
λ

, (1)

where a the channel’s half-width, and t the time.
The leading equations for the fluid- and particulate phases in the current formulation are written as [20, 21]:

∂U f

∂X
+

∂W f

∂Z
= 0, (2)

ρ f

(
∂U f

∂ t
+W f

∂U f

∂Z
+U f

∂U f

∂X

)
=− ∂ p

∂X
+

∂
∂X

ξXX +
∂

∂Y
ξXY +

∂
∂Z

ξXZ

−
σB2

0U f

(1−ρ)
+

ρD
(
U p −U f

)
(1−ρ)

−
µU f

k1 (1−ρ)
, (3)

where ρ the density, D the drag force, p the pressure, ρ the particle volume fraction, σ the electrical conductivity, k the
porous parameter, µ the viscosity of particle-fluid mixture, and p, f in the subscripts are particulate- and fluid-phase.
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ρ f

(
∂W f

∂ t
+U f

∂W f

∂X
+W f

∂W f

∂Z

)
=− ∂ p

∂Z
+

(
∂

∂X
ξZX +

∂
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ξZY +
∂
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)

+
ρD

(
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)
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. (4)

The proposed equations for particulate-phase read as:

∂U p

∂X
+

∂W p

∂Z
= 0, (5)

ρ f ρ
(

∂U p

∂ t
+U p

∂U p

∂X
+W p

∂U p

∂Z

)
=−ρ

∂ p
∂X

+ρD
(
U f −U p

)
, (6)

ρ f ρ
(

∂W p

∂ t
+U p

∂W p

∂X
+W p

∂W p

∂Z

)
=−ρ

∂ p
∂Z

+ρD
(
W f −W p

)
. (7)

The drag coefficient D, and the viscosity suspension µ using empirical relation is contemplated as

D =
9µ0

2ã2
r

χ(ρ), χ(ρ) =
4+3

[√
8ρ −3ρ2 +ρ

]
(3ρ −2)2 ,

µ =
µ0

1−κρ
, κ = 0.07e

2.49ρ +1107e−1.69ρ

T , (8)

where the radius of every suspended particle is ãr, µ0 the fluid viscosity, and T the absolute temperature. The precised
value of particle volume fraction ρ = 0.6 was determined by Charm and Kurland [22] via cone and plate viscometer.

In Eqs. (2) and (3), the Jeffrey fluid is used as the base fluid tensor, as described by [23]:

ξ =
µ

1+χ1

(
ϒ̇+χ2ϔ

)
, (9)

where χ1 represents the ratio of the relaxation time to the retardation time, χ2 is the delay time, and ϒ̇ denotes the shear
rate. The dot notation indicates the first derivative with respect to time, while ϔ represents the second derivative. The
transformation for the above equations from fixed to wave frame are

u† =U − c, W = w†, x† = X − tc, y† = Y , Z = z†, p = p†, (10)

Inaugurating the dimensionless variables for further formulation:
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x =
x†

λ
, w =

w†

δc
, t =

tc
λ
, h =

H
a
,y =

y†

d
, z =

z†

a
, p =

δap†

µc
, δ =

a
λ
, u =

u†

c
,

β =
a
d
, Re =

acρ
µ

, ξxx =
a

µc
ξXX , ξyz =

d
µc

ξY Z , ξzz =
λ
µc

ξZZ , ξyy =
λ
µc

ξYY ,

ξxz =
a

µc
ξXZ , ξxy =

d
µc

ξXY , (11)

where Re stands for Reynolds number. Make a use of Eq. (11) in Eq. (1) to Eq. (9), and contemplating the lubrication
approach, the formulated equations for fluid-phase found as

d p
dx

=
β 2

1+χ1

∂ 2u f

∂y2 +
1

1+χ1

∂ 2u f

∂ z2 −
u f +1

k
−M2(u f +1)+ρM1(up −u f ), (12)

The above equation reduced for Newtonian fluid by contemplating the value of χ1 = 0. In Eq. (12)M1 the suspension
parameter, k the porosity parameter, M the Hartmanm number. These parameters are found as:

M1 =
a2D

(1−ρ)µ
, k =

k1

(1−ρ)d2 , M =

√
σ

(1−ρ)µ
aB0. (13)

The particulate-phase equations reduced as

1
1−ρ

d p
dx

= M1(u f −up). (14)

The boundary conditions in dimensionless format as

u f (x, y, z) =−1, y =±1,

u f (x, y, z) =−1, z =±h(x) =±(1+ϕ sin2πx) . (15)

where the amplitude ratio is ϕ (= b/a).
The following is the condition for the compliant peristaltic flow:

L =−p̃0 + p, (16)

where p̃0 denotes the pressure towards the rectangular duct because of the muscle’s tension. The L operator for the
compliant boundary wall is defined as [24]:
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L = τm
∂ 2

∂ t2 + τd
∂
∂ t

− τt
∂ 2

∂X2 + τb
∂ 4

∂X4 + τk, (17)

where τt the elastic tension, τm the mass of the wall per unit area, τd the viscous damping, τb the flexural rigidity of the
plate, and τk the spring stiffness.

Using Eq. (17), the pressure gradient after employing the dimensionless variables can be written as:

d p
dx

= η1
∂ 3Λ
∂x3 +η2

∂ 3Λ
∂x∂ t2 +η3

∂ 2Λ
∂x∂ t

+η4
∂ 5Λ
∂x5 +η5

∂Λ
∂x

, (18)

where Λ is presented in Eq. (15).
The non-dimensional parameters ξi, (i = 1, · · ·5) are defined as

η1 =− τta3

λ 3µc
, η2 =

τmca3

µλ 3 , η3 =
τda3

µλ 2 , η3 =
τba3

µλc
, η5 =

τka3

λcµ
, (19)

where η1 the wall rigidity, η2 the wall tension, η3 the mass characterizing, η4 the damping nature of the compliant wall,
and η5 the wall elastance.

3. Analytical solutions using eigen-function expansion method
The formulated equations are linear and can therefore be solved exactly. We have a second-order, linear,

homogeneous partial differential equation, subject to homogeneous boundary conditions. Consequently, the method of
separation of variables is applied. We assume that

v(y, z) = Y (y)×Z(z), (20)

Y ′′

Y
=

−1
β 2

Z′′

Z
+

M2

β 2 (1+λ1) =−α2(say) (21)

⇒ Y ′′

Y
=−α2 (22)

−α2 =
−1
β 2

Z′′

Z
+

M2

β 2 (1+λ1). (23)

0 = [Y (±1)]× [Z(z)], ⇒ Y (±1) = 0. (24)

Therefore, there are two possible cases to obtain the required solution:
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Y ′′

Y
=−α2, ⇒

[
D2 +α2]×Y (y) = 0, ⇒ D =±(iα). (25)

Y (y) = c1 cos(αy)+ c2 sin(αy) . (26)

Now, applying the boundary conditions mentioned above yields:

c2 = 0. (27)

Therefore, the eigenvalues are:

αn =

(
(2n−1)π

2

)
, for n = 1, 2, 3... (28)

The necessary eigenfunctions are:

Y (y) = c1 cos
(

π(2n−1)y
2

)
. (29)

The exact solutions of Eq. (12) and Eq. (14) are given by:

u f =
1

(ρ −1)A1

[
k− (ρ −1)(A1 + k)cosh

√
A1A2z√

k

√
A1A2h√

k

]

×

[
4cosA3zcosh

y
β

√
A2

3 +

(
1
k
+M2

)
A2

2

×
{

1+ k− (A1 (ρ −1)+ k)cosh
√

A1A2z√
k

√
A1A2h√

k

}
÷ (ρ −1)A1

]

÷

y
β

√
A2

3 +

(
1
k
+M2

)
A2

2 sinA3h

2A3

(
h+

sin2hA3

2A3

) , (30)

A1 =1+ k(1+M2), A2 =
√

1+ ς1, A3 =
2n−1

2
πz, (31)
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up =
1
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√
A1A2z√
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k

]

×

[
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√
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k
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)
A2

2

×
{

1+ k− (A1 (ρ −1)+ k)cosh
√

A1A2z√
k

√
A1A2h√

k

}
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]

÷

y
β

√
A2

3 +

(
1
k
+M2

)
A2

2 sinA3h

2A3

(
h+

sin2hA3

2A3

) −
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. (32)

4. Graphical results and discussion
This section presents the graphical results for various parameters affecting the governing flow dynamics. The

influence of parameters such as solid particle concentration in the fluid, ρ , Hartmann number, M, suspension parameter,
M1, porous parameter, k, wall rigidity, η1, wall tension, η2, mass characterization, η3, damping coefficient of the
compliant wall, η4, and wall elastance, η5, are analyzed. For computational analysis, we have chosen the following
parameter values: M = 1, M1 = 1, k = 1, η1 = 0.8, η2 = 0.5, η3 = 0.01, η4 = 0.5, φ = 0.1, and η5 = 0.5.

To validate our findings, we compared them with previously published data from Nadeem et al. [25], using ρ = 0
as the comparison parameter. The results demonstrate excellent agreement, as depicted in Figure 2. This figure not only
highlights the strong correlation between the two sets of results but also reinforces the accuracy and reliability of our
present work.

In Figure 3, the behavior of small particles is examined. It is observed that an increase in the particle volume fraction,
ρ , leads to a reduction in fluid velocity, as well as a similar deceleration in particle velocity. Furthermore, Figure 3b shows
that particle velocity decreases near the walls, demonstrating the influence of particle concentration in boundary layers.

Figure 4 illustrates the effect of porosity on the velocity profile. An increase in the porous parameter k significantly
enhances the velocity in the central region of the channel, while the velocity near the walls shows a contrasting reduction.
This behavior can be attributed to the influence of porousmedium resistance near thewalls, promoting flow in the channel’s
core.

As shown in Figure 5, the presence of a magnetic field exerts a significant opposing effect on both fluid and particle
velocities. Themagnetic field induces a Lorentz force, which acts to resist fluidmotion, a phenomenon previously reported
by Zeeshan et al. [26]. Similarly, Figure 6 reveals that increasing the wall rigidity parameter, η1, introduces additional
resistance, thereby slowing down both fluid and particle motion. This result is consistent with observations from Ellahi
et al. [27], who studied couple stress fluid flow in three dimensions.

In Figure 7, it is demonstrated that increasing wall tension, η2, causes a reduction in the velocities of both the fluid
and particles. Figure 8 explores the effect of the mass characterization parameter, η3, on velocity profiles. It is found
that increasing η3 enhances both fluid and particle velocities, with particle velocity exhibiting slightly higher magnitudes
compared to fluid velocity.

The damping effect of the compliant wall, η4, and wall elastance, η5, are analyzed in Figure 9-10. Both parameters
significantly enhance fluid and particle velocities, likely due to their role in reducing resistance from the wall’s motion.

Contemporary Mathematics 4882 | M. M. Bhatti, et al.



The next important phenomenon investigated is fluid trapping, represented by the size of boluses in the flow,
visualized using streamlines. Trapping is of engineering and physiological significance as it can lead to recirculation
zones, which in biological systems may contribute to thrombosis or in reactive fluids, undesired chemical transformations.
Figure 11-15 illustrate this trapping mechanism.

From Figure 11, it is clear that a stronger magnetic field reduces the size of the trapped boluses, while increasing
their number. Figure 12 shows that while the porous parameter k affects the bolus size, it does not influence the number
of boluses. In Figure 13, the increase in wall rigidity, η1, suppresses the size of the boluses, a behavior similarly observed
for increasing wall tension, η2, as shown in Figure 14. Finally, in Figure 15, it is noted that increasing both mass
characterization, η3, and the damping nature of the compliant wall, η4, leads to a reduction in the size of the trapped
bolus.

Figure 2. Comparison of the present results with ρ = 0, M = 0, k → ∞ against the published results of Nadeem et al. [25]

Figure 3. Consequences of ρ on velocity distirbution

Volume 5 Issue 4|2024| 4883 Contemporary Mathematics



Figure 4. Consequences of k on velocity distirbution

Figure 5. Consequences of M on velocity distirbution

Figure 6. Consequences of η1 on velocity distirbution
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Figure 7. Consequences of η2 on velocity distirbution

Figure 8. Consequences of η3 on velocity distirbution

Figure 9. Consequences of η4 on velocity distirbution

Volume 5 Issue 4|2024| 4885 Contemporary Mathematics



Figure 10. Consequences of η5 on velocity distirbution

Figure 11. Streamlines phenomena against distinct values k

Figure 12. Streamlines phenomena against distinct values η1

Contemporary Mathematics 4886 | M. M. Bhatti, et al.



Figure 13. Streamlines phenomena against distinct values η2

Figure 14. Streamlines phenomena against distinct values η3

Figure 15. Streamlines phenomena against distinct values k
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5. Conclusions
In this article, we analyzed the effects of a magnetic field on peristaltically induced flow of a Jeffrey fluid within

a rectangular channel with porous and compliant walls. The governing equations for both the fluid and particle phases
were derived using lubrication theory. The Eigenfunction expansion method was employed to solve the resulting partial
differential equations, and the solutions were obtained in an exact form. The key findings of this study are summarized
as follows:

(ⅰ) The presence of a magnetic field and increased wall rigidity reduces the velocity distribution, while higher particle
volume fraction and increased porosity enhance the velocity.

(ⅱ) It was observed that increasing the damping effect and mass characterization parameter leads to an increase in
fluid velocity.

(ⅲ) The relationship between wall tension and wall elastance demonstrates opposing effects on velocity distribution,
where wall tension decreases velocity, while elastance tends to enhance it.

(ⅳ) The size of the trapped bolus increases under stronger magnetic fields and higher porosity, contributing to a more
pronounced trapping effect.

(ⅴ) Wall rigidity intensifies the trapping bolus, while higher wall tension reduces both the size and occurrence of
boluses.

(ⅵ) Damping characteristics of the compliant wall and wall elastance significantly influence the size of the trapped
boluses.

(ⅶ) The present results for a viscous fluid can be recovered by setting χ1 = 0.
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