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Abstract: The Middle East respiratory syndrome is a viral respiratory illness. It is caused by a common type of virus
called coronavirus. The main objective of the present work, we develop a mathematical model for the transmission
dynamics of the Middle East respiratory syndrome coronavirus (MERS-CoV) disease. To assess the transmissibility of
the MERS-CoV, we calculate the basic reproduction numberR0. Furthermore, the existence of the backward bifurcation
for different parameters is presented. The sensitivity analysis is presented to analyze the importance of various epidemic
parameters. Stability analysis for the model is examined to provide stability conditions. Finally, we present the numerical
simulations of the proposed model to support our analytical findings.
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1. Introduction
Middle Eastern respiratory syndrome coronavirus is a new type of coronavirus, it was first reported in the Kingdom

of Saudi Arabia (KSA) in 2012 [1, 2]. MERS is mostly connected with animal sources. MERS-CoV has also been found
in camels in different countries. Humans may become infected after coming into touch with camels. Coughing transfers
illness from one to another. MERS-CoV is transmitted from infected individuals to others through intimate contact, such
as looking after or living with the infected individuals. There has been a total number of 536 cases which includes 145
deaths since April 2012, a rate of death 27%, with the bulk of cases recorded in the Middle East (KSA, Qatar and Jordan)
[3]. MERS-CoV-infected persons experienced a severe abrupt respiratory infection with symptoms including cough, fever,
and breathlessness.

The virus is mostly spread by dromedary camels, according to scientific evidence. Most human infections (75%) are
caused by human-human transmissions, with the remaining instances caused by camel-human transmissions.

Mathematical modeling is vital for studying and forecasting the evolution of infectious illnesses [4]. Assire et al. [5]
documented one of the biggest MERS-CoV epidemics, with the characterization that the viral disease is transmittable from
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person to person. In a review paper, Zumla et al. [6] highlighted that even the cause for camel-human transmission might
be exposed indirectly, e.g., the patient’s exposure to MERS-CoV could have been through intake of raw or unprocessed
camel milk, which is a widespread practice in KSA.

The derivative and integration of non-integer and real-order functions can be defined and developed with the aid
of fractional calculus. Fractional derivatives are a convenient and precise way to describe many scientific phenomena
that cannot be understood using integer order derivatives. Fractional order differential equations illustrate the idea of
systemmemory. Numerous fractional derivatives, including Caputo, Hadamard, Grünwald-Letnikov, Riesz, and Riemann-
Liouville fractional derivatives, are available in the literature [7–9]. There are numerous analytical techniques that cannot
handle a wide variety of equations and are severely restricted in their application found in the literature. Numerical
techniques and approaches are created to determine the solution of fractional differential equations due to the difficulty of
applying analytical methods. Several works have been published in the literature on mathematical modelling by applying
the approach of fractional, fractal-fractional differential equations and fuzzy differential equations [10–17], HCV model
[18], finance model [19, 20] and several other analytical and numerical scheme have been investigated such as [21–25].

Mathematical modeling is very important for the transmission dynamics of different diseases for mathematicians
and researchers. Numerous works have been documented for the different types of research related to disease, economics,
engineering and othermany applicable areas [26–29]. Researchers investigated various aspects and defined the application
of modeling in real life by applying the approach of fractional calculus and mentioned their behavior and the impact on
society [30–33].

In this study, we construct a five-compartmental MERS-CoV model for the transmission dynamics of disease
including susceptible population S(t), exposed population E(t), symptomatic (infected) population I(t), recovered
population R(t), and reservoir populationC(t) for MERS-CoV. The proposed model stability is investigated respectively.
The basic reproductive number R0 is calculated for the model to determine the stability condition. By using the next-
generation matrix approach, we develop a formula for R0 of the camels-human population to determine transmissibility
potential. A sensitivity study is done for the parameters in the model in order to obtain their impact on the transmission
of the suggested disease. Backward bifurcation is very important in a disease model. Therefore the backward bifurcation
and also the endemic equilibria are analyzed for the proposed model accordingly.

To study the stability of the proposed model (1), we utilize the Routh-Hurwitz (R-H) criteria. In case R0 < 1 the
disease-free equilibrium (DFE) of the proposed problem, then the model is locally asymptotically stable (LAS) therefore
there is no disease after the passage of time. While R0 > 1, the disease remains in the population. Also, we analyze the
model for global stability with the aid of the theory of Lyapunov function. Graphical simulations of the system (1) are
displayed.

The structure of this paper is as follows: we represent the formulation of the considered problem in Section 2. Section
3 shows the well-posedness of the model and basic reproductive number. Section 4 deals with backward bifurcations,
sensitivity analysis and EE. In Section 5, we discuss local and global stability analysis of the equilibria. In Section 6,
numerical simulations and graphical illustrations are presented. Finally, in Section 7, we give the concluding remarks for
the work.

2. Model formulation
The section shows the mathematical construction of the deterministic model for MERS-CoV transmission. This

model is composed of differential equations (DEs). We develop the model by taking into account the characteristics of
the disease.

a. All parameters and the variables are non-negative.
b. Two transmission routes are considered for the disease transmission, which are from symptomatic individuals and

then reservoir, which are camels for MERS-CoV.
c. The rate of death because of MERS-CoV is considered in the compartment that contains the infection.
The dynamics in the host population are,
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dS
dt

= π −βS(t)E(t)−ψβS(t)I(t)− (δβC(t)+µ0)S(t),

dE
dt

= βS(t)E(t)+ψβS(t)I(t)+δβC(t)S(t)− (α +µ0)E(t),

dI
dt

= αE(t)− (η2 +η1)I(t)− (µ0 +µ1)I(t),

dR
dt

= (η2 +η1)I(t)−µ0R(t),

dC
dt

= ϖ1E(t)+ϖ2I(t)−dC(t), (1)

depends on conditions

S(0)> 0, E(0)≥ 0, I(0)≥ 0, R(0)≥ 0, C(0)≥ 0. (2)

In model (1) the description of the parameters is given below and we mentioned the flowchart in Figure 1:
• π represents susceptible recruitment rate;
• µ0 is natural death rate and µ1 is the death rate by disease;
• β is the rate of transmission;
• ψ denotes rate of approximate transmission of infectious people. The rate at which the population from the exposed

class goes to the infected class by α;
• ϖ1 is the rate at which the exposed individuals are in contact with the reservoir;
• d is the life time of reservoir;
• η1, η2 is the rate at which the infected individual become recover;
• ϖ2 is the rate at which the infected individual are in contact with reservoir;

Figure 1. Diagram of MERS-Cov disease transmission
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3. Well-posedness of the problem
SupposeP(t) stands for total population of humans i,eP(t) = S(t)+ I(t)+R(t)+E(t), so the population has bounds,

lower & upper bounds to be 0 and π
µ0
, respectively, such that, 0 ≤P(t)≤ π

µ0
.

Using this fact as a basis we provide the theorem below.
Theorem 1 If P(t) is total human population, also 0 ≤ P(t) ≤ π

µ0
, and P(t) ≤ π

µ0
, so the problem (1) lies in the

region given below.

Ω =

{
(S, E, I, R, C) ∈ R5

+, P(t)≤ π
µ0

, C ≤ (ϖ1 +ϖ2)π
µ0

}
.

Proof. Let us consider Bs is a Banach space, and e+ which is positive, so

Bs = q1(0, e+)×q1(0, ρ+)×q1(0, ρ+)×q1(0, ρ+)×q1(0, ρ+). (3)

Norm on Bs+ is ∥ξ∥= ∑5
i=1 ∥ξ j∥, here ∥ξ∥= (ξ1, ξ2, ξ3, ξ4, ξ5) ∈ Bs+.

Further, Bs+ is the cone (positive) of q1(0, e+), so from Eq. (3), Bs+ becomes

Bs = q1(0, e+)×q1(0, ρ+)×q1(0, ρ+)×q1(0, ρ+)×q1(0, ρ+).

Hence the state space of system (1) yields:

Λ =

{
(S, E, I, R, C ∈ Bs+ ∋ 0 ≤P(t)≤ π

µ0

0 < S(t)+R(t)+ I(t)+A(t)≤ π
µ0

, C ≤ (ϖ1 +ϖ2)π
µ0

}
.

We consider an operator which is linear denoted by D and also consider vector Ψ = (S, E, I, R, C), implying
DΨ = (D1, D2, D3, D4, D5)

T , where

D1 = (−dS
dt

−µ0S, 0, 0, 0, 0),

D2 = (0, −dE
dt

− (α +µ0)E, 0, 0, 0),

D3 = (0, αE, −dI
dt

− (η1 +η2 +µ0 +µ1), 0, 0),

D4 = (0, 0, (η1 +η2)I, −
dR
dt

−µ0R, 0),
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D5 = (0, 0, ϖ1E, ϖ2I, 0, 0, −dC
dt

−dC),

and domain of D, D(L) is

D(L) =
{

ϖ ∈ Bs: Ψ ∈ LC[0, e+), ϖ(0) = (S0, E0, I0, R0, C0)

}
. Here, LC[0, e+) is the set having functions which

are continuous defined on interval [0, e+). Consider M is the operator which is nonlinear i.e. M: Bs → Bs by,

M(ψ) =


π −βES−βψIS−δβCS

βES+βψIS+βδCS
0
0
0

 . (4)

Suppose z(t) = (S(t), E(t), I(t), R(t), C(t)) then the suggested system is

dz
dt

= L(z(t))+M(z(t)), z(0) ∈ B,

where z(0) = (S0, E0, I0, R0, C0)
T . With the use of result [34, 35], we present existence of the solution of model (4), so

we immediately state results as follows:
Theorem 2 For each v(0) ∈ Bs+, there exist maximal interval and unique continuous solution [0, t0) and v(t, v0)

respectively, such that,

v(t) = v0eLt +
∫

eL(t−r)M(v(τ)).

Theorem 3 The model (1) is invariant (positively) subjected to nonnegative orthant R5+.
Proof. As we have ϖ = (S, E, I, R, C). Let r1 = (α +µ0), r2 = (η1 +η2 +µ1 +µ0), r4 = (ϖ1 +ϖ2 +d),

dϖ
dt

= Lϖ +D

L =


−µ0 0 0 0 0

0 −r1 0 0 0
0 α −r2 0 0
0 0 η1 η2 0
0 0 ϖ1 ϖ2 −d

 , T =


π
0
0
0
0

 . (5)

It could be noted from Eq. (5), that T matrix is positive, while the off-diagonal of the L are non-negative, therefore
the properties of the Metzler matrix are satisfied. So the model under study is invariant in R5.

Theorem 4 We consider the size of the population initially for the suggested system presented in (2) if solutions Eq.
(1) exist, it will remain positive for all e+.
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Proof. Let us consider the susceptible population

dS
dt

= π −βES−βψIS− (βCS+µ0)S. (6)

Utilizing the alternation of the constants formula, we obtain the solution to Eq.(6),

S = S(0) exp
[
−dt −

∫
[βE −βψI −βδC]S

]
dx

+Πexp
[
−dt −

∫
[βE −βψI −βδC]S

]
dx

×
[

dt +
∫

[βE +βψI +βδC]S
]

dx.

S > 0, likewise one can show that, the remaining equations of model (1) are also positive.

3.1 Possible equilibria and basic reproduction number

There exist two different equilibria: the first one is DFE and the second one is endemic equilibrium (EE). The DFE
of system (1) is denoted with F0 and defined for the F0 = (S0, 0, 0, 0, 0), and

S0 =
π
µ0

. (7)

R0 is defined as the quantity that determines whether an epidemic will occur or if the disease will die off. Which is
the estimated average number of infections due to a single infectious agent, both directly and indirectly, in a completely
susceptible population. Driessche approach is used to calculate the reproduction number [36]. Suppose

dχ
dt

= F̄ −V̄ . (8)

In equation (8), here F̄ and V̄ are matrices having nonlinear, and linear terms respectively, that is

F̄ =


(βE(t)+ψβ I(t)+δβC(t))S(t)

0

0

 ,
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V̄ =


−(α +µ0)E(t)

αE(t)− (η1 +η2 +µ0 +µ1)I(t)

ϖ1E(t)+ϖ2I(t)−dC(t)

 .

The Jacobian of F̄ and V̄ at DFE F0, that is

F = Jacobian of F̄at DFE =


βS0 ψβS0 δβS0

0 0 0

0 0 0

 ,

V = Jacobian of V̄ at DFE =


(α +µ0) 0 0

−α (η1 +η2 +µ0 +µ1) 0

−ϖ1 −ϖ2 d

 .

ThereforeR0 stands for the spectral radius of matrix H̄ = FV−1 which is next-generation matrix, henceR0 for model
(1) is

R0 =
βπ

µ0(α +µ0)
+

βαψπ
µ0(α +µ0)(η1 +η2 +µ0 +µ1)

+
βδπ(αϖ2 +η1ϖ1 +η2ϖ1 +ϖ1µ0 +ϖ1µ1)

d(α +µ0)(η1 +η2 +µ0 +µ1)
. (9)

The R0 is made up of two elements that reflect two separate transmission channels from infected persons to
susceptible people: from the environmental reservoir to the susceptible population. These twomechanisms of transmission
combine to determine the epidemic’s overall illness risk.

4. Endemic equilibria and bifurcation analysis
We suppose that the LHS of the differential equation (1) is 0, then endemic (S, E, I, R, C) fulfils S > 0, E > 0, I >

0, R >, C > 0 and

S∗ =
(α +µ0)(η1 +η2 +µ0 +µ1)

β (η1 +η2 +µ0 +µ1)+dµµ0β +δβϖ1(η1 +η2 +µ0 +µ1)+ϖ2µ1δβ
,

E∗ =
dµ0(α +µ0)(β (η1 +η2 +µ0 +µ1))

(µ0 +α)(β (η1 +η2 +µ1 +µ0)+dµ0µ1β +δβϖ1(η1 +η2 +µ0 +µ1)+ϖ +2ϖ1δβ )
,
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R∗ =
µ1(η1 +η2 +µ0 +µ1)+µ1dϖ2

µ0(η1 +η2 +µ0 +µ1)
.

Putting the value of expression presented above into the very first sub-equation of model (1) and after a little bit of
work, we obtain

b1I2 +b2I +b3. (10)

b1 =
β µ0(µ0 +α)+(µ0 +α)(R0 −1)

(µ0 +µ1 +η1 +η2)
+

βd(µ0 +α)

(µ0 +µ1 +η1 +η2
,

b2 =−µ1β −β (µ0 +α)− µ0µ1δβ
(µ0 +α)

− (1−R0),

b3 = µ0(µ0 +α)(R0 −1).

If R0 > 1, then b3 > 0, b1 > 0, it shows that system (1) gets unique EE E∗ = (S∗, E∗, I∗, R∗). If R0 < 1, we have
b1 < 0, b2 < 0, b3 < 0 which has no EE.

The importance of the backward bifurcations for epidemiological models is similar to that same classical need forR0

to be smaller than one [37, 38], which is required for theMERS-CoV virus to be eradicated from the community. Backward
bifurcation complicates disease control strategies. Backward bifurcating diseases can continue to exist in a population
even when their rate of reproduction indicates they should go extinct. The existence of the backward bifurcations in the
suggested model shows that whenR0 is less than one, the feasibility of MERS-CoV removal is dependent on the starting
size of the model’s sub-population. when R0 = 1, then the following are satisfied.

Lemma 1 If R0 = 1, then system (1) has backward bifurcation phenomena when b3 < 0 (see Figure 2).

Figure 2. Backward Bifurcation in model (1)
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4.1 Sensitivity analysis
The suggested model’s parameters are subjected to sensitivity analysis. This approach will make it easy to identify

the variables that have a significant impact onR0. We utilize the technique presented in [39] and given as, ∆R0
h = ∂R0

∂h
h
R0

here h is a parameter.

Figure 3. The effects of different parameters on theR0 and variations in them

Figure 3 and Figure 4 depict the sensitivity analysis ofR0. They depict the significance of various parameters during
disease transmission. It also measures the variation inR0 with respect to the changes in the parameters.

It is obvious from the sensitivity that there exist direct relations between R0 and the parameters set. S1 =

[β , δ , η1, η2, π, ψ, ϖ1, ϖ2], while has the inverse relation with S2 = [µ0, δ ]. This shows that an increase in the values
of the parameters set S1 obviously increases threshold quantity, on the other hand increasing the values of parameters S2

decreases threshold quantity. The model parameters and their sensitivity values according toR0 are given in Table 1.
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Figure 4. The effects of different parameters on theR0 and variations in them

Table 1. Parameter values and their sensitivity values

Parameter Sensitivity values Parameter Sensitivity values

β 0.00000947 α 0.00047015

η1 0.00013789 π 0.00009370

δ -0.00093984 µ0 -0.0084532

ϖ1 0.0004498 ϖ2 0.00094896

η2 0.0000515 ψ 0.000043

µ1 0.00068945 d 0.0000102
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5. Stability analysis
Here, we present the local asymptotic stability of the DFE as well as the EE of the problem (1) in the theorems

presented below.
Theorem 5 The DFE point (F0, 0, 0, 0) is stable locally asymptotically whenR0 < 1 otherwise not.
Proof. To show the local stability of the aforementioned model, for the points (F0, 0, 0, 0), let us consider the

Jacobian of system (1)

J0 =


−µ0 −βπ

µ0
−ψβπ

µ0
− δβπ

µ0

0 βπ
µ0

− (µ0 +α) ψβπ
µ0

δβπ
µ0

0 α −(η1 +η2 +µ0 +µ1) 0
0 ϖ1 ϖ2 −d

 . (11)

In the above matrix the eigenvalues of the first two have real-part, −µ0 < 0, −(µ0 +α) < 0 while for the other
eigenvalues we consider a 2×2 matrix,

J0 =

(
βπ
µ0

− (µ0 +α) βψπ
µ0

α −(η1 +η2 +µ0 +µ1)

)
. (12)

Now for Routh-Hurwitz criteria [40], it is enough to show that, the trace of thematrixA is negative and its determinant
is positive, if R0 < 1, hence we get

Trace(A) = [
βπ
µ0

− (µ0 +α)]+ [−(η1 +η2 +µ0 +µ1)],

Trace(A) = −[(µ0 +α)+(η1 +η2 +µ0 +µ1)−
βπ
µ0

].

Thus, the Trace(A)< 0 if R0 < 1. Now for the determinant, we have

det(A) = [
βπ
µ0

− (µ0 +α)][−(η1 +η2 +µ0 +µ1)]−
βπδ
µ0

,

det(A) = [−(
βπ
µ0

)(η1 +η2 +µ0 +µ1)+((µ0 +α)],

det(A) = (µ0 +α)(η1 +η2 +µ0 +µ1)[1− (
βπ

µ0(µ0 +α)
+

µ1π
µ0(µ0 +α)(η1 +η2 +µ0 +µ1)

+
βδπ(dη1 +dη1 +η2α +η1 +η2)

d(µ0 +α)(η1 +η2 +µ0 +µ1))
)]+βδπ(µ0ϖ1 +µ1ϖ1 +ϖ2 +ϖ1η2 +ϖ1µ1.

det(A) = (µ0 +α)(η1 +η2 +µ0 +µ1)(1−R0)+βδπ(µ0ϖ1 +µ1ϖ1 +ϖ2 +ϖ1η1 +η2ϖ2.
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Hence, det(A)> 0 ifR0 < 1, which shows that det(A) is positive, whenR0 < 1. Hence, Trac(A)< 0 and det(A)> 0
⇔ R0 < 1. So that the DFE is locally asymptotically stable at F0.

5.1 Global stability analysis
The theorems presented below provide the global stability at DFE point F0. To analyze the global stability at F0 we

develop the following Lyapunov function.
Theorem 6 If R0 < 1 the DFE of the system is globally asymptotically stable if S = S0.
Proof. Let us set up the following Lyapunov function,

τ(t) = [R1(S−S0)+R2E(t)+R3I(t)+R4C]. (13)

Here Ri for i = 1, 2, 3, 4, are some arbitrary constants, they are considered later by the differentiation of Eq.(13) ,
and using (1), we obtain

τ ′(t) = R1[π − (βE(t)+ψβ I(t)+δβC(t)+µ0)S(t)]+R2[(βE(t)+ψβ I(t)

−(µ0 +α)E(t)]+R3[αE(t)− (η1 +η2 +µ0 +µ1)I(t)]+R4[ϖ1I(t)+ϖ2I(t)−dC(t)]

π
µ0

= S0, π = µ0S0

τ ′(t) = −[R1(µ0S−µ0S0)+(R1 −R2)(βE(t)+ψβ I(t)+δβC(t)+µ0)S(t))+R4(R2 −R3)αE(t)+µ0R2E(t)

+R3µ1I(t)+µ0R3I(t)+R3(η1 +η2)I −R4ϖ1E(t)−R4ϖ2I(t)].

By choosing the positive parameterR1, R2, R3, R4

τ ′(t) = −[β [(µ0(S−S0)+α(η1 +η2 +µ0 +µ1)(1−R0)+(µ0α − (ϖ1 +ϖ2 +µ0)η1)E

+(2µ0α +(ϖ1 +ϖ2 +µ0)(η1 +η2 +µ0 +µ1)η2)I].

τ ′(t) is negative if S > S0 and alsoR0 < 1 and τ ′(t) = 0 if S = S0. By invariance principle [41], and E = I =C = 0.
hence the DFE is globally asymptotically stable in F0.

6. Numerical simulations
In this section, we obtained the solution of the suggested model by using the RK4 technique [42]. This verifies our

analytical calculations. For simulation, we consider various values of parameters present in the suggested model which
are presented in Table 2. The values of the parameter are used in such a way that is far more biologically realistic. The
initial value for the population S(t), I(t), E(t), R(t), and C(t) is 10 weeks. The biological interpretation of these figures
shows that forR0 < 1, the susceptible population decreases and then becomes stable and shows that there will be always
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a susceptible population. The interpretation of E(t), I(t), R(t) and C(t) show that these populations first decreases and
reaches zero as shown in Figure 5 to Figure 6, while the dynamics of the camel population that is a reservoir for camel
reveals that the camel population decreases up to 70 days while then reaches its equilibrium position, this ensures that
there will be always camel population. These ensure the stability of the proposed model for the reproduction number less
than 1. From the figures, we observe that the decline in the cures goes to the stable point. By emphasizing important
intervention points like minimizing human-animal contact and enhancing treatment and isolation measures, this model
assists in comprehending the dynamics of the disease and provides guidance for public health policies.

Figure 5. Dynamical behaviors for the classes (a) = S(t), (b) = E(t) and (c) = I(t) of the considered model of different compartments
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Figure 6. Dynamical behaviors for the classes (a) = R(t) and (b) =C(t) of the considered model of different compartments

Table 2. Parameters and their values

Parameters Values Sources Parameters Values Sources

π 0.09 [39] µ0 0.022 assumed

ψ 0.26 assumed δ 0.02 assumed

α 0.05 assumed µ1 0.065 assumed

η1 0.02 assumed η2 0.04 assumed

ϖ1 0.04 assumed ϖ2 0.014 assumed

d 0.01 assumed β 0.08 [42]

7. Concluding remark
In this work, we have formulated a mathematical model to analyze the transmission dynamics of MERS-CoV. This

work provides a platform to investigate some challenges in the area of research and realization of the qualitative behavior
of MERS-CoV. The basic reproductive numberR0 is calculated for the suggested problem to study the transmission rate
of MERS-CoV. We have discussed the existence of backward bifurcations for a range of parameters. For the significance
of the epidemic parameters, the sensitivity analysis is studied. From the sensitivity analysis, we observe that an increase
in the values of the parameters set S1 obviously increases threshold quantity, on the other hand increasing the values of
parameters S2 decreases threshold quantity. We have discussed the local and global stability of the suggested model for
R0 < 1.

In the future, we can further extend the work by taking optimal control of the proposed model to minimize the MERS
CoV-infected population. We can also extend this model to a fractional order differential equation to point out the memory
trace and hereditary features.
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