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Abstract: Public health is still seriously threatened by rabies in many parts of the world, particularly in poorer nations.
In order to address this issue, this work suggests an equation describing the mechanisms of rabies transmission between
animals, taking into account infectious immigrants and vaccination as possible preventive measures. The next-generation
matrix (NGM) Method method was used to calculate the effective reproduction number (R0). Using the Routh-Hurwitz
Criterion, a disease-free equilibrium point (DFE)was discovered and It was demonstrated to have local asymptotic stability
if (R0 < 1), and unstable in every other case. Additionally, DFE was discovered to be quadratic Lyapunov stable and
globally asymptotically stable. Additionally, the model parameters’ sensitivity analysis on the (R0) was carried out using
the central manifold theory for the bifurcation analysis, and the analysis’s normalized forward sensitivity index method.
MATLAB software was utilized to do numerical analysis for simulation analysis. The findings of the simulated data
showed that a higher vaccination rate and fewer infectious immigrants would slow the development of the decline, as
shown visually.
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1. Introduction
Humans and other mammals are susceptible to the zoonotic disease rabies, which is caused by a rabies virus. It

belongs to the genus Lyssavirus and family Rhabdoviridae [1, 2]. Since the virus is found in saliva, the most common
method of transmission is through an animal’s bite [3]. Dogs are the primary mammals that transmit the rabies virus
from other animals to humans, along with bats, skunks, raccoons, foxes, and cats [4]. Peripheral nerves allow rabies to
penetrate the central nervous system. The virus causes encephalitis, which results in severe neurological symptoms that
worsen over time, such as paralysis of the muscles, anxiety, and aberrant neurological signs [5, 6]. Rabies continues to
be a major global health concern, accounting for over 59,000 deaths annually, a large majority of which occur in Africa
and Asia [7]. It is true that rabies is a deadly disease, and that once infected, recovery is quite unlikely. In extremely rare
instances, rabies virus infections can be recovered from but result in serious neurological impairments.

Since the illness may cause the patient to suffer from severe physical or mental disability, this is not a true cure in
the traditional sense. There have been reported cases of people surviving with no significant neurological aftereffects,
despite the fact that they are incredibly rare. The research is incredibly weak when it comes to assertions that an infected
animal with rabies can survive. Although there have been fewer occurrences of rabies in some areas, the disease is
still widespread, especially particularly sub-Saharan Africa and Southeast Asia, where access is restricted to inexpensive
livestock immunizations and prompt post-exposure prophylaxis [8]. Despite the fact that vaccinations can prevent dog
rabies, tens of thousands of people die from the disease annually in low- and middle-income nations [9, 10]. Even if
exposed to the virus, rabies is extremely uncommon to strike someone who has received the recommended vaccination
against the disease. Antibodies that guard against the virus are produced as a result of receiving a rabies vaccination.
Before the rabies virus can spread and infect people, these antibodies aid in neutralizing it. Regardless of immunization
status, PEP is recommended following possible exposure to rabies. In order to defend against the virus, PEP entails giving
rabies vaccines and, in certain situations, RIG. Preventive and CDC state that people who receive a full pre-exposure
vaccination are thought to have long-term immunity and typically do not need booster doses unless they work in a field
where exposure to rabies virus is constant, such as veterinary medicine or laboratory work handling samples of the virus.
Depending on the environmental circumstances, domestic or wild animals can infect humans with rabies, underscoring
the significance of caution and preventive measures [11–14].

Complex dynamics including population density, wildlife populations, and vaccination campaigns all have an impact
on the dynamics of rabies transmission. The dynamics of illness, particularly the spread of rabies, have been better
understood thanks to mathematical modeling. A number of disease modeling-related topics, including asymptotic stability,
media effect, contagion, and treatment techniques, have been the subject of recent research [15, 16]. Specifically,
several mathematical models have analyzed the dynamics of rabies transmission and proposed mitigation and control
strategies. However, externally imported illnesses are often overlooked in traditional models, despite the fact that they
might significantly affect the transmission [17].

Various mathematical models have recently analyzed the dynamics of rabies transmission and have suggested control
for preventing the disease. However, the traditional models, mostly avoid the major possibility of externally imported
infections that mostly contributes and had a substantial impact on the spread of the disease of rabies in natural reservoirs.
The current paper addresses this limitation by including the effects of infected immigrants, by combining the Routh-
Hurwitz criterion, a quadratic Lyapunov function, and a NGM approach. These methods shall meet our goal for enhancing
the model accuracy, dependability, and practicality. Taking in to account the WHO rules, we shall present a fresh
perspective on modeling the dynamics of animal rabies while maintaining the credibility of the given sources. This
approach shall also concentrate on the primary fact to dispel any misconceptions that appears in literature regarding
recovery from rabies, that is, often recorded and recognized almost fatal.

2. Formulation of mathematical
A nonlinear mathematical model comprising of five compartments namely, Susceptible, Vaccinated, Exposed,

Infected, and Recovered shall be considered. The model shall aim to look into and evaluate how the disease’s dynamics
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relate the infectious animal immigrants and the animal rabies. Receptive Animals in S(t) are those that are not infected
but could become infected following meaningful interaction with contaminated animals; exposed animals Animals with
rabies infection but no contagious disease are represented by E(t); these are vaccinated animals. Vaccinated animals
from the susceptible animal population are denoted by V (t); these animals are infected. The animals I(t) are those that
are communicable due to having received the rabies virus; animals that have been retrieved in R(t) have recovered from
rabies infections by either treatment or a natural immunological response.

Birth rate and immigration at π are believed to be the sources of hiring into the class S(t) that is vulnerable. Interaction
between the infected I(t) and susceptible S(t) causes infections at a rate of β . At a rate of θ , only vulnerable animals
in the population S(t) receive vaccinations, moving on to the vaccinated class V (t). The vaccine efficacy is represented
by the parameter ε , since vaccinations may not always be 100% successful. Animals lose immunity and revert to being
susceptible at a pace τ . After being exposed to the disease virus, animals move up to the infected class I(t) and become
infectious at a rate of σ . Immigration causes the proportion πi to enter the infected class I(t). The animals that have
recovered experience a decline in immunity and revert to the susceptible class S(t); rate η . Both contribute to the decline
in the animal population. Figure 1 represents the flow-chart of the proposed model.

dS
dt

= π +ηR+ τV − (β I +θ +µ)S,

dE
dt

= βSI +(1− ε)βV I − (α1 +α2 +δ +µ)E,

dI
dt

= πi +δE − (µ +µ1)I,

dV
dt

= α1E +θS− (τ +µ +(1− ε)β I)V,

dR
dt

= α2E − (µ +η)R.

(1)

Initial conditions are given in the Figure 1:

Figure 1. Flow-chart of the proposed model
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S(0)> 0, E(0)≥ 0, I(0)≥ 0, V (0)≥ 0, R(0)≥ 0, (2)

3. The basics qualitative properties of the model (1)
The rabies model presented in (1) is only mathematically and physiologically significant if and when all of the model

solutions (State variables) are limited in the invariant area and non-negative.

Ω =

{
(S, E, I, V, R) ∈ R5

+

∣∣∣∣N ≤ π +πi

µ

}

3.1 Positivity of the model solution

Theorem 1 [18] Let us give the initial data in Eq.(2) then the solutions S(t), E(t), I(t),V (t), R(t), of the rabies model
are non-negative for all times t > 0.

Proof. Let us consider S(0) > 0, E(0) > 0, I(0) > 0, V (0) > 0, R(0) > 0, then for all t > 0. We have to show that
S(0)> 0, E(0)> 0, I(0)> 0, V (0)> 0, R(0)> 0.

Define: ω = sup{S(0)> 0, E(0)> 0, I(0)> 0, V (0)> 0, R(0)> 0}.
We can now argue that ω > 0 since all of the state variables in model (1) are positive and continuous. If ω = +∞,

then the non-negativity holds. But, if 0 < ω <+ ∞, we will have S(ω) = 0, or E(ω) = 0, or I(ω) = 0, or V (ω)> 0, or
R(ω)> 0. We have found the constant value via integrating.

S(ω) = M1S(0)+M1

∫ ω

0
exp
(∫

(π +(µ +θ)(t))dt
)
(τV + γR−β IS)dt > 0

Where M1 = exp
(
−
(
πt +

∫ ω
0 (µ(t)+θ(t))dt

))
> 0.

And from the meaning of ω , the solution of S(0) > 0, E(0) > 0, I(0) > 0, S(ω) ̸= 0. Thus following the same
procedure for ω =+ ∞, all the solutions of the model (1) are non-negative.

3.2 Disease free equilibrium point (DFE)

Equation (1)’s equilibrium solution may be found by setting the derivatives to zero and working through the algebraic
equations [19]. An example of an equilibrium solution for an illness is as follows:

By setting E(t) = I(t) = R(t) = 0 in each equation, DFE can be found. Thus, DFE is provided by:

E0 =
(
S0, E0, V 0, I0, R0,

)
=

(
ϕ µ(θ +ϕ +µ)+(θτϕ)
(θ +µ)µ(θ + τ +µ)

, 0,
πθ

µ(θ + τ +µ)
, 0, 0

)
.

3.3 Endemic equilibrium point

The situation where I ̸= 0 is represented by a second equilibrium solution that is acquired by the solution of the
algebraic equation system [19]. This solution, which goes by the name “endemic equilibrium solution,” is as follows:
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

S∗ =
ϕ µ(θ +ϕ +µ)+(θτϕ)
(θ +µ)µ(θ + τ +µ)

,

E∗ =
(µ +µ1)−ϕ

δ
,

I∗ =
A1 +θτθδ

A2 −θ(1− ε)βθϕ(τ +µ)(θ +µ)+θτθδ
,

V ∗ =
πθ

µ(θ + τ +µ)
,

R∗ =
α2(µ +µ1)−ϕ

δ (µ +η)

Where: A1 = ϕ(α1 +α2 +δ +µ)µ(θ + τ +µ)(τ +µ)+θτθδ , A2 = (α1 +α2 +δ +µ)+(µ +µ1).

4. Basic reproductive number
In epidemiology, the Basic Reproductive Number is a fundamental concept. or quantifies the ability for an infectious

illness to spread. It shows how many secondary infections, on average, an infected person in a vulnerable population
causes. Stated differently, it measures the degree to which an illness can proliferate among a group of people. If R0 > 1,
then multiple new infections are being caused by each current illness, suggesting that the disease will probably spread
across the population.

If R0 < 1, then less than one new infection is being caused by each current illness, indicating that the disease will
probably eventually become extinct in the population. We now apply the R0 method as follows to determine R0:

F =

(
βSI +(1− ε)βV I

0

)
, F∗ =

(
0 βS∗+(1− ε)βV ∗

0 0

)

V =

(
(α1 +α2 +δ +µ)E
(µ +µ1) I −δE −πi

)
, V ∗ =

(
α1 +α2 +δ +µ 0

−δ µ +µ1

)

The inverse of V is:

V−1 =
adj(V )

|V |
=


1

α1 +α2 +δ +µ
0

δ
(α1 +α2 +δ +µ)(µ +µ1)

1
µ +µ1



We then find F∗V−1:
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F∗V−1 =

 βπ((τ +µ)+(1− ε)θ)
(α1 +α2 +δ +µ)(µ + τ)(µ +θ)(µ +µ1)

βπ((τ +µ)+(1− ε)θ)
(µ + τ)(µ +θ)(µ +µ1)

0 0



The dominant eigenvalue of this next-generation matrix is called the basic reproduction number R0, which is:

R0 =
βπ((τ +µ)+(1− ε)θ)

(α1 +α2 +δ +µ)(µ + τ)(µ +θ)(µ +µ1)

Figure 2. Sensitivity analysis of R0 to α1 and other parameters

Figure 3. Sensitivity analysis of R0 to Λ and ε
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Figure 4. Sensitivity analysis of R0 to γ

Figures 2, 3, and 4 represent the effect of different parameters on R0.

5. Sensitivity analysis
The model parameters and their effects on the effective reproduction number are discussed in the sensitivity analysis.

R0, as well as the transmission of the disease. Sensitivity indices can be used to quantify each parameter’s contribution to
the spread of a disease, and model analysis can be used to evaluate how robustly predictions are made to parameter values
[19].

Sensitivity analysis tells the researcher which parameters require greater numerical attention and which initial
conditions and parameters affect the model output. The variable R0,’s normalized forward sensitivity index is dependent
on the differentiability of a parameter p, which has the following definition:

Where XR0
p =

∂R0

∂ p
× p

R0
, symbolize the sensitivity index, and the effective reproduction number’s parameter is k.

For instance, The number of effective reproductions is increased. by increasing the value of Table 1, which is positive
managing; the more a parameter’s value effects the reverse, or the number of effective reproductions. The parameter index
is presented as Table 1. To see refer to table for the indices of the remaining parameters.

XR0
p =

∂R0

∂ p
× p

R0
,

p = {β , π, τ, µ, ε, θ , α1, α2, δ , µ1}
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

XR0
β =

∂R0

∂β
× β

R0
= 1

XR0
π =

∂R0

∂π
× π

R0
= 1,

XR0
τ =

∂R0

∂τ
× τ

R0
=

τ(α1 +α2 +δ +µ)(µ + τ)(µ +θ)(µ +µ1)

βπ((τ +µ)+(1− ε)θ)
,

XR0
µ =

∂R0

∂ µ
× µ

R0
=

(α1 +α2 +δ +µ)(µ + τ)(µ +θ)(µ +µ1)

βπ((τ +µ)+(1− ε)θ)
×
(

4µ3 +3(τ +θ +µ1)µ2 +2(τθ + τµ1 +θ µ1)µ
1

)
,

XR0
ε =

∂R0

∂ε
× ε

R0

(α1 +α2 +δ +µ)(µ + τ)(µ +θ)(µ +µ1)

βπ((τ +µ)+(1− ε)θ)
×
(

4εµ3 +3ε(τ +θ +µ1)µ2 +2ε(τθ + τµ1 +θ µ1)µ
1

)
,

XR0
α1 =

∂R0

∂α1
× α1

R0
− α1(α1 +α2 +δ +µ)(µ + τ)(µ +θ)(µ +µ1)

(τ +µ)+(1− ε)θ
,

XR0
α2 =

∂R0

∂α2
× α2

R0
− α2(α1 +α2 +δ +µ)(µ + τ)(µ +θ)(µ +µ1)

(τ +µ)+(1− ε)θ
,

XR0
δ =

∂R0

∂δ
× δ

R0
− δ (α1 +α2 +δ +µ)(µ + τ)(µ +θ)(µ +µ1)

(τ +µ)+(1− ε)θ
,

XR0
µ1 =

∂R0

∂ µ1
× µ1

R0

µ1(α1 +α2 +δ +µ)(µ + τ)(µ +θ)(µ +µ1)

(τ +µ)+(1− ε)θ

Table 1. Parameter values and sensitivity index

Parameters Value (per day) Source Sensitivity index

µ 0.1 [20] 0.3
α1 0.1 Assume -0.08
α2 0.1 Assume -0.9
δ 0.1 Assume -1.4
τ 0.1 [20] 1.5
ε 0.1 Assume 0.2
β 0.2 [20] 1
µ1 0.05 [20] 0.07
π 0.1 [20] 1
θ 0.1 [20] 0.1
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6. Local stability of disease free equilibrium
Theorem 2 In the model system (1), the disease-free equilibrium point E0 is locally asymptotically stable if R0 < 1,

and unstable otherwise.
Proof. Applying the Routh Hurwitz stability criteria of the rubies model described in eq. (1) at the illness-free

equilibrium point E0 yields the following results:the local stability of the illness of the disease-free equilibrium point of
model (1) is assessed by,


−(µ +θ) θ β ∗S∗ τ η

0 −(u+α1 +α2) β ∗S∗ 0 0
0 δ −(u+u1) 0 0
0 α1 0 (u+ τ) 0
0 α2 0 0 −(u+η)



Next, the matching characteristics of the jecobian matrix J(E0) is given by,


−(µ +θ)−λ θ β ∗S∗ τ η

0 −(u+α1 +α2)−λ β ∗S∗ 0 0
0 δ −(u+u1)−λ 0 0
0 α1 0 −(u+ τ)−λ 0
0 α2 0 0 −(u+η)−λ



λ1 =−(u+ r), λ2 =−(u+ t), λ3 =−(u+ t),

The above matrix is reduced

(J(E0)−λ I) =

[
−(a1 +a2 +δ )−λ BS∗

δ −(u1 +u2)−λ

]
= 0,

((u+a1 +a2 +δ )−λ )((u+u1)−δBS∗) = 0,

λ 2 +λ (θu−α1 +α2 −δ −u1 +(u2 +uu1 +α1u1 +α2u+α2u1 −BS∗)) = 0,

Here

B1 = (a1 −2u−u−δ −u1)

B2 = (u2 +uu1 +a1u+a2u+a2u1 −δBS∗)

λ 2 +λB1 +B2 = 0,
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Whenver R0 < 1, if the initial size of the model is given (1), is in the basin of attraction of the disease-free equation
point (E0), It may be inferred that the model’s disease-free equilibrium point (1) exhibits local asymptotic stability.

7. Global stability of the endemic equilibrium point
Utilizing Vargas-De-Leon’s Lyapunov function [21], The point at which the endemic equilibrium is globally stable

E∗ was evaluated. If
dV
dt

< 0, the Lyapunov function V (x) is considered to be asymptotically globally stable at the point
where it exists.

Theorem 3 For the given model system, the rabies epidemic has a unique endemic equilibrium point (E∗),
which is globally asymptotically stable if R0 > 1 and unstable otherwise.
Proof. Consider the quadratic Lyapunov function

v(y) =
1
2

n

∑
i=1

(yi − y∗i )
2,

where yi is the population of the i-th compartment and y∗i is its endemic equilibrium value.
This function is positive definite for the model system.
The Lyapunov function for the rabies model system can be expressed as:

v =
1
2
(
(S−S∗)2 +(E −E∗)2 +(I − I∗)2 +(V −V ∗)2 +(R−R∗)2) .

Taking the time derivative of v, we get:

dv
dt

= (S−S∗)
dS
dt

+(E −E∗)
dE
dt

+(I − I∗)
dI
dt

+(V −V ∗)
dV
dt

+(R−R∗)
dR
dt

.

Using the model equations, we substitute

dS
dt

,
dE
dt

,
dI
dt

,
dV
dt

, and
dR
dt

:

dv
dt

= ((S+E + I +V +R)− (S∗+E∗+ I∗+V ∗+R∗))(π +πi −µI −µN) .

At equilibrium, we have:

π +πi −µI −µ(S∗+E∗+ I∗+V ∗+R∗) = 0.

This implies:

(S∗+E∗+ I∗+V ∗+R∗) =
π +πi −µI∗

µ
.

Substituting this into the derivative, we get:
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dv
dt

=−µ
(

N(t)− π +πi −µI∗

µ

)2

.

Since µ > 0, it follows that:

dv
dt

≤ 0,

with equality if and only if

N(t) =
π +πi −µI∗

µ
.

Thus,
dv
dt

< 0, indicating that v is a Lyapunov function and the endemic equilibrium point E∗ is globally
asymptotically stable.

8. Global stability of disease free equilibrium point
The model system (1) may be expressed as follows:


dP
dt

= F(P, Q),

dQ
dt

= F(P, 0), G(P, 0).

In this case, the numbers of uninfected compartments (P ∈ Rm), infected compartments (Q ∈ Rn), and disease-free
equilibrium points (E0 = (P0, 0)) are shown. In order to ensure the grantee’s global asymptotic stability of DFE, the

following conditions (H1) and (H2) need to be met. H1 = For
dP
dt

= F(P, 0), P0, is globally asymptotically stable, H2 =

For G(P, Q) = XQ−G−(P, Q), G−(P, Q)≥ 0. For P, Q ∈ Ω, where XA1(P0, 0) is the Metzler Matrix thanks to its non-
negative off-diagonal components of X , and Ω denotes the region where the epidemiologically significant rabies model
system (1) is supplied.

Consequently, if the system meets the aforementioned requirement (H1) and (H2), Hence the following theorem is
true.

Theorem 4 The diseases free equilibrium point E0 = (P0, 0) is unstable otherwise and globally asymptotically stable
if Re < 1.

Proof. The model system for rabies (1) may be expressed as; P = (S, V, R) = (E, I) and

E0 =

(
ϕ µ(θ +ϕ +µ)+(θτϕ)
(θ +µ)µ(θ + τ +µ)

, 0,
πθ

µ(θ + τ +µ)
, 0, 0

)
.

Now, we have
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d p
dt

=

 π +ηR+ τV − (β I +θ +µ)S,
α1E +θS− (τ +µ +(1− ε)β I)V,

α2E − (µ +η)R.


At disease free equilibrium

dP
dt

= F(P0, 0) =


ϕ + τ

πθ
µ(θ + τ +µ)

− (θ +µ)
ϕ µ(θ +ϕ +µ)+(θτϕ)
(θ +µ)µ(θ + τ +µ)

θ
ϕ µ(θ +ϕ +µ)+(θτϕ)
(θ +µ)µ(θ + τ +µ)

− (τ +µ)
πθ

µ(θ + τ +µ)
0

 (3)

F(P0, 0) possesses a distinct equilibrium point. P0 =

(
ϕ µ(θ +ϕ +µ)+(θτϕ)
(θ +µ)µ(θ + τ +µ)

,
πθ

µ(θ + τ +µ)

)
,This is asymptotically

stable worldwide. Because of this, (H1) holds true. Regarding the second conation (H2)

G(P, Q) =

(
βSI +(1− ε)βV I − (α1 +α2 +δ +µ)E,

πi +δE − (µ +µ1)I

)
(4)

Then we get

X = A1(P0, 0) =

(
−(α1 +α2 +δ +µ) βS∗+(1− ε)βV ∗,

δ −(µ +µ1)

)
(5)

.
Now, it is clear that because the diagonal elements of the matrix are non-negative. Hence Ĝ(P, Q) = XA−G(P, Q)

equals to

Ĝ(P, Q) =

(
−(α1 +α2 +δ +µ) βS∗+(1− ε)βV ∗

δ −(µ +µ1)

)(
E
I

)(
βSI +(1− ε)βV I − (α1 +α2 +δ +µ)E

πi +δE − (µ +µ1)I

)
(6)

Ĝ(P, Q) =

(
βS0 +(1− ε)βV 0 − (βS+(1− ε)βV )

0

)
⇒ Ĝ(P, Q) =

(
β (S0 −S)+(1− ε)β (V 0 −V )

0

)
(7)

Given that it is evident that S0 > S andV 0 >V, it follows that Ĝ(P, Q) ̸= 0, andP0 =P0 =

(
ϕ µ(θ +ϕ +µ)+(θτϕ)
(θ +µ)µ(θ + τ +µ)

,

πθ
µ(θ + τ +µ)

)
, is globally asymptotically stable.
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9. Bifurcation
In mathematical models, bifurcation describes situations in which little adjustments to the parameters result in notable

changes in the behavior of the system. It makes clear the pivotal moments at when the system’s dynamics radically shift,
helping us to comprehend how systems change and adapt to different circumstances. In order to determine β ∗, we must
set R0 = 1 in order to verify the bifurcation of our model [22]. The jacobian matrix of the model (1) is given as

J∗β =


−(µ +θ) 0 β ∗S∗ τ η

0 −(µ +α1 +α2 +δ ) β ∗S∗ 0 0
0 δ −(µ +µ1 −α1) 0 0
θ α1 0 −(µ + τ) 0
0 α2 0 0 −(µ +η)



After some steps of the calculation we have determined the eigenvalue of Jβ ∗

γ1 =−(µ +θ), γ2 =−(µ +µ1 −α1), γ3 =−(µ +α1 −α2 +δ ), γ4 = µ + τ,γ5 = µ +η .

It demonstrates that every eigenvalue is a negative real point. In this case, the dynamics of themodelmay be examined
using the theorem Castillo, Chavez, and Song [22] to demonstrate that the eigenvector of Jβ ∗

In this section we will find the right and left eigenvectors, then on the base of these eigenvector, we will describe
that what type bifurcation exist

J|0|(β ∗)K = 0,

Jβ ∗ =


−(µ +θ) 0 β ∗S∗ τ η

0 −(µ +α1 +α2 +δ ) β ∗S∗ 0 0
0 δ −(µ +µ1) 0 0
θ α1 0 −(µ + τ) 0
0 α2 0 0 −(µ +η)




K1

K2

K3

K4

K5

=


0
0
0
0
0



−K1µ −K¬1(µ +θ)+β ∗S∗K3 + τK4 +ηK5 = 0 (8)

−K2µ −K¬2(µ +α1 +α2 +δ )+β ∗S∗K3 = 0 (9)

K2δ −K3(µ +µ¬¬1) = 0 (10)

θK1 +α1K2 −K4(µ + τ) = 0 (11)

α2K2 −K5(µ +η) = 0 (12)

The left eigenvector associated with the zero eigenvalue may now be found by using the formula V J|0|(β ∗) = 0.
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

− (µ +θ)V1 +θV4 = 0

− (µ +α1 +α2 +δ )V2 −δV3 +α1V4 +α2V5 = 0

V1β ∗S∗+V2β ∗S∗− (µ +µ1)V3 = 0

V1τ −θ(µ + τ)V4 = 0

ηV1 −V5(µ +η) = 0

(13)

After solution the above system of equation we get the following result V1 =V4 =V5 = 0.
We can write in model (1) the form

dg
dt

= g(x) with g =
(

g1, g2, g3, g4, g5

)⊺
as follows by setting S = y1, E =

y2, I = y3, V = y4, R = y5.

g(y) = g1 = π + τy4 +ηy5 − (βy3 +µ +θ)y1,

g(y) = g2 = βy1y3 +(1− ε)βy4y3 − (µ +α1 +α2 +δ )y2,

g(y) = g3 = δy2 +πi − (µ +µ1)y3,

g(y) = g4 = θy1 +α1y2 − (µ + τ +(1− ε)βy3)y4,

g(y) = g5 = α2y2 − (µ +η)y5.

(14)

We get the function of g by using the value of the left eigenvectorV . We only pick g2 and g3, and we then determine
the partial derivative of their second order in the following manner.


g2(y) = βy1y3 +(1−β )βy4y3 − (µ +α1 +α2 +δ )y2,

g3(y) = ηy2 +πi − (µ +µ1)y3.

(15)
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∂ 2g2

∂y1∂y j
(E0, β ∗) = 0 for j = 1, 2, 4, 5

∂ 2g2

∂y1∂y3
(E0, β ∗) = β ∗ for J = 3

∂ 2g2

∂y2∂y j
(E0, β ∗) = 0 for J = 1, 2, 3, 4, 5

∂ 2g2

∂y3∂y j
(E0, β ∗) = 0 for J = 2, 3, 4.

∂ 2g2

∂y3∂y j
(E0, β ∗) = β ∗(1− ε) for J = 1, 4

∂ 2g2

∂y4∂y j
(E0, β ∗) = 0 for J = 1, 2, 4, 5

∂ 2g2

∂y4∂y j
(E0, β ∗) = β ∗(1− ε) for J = 3

∂ 2g2

∂y5∂y j
(E0, β ∗) = 0 for J = 1, 2, 3, 4, 5

∂ 2g3

∂yi∂y j
(E0, β ∗) = 0 for J = 1, 2, 3, 4, 5

∂ 2g3

∂yi∂β ∗ (E0, β ∗) = 0 for j = i = 1, 2, 3, 4, 5

We get the bifurcation coefficients, a and b, as, taking into consideration the eigenvalues on the left and right.

a =
5

∑
k,i= j=1

VkKiK j
∂ 2gk

∂yi∂β ∗ (16)

b =
5

∑
k,i= j=1

VkK j
∂ 2gk

∂yi∂β ∗ (17)

It can be shown from the foregoing relation (10) and (11) that only V2,V3, are non-zero.

Volume 5 Issue 3|2024| 3269 Contemporary Mathematics



a =V2

5

∑
k,i= j=1

KiK j
∂ 2g2

∂yi∂β ∗ +V2

5

∑
k,i= j=1

KiK j
∂ 2g3

∂yi∂β ∗

b =V2

5

∑
k,i= j=1

K j
∂ 2g2

∂yi∂β ∗ +V3

5

∑
k,i= j=1

K j
∂ 2g3

∂yi∂β ∗

to find the value of (a) we exclusive taken into account the non-zero order partial derivative of g2, g3, all
∂g2

∂yi∂y j
and zero

except, Similarly,

∂gi

∂yi∂y j
= 0,

therefore, the above equation

a =V2

5

∑
k,i= j=1

KiK j
∂ 2g2

∂yi∂β ∗ +V3

5

∑
k,i= j=1

KiK j
∂ 2g3

∂yi∂β ∗ (18)

a =V2

5

∑
k,i= j=1

KiK j
∂ 2g2

∂yi∂β ∗ (19)

a = v2

(
β ∗S∗K3 + τK4 +ηK5

(µ +θ)
· K2δ
(µ +µ1)

β ∗(1− ε)+
θK1 +α1K2

(µ + τ)
· K2δ
(µ +µ1)

β ∗(1− ε)
)
> 0

b =V2K1β +V3

5

∑
k,i= j=1

K j(0)

b =V2
β ∗S∗K3 + τK4 +ηK5

(µ +θ)
β > 0

According to the hypothesis, the 1 model exhibits a phenomenon of backward bifurcation at R0 = 1, since a > 0 and
b > 0. several equilibrium points coexisting. The initial number of afflicted people is also very important.

Common prerequisites for curing sickness, such creating R0 < 1, will not function in such a reason.

10. Numerical simulations
The MATLAB 2018a software with ODE45 solver, which combines 4th-order and 5th-order Runge-Kutta (RK5)

methods, was used to perform the numerical simulation in this section. Its ability to accurately represent the dynamics
of the rabies transmission model has been demonstrated. The starting parameters that are used in the simulation are:
S = 500, V = 0, E = 100, I = 100, and R = 0. The initial conditions are chosen at random to influence the model’s
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behavior in a specific manner. Figure 5 depicts the population trends of the rabies population. Figures 6, 7, 8, 9, and 10
provide graphical representations of the susceptible, exposed, infected, vaccinated, and recovered classes, respectively.

Figure 5. Animal population evolution over time

Figure 6. Susceptible animal population

The findings show that the number of animals that are sensitive rapidly declines in the early years. The two main
causes of this decline are as follows: the first is the rise in vaccination administration at a steady pace of 0.1 (vaccine
effectiveness of α1 = 0.1). By immunizing vulnerable animals against rabies, this strategy seeks to reduce the animals’
vulnerability to the illness. Second, the infection contracted via interacting with diseased animals also plays a role
in the decline of animals that are vulnerable. Animals that are vulnerable to infection are exposed to the virus when
they interact with infected people, which lowers their susceptibility. In keeping with one health approach put forth by
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Acharya et al. [23], the dynamics of these processes shown graphically offers insightful information about the early
effectsof immunization and illness dissemination on the rabies populace. It also emphasizes the significance of efficient
immunization tactics as well as the necessity of controlling infection transmission in order to effectively treat rabies.

Figure 7. Exposed population

Figure 8. Infected animal population
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Figure 9. Vaccinated animal population

Figure 10. Recovered population

11. Simulation of the impact of changing parameter values on themodel’s parame-
ters
The purpose of the parameter value variation in this part was to examine the behavior of the state variables in response

to the parameter value change. The simulation is performed with respect to the most sensitive factors, and Figure 11
displays the outcomes. It is clear from Figure 11 that when the vaccine is administered successfully, there is a decrease in
the number of sick animals due to the rise in vaccination efficiency.
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A growing proportion of immunized animals acquire immunity against rabies, making them less susceptible to
infection, as vaccination efficiency increases. Over time, this causes the number of affected animals to decrease. The
graph highlights how crucial vaccination effectiveness is in stopping the spread of rabies.

Figure 11. Effect of β of susceptible animal population

Figure 12. Effect of β of exposed animal population

Stronger protection is provided by a more potent vaccination, which also helps to reduce the overall number of sick
animals by preventing the disease’s spread. These results highlight the need of ongoing efforts to create and use vaccines
with high rates of effectiveness as a vital weapon in the fight against rabies and safeguarding public health.

It is clear from Figure 12 that a rise in vaccination efficiency β causes a drop in the quantity of animals exposed. An
increasing proportion of vaccinated animals acquire immunity to rabies, decreasing the probability of their coming into
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contact with the virus, as the vaccine grows more effective. The graph effectively depicts how the dynamics of exposed
animals within the population are impacted by vaccination effectiveness.

More peoplewho receive vaccinations are protected, which results in fewer animals being exposed to the illness, when
the efficacy of the vaccination is higher. This result highlights how important it is to increase vaccination effectiveness
in preventing rabies from spreading and reducing the number of animals that are at danger of infection. These findings
demonstrate the critical role that vaccinations play in lowering the risk of contracting rabies and reinforce the significance
of ongoing research and development initiatives to improve vaccine effectiveness as a cornerstone tactic in the prevention
and control of rabies.

11.1 Effects of intervention on infected rabies animals

A simulation of the model was performed. in this part both with and without intervention, and Figure 8 presents a
summary of the outcomes. It is clear from Figure 8 that illness infection rates are high in the absence of vaccine application.
However, rabies disease infections tend to decline dramatically with the vaccine being implemented at a steady pace of
θ = 0.1 (with vaccination efficiency of ε = 0.94).

Because of this, the prevalence of the sickness has been gradually dropping over time, and the infection is expected to
finally go extinct in the population. This finding highlights the vital role that vaccination plays in managing and preventing
the spread of rabies, ultimately resulting in the disease’s eradication from the general population. The work of Lavan et
al. [10] supports the graphical approach, which clearly visualizes the beneficial effect of immunization on the rabies
infection’s dynamics and emphasizes the significance immunization campaigns in the field of public health policies.

11.2 Simulation of the model’s response to changing infectious immigrant parameter values

The consequences of a rise in the quantity of infectious immigrants (πi × I) on various demographic groups are well
displayed in Figure 13, 14, and 15. The increasing number of infectious immigrants has different effects on communities
that are susceptible, immunized, and recoverable. More specifically, Figure 12 shows that the number of vulnerable
individuals decreases as infectious immigrants rise.

Figure 13. Effect of β of infected animal population
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Figure 14. Effect of β of vaccinated animal population

Figure 15. Effect of β of recovered animal population

This is to be expected as the entry of infected people from outside sources increases the chance that susceptible
people may contract the disease, which eventually reduces the susceptible population. Figure 9 illustrates how an increase
in infectious Immigration lowers the proportion of vaccinated animals. This result implies that, in spite of vaccination
campaigns, peoplemay expose vaccinated animals to viruses, whichmight cause an increase in the population’s proportion
of vaccinated animals. However, Figure 14 clearly shows that a rise in infectious immigrants leads to a fall in the number
of recovered persons. This suggests that reintroducing diseased animals from outside sources might result in reinfections,
which would impede the healing process and lower the total number of animals that are recovered.
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On the other hand, it is noted that the effects of infectious immigrants on populations that are exposed and affected
varies. As predicted, the number of sick animals rises in Figure 6 in response to an increase of infectious immigrants.
Parallel to this, Figure 7 shows that when infectious immigrants grow, more animals get exposed since they can spread
the virus to other vulnerable animals, leading to an increase in the number of exposed animals. These results demonstrate
how important it is to manage the dynamics of the rabies population by limiting the number of contagious immigrants
entering the nation.

According to Chen et al. [18] and Blackwood et al. [24], preventing the import of infected animals from outside
sources can help limit the disease’s spread and protect susceptible and vaccinated persons from possible infections. These
findings have substantial implications for the design and execution of initiatives aimed at lowering the prevalence of the
illness and emphasize the need of border security measures in rabies-affected regions.

12. Conclusion
To comprehend the transmission dynamics of animal rabies, we formulated a mathematical model that considers

affective variables like the incursion of infected individuals from other areas and used the impact of vaccination as a
preventive measure. The reproduction number (R0) has been calculated using the well-known next-generation matrix
(NGM) method. Through the application of the Routh-Hurwitz criterion, we have identified a Disease-Free Equilibrium
(DFE) point and recognized its stability condition as R0 being less than 1 for stability and greater than 1 for instability.
Moreover, we have confirmed the global stability of the DFE by analyzing it with a quadratic Lyapunov function. The
central manifold theory is used for Bifurcation analysis, and the normalized forward sensitivity index technique is used
for sensitivity of model parameters and variation in R0. Numerical simulations have been carried out using the MATLAB
program. The produced research has shown that an increase in vaccination rates and a decrease in the number of infected
immigrants entering a population can excellently slow down the transmission of rabies. These results emphasize the
significance of controlling the influx of infectious immigrants as a strategy to significantly manage the spread of rabies.
The implications of these results are important for the development and implementation of strategies aimed at reducing the
occurrence of rabies, underlining the role of a successful vaccination campaign in limiting the transmission of the disease.
Sensitivity analysis has indicated that the transmission rate (β ) has the most significant effect on the spread of rabies,
while the efficacy of vaccination (ε) plays a vital role in reducing the occurrence of the disease. Our simulation study,
carried out using MATLAB, has established that adjusting rabies transmission can be achieved by controlling the number
of infectious immigrants and increasing vaccination rates. These results advocate that in order to effectively control rabies,
it is important to assume measures that focus on reducing the entry of diseased individuals into a population and boosting
the percentage of individuals vaccinated against rabies. However, further research is essential to address the limitations
of our model, including the simplifications and assumptions, which could possibly affect its accuracy.

Finally, we provided graphs for understanding the dynamics of rabies transmission and evaluating the impact of
various parameters on the epidemic’s progression. They illustrate the changes in susceptible, exposed, infected, vaccinated,
and recovered populations over time, highlighting the effects of different transmission rates and control measures. These
insights are crucial for identifying equilibrium states, validating and improving mathematical models, and supporting
effective policy and decision-making for rabies control.
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