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1. Introduction
Fractional calculus is implemented constantly due its virtue in variety of domains, such as physics, biology, signal

processing, economics, financial markets, etc. An essential application of fractional calculus lies in fractional partial
differential equations (FPDEs), which serve as effective models for numerous natural phenomena. Different definitions
of fractional derivatives and integrals have been proposed in the literature. Amongst them, the most prominent involve the
fractional definitions by Caputo and Riemann-Liouville. Hilfer extended the concept of the Riemann-Liouville fractional
derivative recently. This extension, called the Hilfer derivative, leads to a wider range of steady states and provides
more flexibility in initial condition setting by introducing new parameters. Researchers have been prompted to enhance
theoretical structures and applied methods in this domain owing to the increased use of FPDEs in the field of science and
engineering.

Agarwal et al. [1] presented the solution approach for fuzzy fractional differential equations (FFDEs), marking
the initial instance in literature where a fractional differential equation integrating uncertainty has been addressed. In
multivariable functionswith fuzzy values, Long et al. [2] introduced the concepts of Caputo gH-partial and fuzzy fractional
integral and reported two new results about the existence of two distinct kinds of gH-weak solutions to these problems.
Using multiple fractional power series (MFPS) formulation, Alaroud et al. [3] approximated solutions for a nonlinear
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time-fractional gas dynamics equation (FGDE) by applying the Laplace residual power series (LRPS) technique. Authors
also used limit principles to discover the unknown coefficients of Laplace fractional series expansion (LFSE) for the
new equation in Laplace space. Using the fuzzy Adomian decomposition method (FADM) Saeed et al. [4] examined
mathematical solutions of nonlinear fuzzy fractional partial differential equations (FFPDEs) under Caputo derivative.
They evaluated FADMs consistency and performance to produce series solutions wherein persistence depends on the
fuzzy fractional derivative. Askari et al. [5] showed the convergence of a sequence with distinct forms of differentiability,
towards the precise solution within the Caputo derivative. The objective of Padmapriya et al. [6] is to explore the solutions
of Hilfer fractional differential equations in a fuzzy sense using the ADM. Additionally they illustrated the feasibility of
obtaining numerical solutions for fuzzy Hilfer fractional differential equations under different conditions. With Schauder
fixed-point theorem and method of upper and lower solutions Malahi et al. [7] obtained sufficient conditions for a
fractional differential equation. In [8, 9], authors investigated the existence and approximate controllability for Hilfer
fractional differential systems using fixed point theorem. These requirements are important for ensuring the existence
of a positive solution for the given problem. Several authors have proposed solution for the nonlinear fractional gas
dynamics equation (FGDE) using the combination of homotopy perturbation Sumudu transform method (HPSTM) and
theAdomian decompositionmethod (ADM), natural transform and homotopy perturbationmethod to obtain exact solution
of the problems. These methods are highly potent and efficient in scientific and engineering domains, offering a refined
approach in the field of numerical techniques in solving different kinds of linear and nonlinear fractional differential
equations [10, 11]. Olaniyi [12] have examined time-fractional non-linear gas dynamic equations for both homogeneous
and non-homogeneous system and calculated approximate solutions for these equations in the form of series using q-
homotopy analysis method (q-HAM). By evaluating a Caputo fractional proportional type nonlinear boundary value
issue [13] linked with Caputo fractional proportional type slit-strips and Riemann-Stieltjes integral boundary conditions,
solution were extracted for a particular example. Orthogonal collocation on finite elements (OCFE) [14] with quadratic
B-spline basis functions were applied to the space fractional diffusion equation. Quadratic B-spline’s main advantages are
their superior interpolation skills and easy adaption to problems on irregular grids. A study on coronavirus transmission
models was carried out by Srilekha at el. [15] using Simulink, a model-based design system that promotes modeling and
at the system level design. The Caputo fractional derivative was used as a guide for creating the model and Simulink to
forecast and simulate the COVID-19 pandemic. Selvam et al. [16] used the ψ-Caputo fractional derivative to study the
observability of linear and non-linear fractional dynamical systems. The observability Grammian matrix, controlled by
the Mittag-Leffler function, was employed for the linear case. Banach’s fixed point theorem was applied in the nonlinear
case to provide sufficient criteria for the observability of fractional dynamical systems.

A dynamic structure for analyzing systems with memory impacts is offered by the fuzzy Hilfer fractional derivative.
This is crucial in gas dynamics, as previous conditions have an impact on present behavior. It successfully integrates
fractional-order dynamics, providing benefits in analytical and numerical solutions, resulting in forms that are easier
to handle, more accurate and stable simulations. Gas dynamics has practical applications in environmental science,
combustion research, aeronautical engineering, and other fields. To maximize efficiency, enhance security, and reduce
environmental impact, effective gas flow simulation is essential. This research offers a chance to develop new approaches
in gas dynamics and may change our current knowledge and modeling abilities for complex flow phenomena. In order to
integrate theoretical understanding with real-world applications, research into FFDEs integrating the Riemann-Liouville
derivative provides potential for recent advances in gas dynamics. These equations may find application for the study of
gas dynamics to describe non-local or memory-dependent effects in the behavior of gas flows resulting in more precise
and predicting real-world phenomenon models. The functioning of a system at certain times is predicted via conventional
differential equations to rely exclusively on its current state and the external inputs available at that point. On the other
hand, the system’s historical history may impact its behavior in everyday circumstances, such as gas dynamics, such
memory-dependent behavior can be modeled mathematically using fractional derivatives. These equations provide an
additional context that conventional differential equations are unable to adequately represent for describing complex
phenomena in gas dynamics.

The virtue of Adomian decomposition method in different types of equations has made several scholars interested
in it. This method was initially developed by George Adomian from the 1970s to 1990s. It stands out as an excellent
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technique as it can be directly applied to integral and differential equations with variable or constant coefficients regardless
of whether they are homogeneous or non-homogeneous, linear or nonlinear. Moreover the solution is obtained in terms
of fast converging power series with estimable terms, from the provided initial condition of the given problem.

2. Preliminaries
Some basic concepts and results for fuzzy Hilfer fractional derivative are provided in this section see [6, 7].
Definition 1 [6, 7]
The Riemann-Liouville fractional integration of order α is defined as

(Sα
0+x)(t) =

1
Γ(α)

∫ t

0
(t − s)α−1x(s)ds, α > 0, t > 0.

Definition 2 [6, 7]
The fuzzy Hilfer fractional derivative χα, β

0+ of a function x with order 0 < α < 1 and type 0 ≤ β ≤ 1 is defined as
follows

χα, β
0+ x(t) = Sβ (1−α)

0+ χS(1−β )(1−α)
0+ x(t),

where χ =
d
dt
. Then

[(χα, β
0+ x)(t)]r = [(χα, β

0+ xr)(t), (χ
α, β
0+ xr)(t)],

[(χα, β
0+ x)(t)]r = [(Sβ (1−α)

0+ χS(1−β )(1−α)
0+ xr)(t), (S

β (1−α)
0+ χS(1−β )(1−α)

0+ xr)(t)].

Remark 1 [6, 7]
(i) The Hilfer derivative χα, β

0+ can be expressed in the following form

χα, β
0+ = Sβ (1−α)

0+ χS(1−β )(1−α)
0+ = Sβ (1−α)

0+ χγ
0+,

where γ = α +β −αβ .
(ii) Between the Riemann-Liouville and Caputo fractional derivatives, the Hilfer fractional derivative χα, β

0+ is
employed as an interpolator since

χα, β
0+ =


χS1−α =RL χα

0+, if β = 0,

S1−α
0+ χ =C χα

0+, if β = 1.
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Theorem 1 [7]
Suppose that x ∈ ργ [0, 1], where 0 < α < 1, 0 ≤ γ <1 and ργ is the weighted spaces of continuous functions on the

interval [0, 1],

χα
0+Sα

0+x(t) = x(t), ∀ t ∈ (0, 1].

Further, if x ∈ ργ [0, 1] and S(1−β )(1−α)
0+ x ∈ ρ1

γ [0, 1], then

χα, β
0+ Sα

0+x(t) = x(t), for a.e t ∈ (0, 1].

Theorem 2 [6, 7]
Consider α, β ≥ 0 and x ∈ ρ1

γ [0, 1]. Then

Sα
0+Sβ

0+x(t) = Sα+β
0+ x(t).

Lemma 1 [6, 7]
Consider α ≥ 0 and σ > 0. Then

Sα
0+tσ−1 =

Γ(σ)

Γ(α +σ)
tα+σ−1, t > 0,

and

χα
0+tσ−1 = 0, 0 < α < 1.

Lemma 2 [6, 7]
If x ∈ ργ [0, 1] and S1−α

0+ x ∈ ρ1
γ [0, 1] for 0 < α < 1 and 0 ≤ γ < 1, then

• (Sα
0+χα

0+x)(t) = x(t)⊖
S1−α

0+ x(0)
Γ(σ)

tσ−1, for x is (1)-differentiable (gH differentiable)

• (Sα
0+χα

0+x)(t) = (−1)
S1−α

0+ x(0)
Γ(σ)

tσ−1 ⊖ (−1)x(t), for x is (2)-differential (gH differentiable)

where ⊖ is fuzzy subtraction.

3. Adomian decomposition method
Examine the following differential equation of fractional order that involves the Hilfer derivative, where 0 < α < 1

and 0 ≤ β ≤ 1,

χα, β
0+ ν(ξ , t, ζ ) = λ 2ν(ξ , t, ζ )+λν(ξ , t, ζ )+ f (ξ , t, ζ ), (1)
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with initial condition

S1−ψ
0+ ν(ξ , 0, ζ ) = b, ψ = α +β −αβ . (2)

Operating Sη
0+ on both sides of Eqn. (1)

Sη
0+χα, β

0+ ν(ξ , t, ζ ) = Sη
0+λ 2ν(ξ , t, ζ )+Sη

0+λν(ξ , t, ζ )+Sη
0+ f (ξ , t, ζ ).

We have,

ν(ξ , t, ζ ) =
btψ−1

Γ(ψ)
+λ 2Sη

0+ν(ξ , t, ζ )+λSη
0+ν(ξ , t, ζ )+Sη

0+ f (ξ , t, ζ ). (3)

According to the ADM, the solution ν(ξ , t, ζ ) consists of various components, including

ν(ξ , t, ζ ) =
∞

∑
n=0

νn(ξ , t, ζ ). (4)

Combining both sides of equation (3) with the decomposition series (4), yields

∞

∑
n=0

νn(ξ , t, ζ ) =
btψ−1

Γ(ψ)
+Sη

0+ f (ξ , t, ζ )+λ 2Sη
0+

∞

∑
n=0

νn(ξ , t, ζ )+λSη
0+

∞

∑
n=0

νn(ξ , t, ζ ).

We can obtain the following recursive relation using this equation


ν0(ξ , t, ζ ) =

btψ−1

Γ(ψ)
+Sη

0+ f (ξ , t, ζ ),

νk+1(ξ , t, ζ ) = λ 2Sη
0+νk(ξ , t, ζ )+λSη

0+νk(ξ , t, ζ ), k ≥ 0.

Continuing this process, we have

νn(ξ , t, ζ ) = λ n(λ +1)n
[

btnη+ψ−1

Γ(nη +ψ)
+Snη+η

0+ f (ξ , t, ζ )
]
.

Then the solution ν(ξ , t, ζ ) can be written by Eqn. (4) as follows

ν(ξ , t, ζ ) = b
∞

∑
n=0

λ n(λ +1)ntnη+ψ−1

Γ(nη +ψ)
+
∫ t

0

∞

∑
n=0

λ n(λ +1)n(t − s)nη+η−1

Γ(nη +η)
f (s)ds,
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ν(ξ , t, ζ ) = btψ−1
∞

∑
n=0

[λ (λ +1)tη ]n

Γ(nη +ψ)
+
∫ t

0
(t − s)η−1

∞

∑
n=0

[λ (λ +1)(t − s)η ]n

Γ(nη +η)
f (s)ds.

Thus the initial problem of (1) and (2) can be solved as follows:

ν(ξ , t, ζ ) = btψ−1Eη , ψ [λ (λ +1)tη ]+
∫ t

0
(t − s)η−1Eη , η [λ (λ +1)(t − s)η ] f (s)ds. (5)

Remark 2
1. If β = 0, then ψ = η and

ν(ξ , t, ζ ) = btη−1Eη , η [λ (λ +1)tη ]+
∫ t

0
(t − s)η−1Eη , η [λ (λ +1)(t − s)η ] f (s)ds, (6)

is the solution to the fractional differential equation involving the Riemann-Liouville derivative shown below,


RLχα

0+ν(ξ , t, ζ ) = λ 2ν(ξ , t, ζ )+λν(ξ , t, ζ )+ f (ξ , t, ζ ),

S1−α
0+ ν(ξ , 0, ζ ) = b.

2. If β = 1, then ψ = 1 and

ν(ξ , t, ζ ) = bEη , 1[λ (λ +1)tη ]+
∫ t

0
(t − s)η−1Eη , η [λ (λ +1)(t − s)η ] f (s)ds, (7)

is the solution to the fractional differential equation involving the Caputo derivative shown below,


Cχα

0+ν(ξ , t, ζ ) = λ 2ν(ξ , t, ζ )+λν(ξ , t, ζ )+ f (ξ , t, ζ ),

ν(ξ , 0, ζ ) = b.

Lemma 3 [6]
Let xi(t), i = 0, 1, 2, ..., n, be fuzzy continuous functions. Then

χα, β
0+

n

∑
i=0

xi(t) =
n

∑
i=0

χα, β
0+ xi(t).
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4. Convergence of Adomian decomposition method
Many scholars have been examining the convergence problem for ADM with the Caputo fractional derivative [6].

We show the convergence for the Adomian series involving the Hilfer fractional derivative in this section via the reference
[6].

Consider the following FFDE with Hilfer derivative of order 0 < α < 1, 0 ≤ β ≤ 1

χα, β
0+ x(t) = Lx(t)+Nx(t), (8)

with initial condition

S1−γ
0+ x(0) = x0, γ = α +β −αβ , x0 ∈ E. (9)

Here E is the set of all fuzzy numbers, and L and N refer to the linear and nonlinear operators respectively.
In the view of the ADM, the solution x(t) is decomposed into

x(t) =
∞

∑
n=0

xn(t)

and decomposing the nonlinear term N as

Nx(t) =
∞

∑
n=0

An(t).

Adomian polynomials are denoted by An and are provided by

An =
1
n

dn

dλ n

[
N

(
∞

∑
j=0

λ jx j

)]
λ=0

.

According to Lemma 3 the solution of x(t) =
∞

∑
n=0

xn(t) is uniformly convergent by ADM.

4.1 Algorithm for numerical analysis of nonlinear fuzzy fractional gas dynamic equations

Step 1: Initialization
• Begin by defining the parameters α , β , λ , and the initial conditions for the function ν(ξ , t, ζ ).
• Set the spatial and temporal domains within the specified ranges, and initialize the function ν(ξ , t, ζ ) based on its

initial condition.
Step 2: Decomposition of the solution
• Decompose the function ν(ξ , t, ζ ) into an infinite series using the Adomian decomposition method (ADM).
• Initialize the series components νr

n(ξ , t, ζ ) for n = 0, 1, 2, . . ..
Step 3: Application of the ADM
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• Iteratively compute each component νr
n(ξ , t, ζ ) by applying the fractional differential equation, utilizing the initial

conditions and series decomposition for recursive calculation.
Step 4: Numerical integration
• For each time step, use numerical integration techniques, such as the Grunwald-Letnikov or trapezoidal rule, to

compute the necessary fractional derivatives and integrals.
• Ensure that the fractional orders α and β are correctly handled during these computations.
Step 5: Update and iteration
• For each spatial point ξ within the domain, update the function ν(ξ , t, ζ ) for the current time step.
• Store the results after each iteration for subsequent analysis, and repeat the process until the final time step is

reached.

5. Numerical example
Consider the following nonlinear fuzzy fractional gas dynamic equation [4]


χψ

t ν(ξ , t, ζ )+ν(ξ , t, ζ )ω(ξ , t, ζ )−ν(ξ , t, ζ )+ν2(ξ , t, ζ ) = 0, 0 ≤ ξ , t ≤ 1,

ν(ξ , 0, ζ ) = [ζ , 3−2ζ ]e−ξ .

Consider Eqn. (10) as Fuzzy Hilfer fractional differential equation

χα, β
0+ ν(ξ , t, ζ ) =−λ 2 ⊙ [ν2(ξ , t, ζ )+ν(ξ , t, ζ )ω(ξ , t, ζ )]+λ ⊙ν(ξ , t, ζ ), 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, (10)

with initial condition

S1−ψ
0+ ν(ξ , 0, ζ ) = [ζ , 3−2ζ ]e−ξ , (11)

where [ν(ξ , t, ζ )]r = [νr(ξ , t, ζ ), νr(ξ , t, ζ )] and ⊙ represents fuzzy multiplication.
Assume λ = 1 then using (1)-differentiable we have



χα, β
0+ νr(ξ , t, ζ ) =−νr

2(ξ , t, ζ )−νr(ξ , t, ζ )ωr(ξ , t, ζ )]+νr(ξ , t, ζ ),

χα, β
0+ νr(ξ , t, ζ ) =−νr

2(ξ , t, ζ )−νr(ξ , t, ζ )ωr(ξ , t, ζ )]+νr(ξ , t, ζ ),

νr(ξ , 0, ζ ) = ζ e−ξ ,

νr(ξ , 0, ζ ) = (3−2ζ )e−ξ .

(12)

Operating Sη
0+ on both sides of Eqn. (13), we have
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

νr(ξ , t, ζ ) = ζ e−ξ

(
tξ−1

Γ(ψ)

)
−Sη

0+νr
2(ξ , t, ζ )−Sη

0+

[
νr(ξ , t, ζ )ωr(ξ , t, ζ )

]
+Sη

0+νr(ξ , t, ζ ),

νr(ξ , t, ζ ) = (3−2ζ )e−ξ

(
tξ−1

Γ(ψ)

)
−Sη

0+νr
2(ξ , t, ζ )−Sη

0+

[
νr(ξ , t, ζ )ωr(ξ , t, ζ )

]
+Sη

0+νr(ξ , t, ζ ).

(13)

The following is the decomposition of the solutions νr(ξ , t, ζ ) and νr(ξ , t, ζ ) into infinite series from the perspective
of the ADM.

νr(ξ , t, ζ ) =
∞

∑
n=0

νnr(ξ , t, ζ ) and νr(ξ , t, ζ ) =
∞

∑
n=0

νnr(ξ , t, ζ ). (14)

Substituting the decomposition series (15) into both sides of (14) yields



∞

∑
n=0

νnr(ξ , t, ζ ) = ζ e−ξ

(
tξ−1

Γ(ψ)

)
−Sη

0+

∞

∑
n=0

νnr(ξ , t, ζ )−Sη
0+

∞

∑
n=0

[
νnr(ξ , t, ζ )ωnr(ξ , t, ζ )

]
+Sη

0+

∞

∑
n=0

νnr(ξ , t, ζ ),

∞

∑
n=0

νnr(ξ , t, ζ ) = (3−2ζ )e−ξ

(
tξ−1

Γ(ψ)

)
−Sη

0+

∞

∑
n=0

νnr(ξ , t, ζ )−Sη
0+

∞

∑
n=0

[
νnr(ξ , t, ζ )ωnr(ξ , t, ζ )

]
+Sη

0+

∞

∑
n=0

νnr(ξ , t, ζ ).

(15)

Hence the solutions νr(ξ , t, ζ ) and νr(ξ , t, ζ ) are obtained as follows

νr(ξ , t, ζ ) = ζ e−ξ tψ−1
∞

∑
n=0

(tη)n

Γ(nη +ψ)
,

νr(ξ , t, ζ ) = ζ e−ξ tψ−1Eη , ψ(tη),

νr(ξ , t, ζ ) = (3−2ζ )e−ξ tψ−1
∞

∑
n=0

(tη)n

Γ(nη +ψ)
,

νr(ξ , t, ζ ) = (3−2ζ )e−ξ tψ−1Eη , ψ(tη).

If β = 0, then
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
νr(ξ , t, ζ ) = ζ e−ξ tη−1Eη , η(tη),

νr(ξ , t, ζ ) = (3−2ζ )e−ξ tη−1Eη , η(tη),

(16)

is the solution of following FFDE involving the Riemann-Liouville derivative


RLχα

0+ν(ξ , t, ζ ) = λ 2 ⊙ [ν2(ξ , t, ζ )+ν(ξ , t, ζ )ω(ξ , t, ζ )]+λ ⊙ν(ξ , t, ζ ), 0 < α < 1,

S1−α
0+ ν(ξ , 0, ζ ) = [ζ , 3−2ζ ]e−ξ .

(17)

Consider the following FFDE with Riemann-Liouville derivative


RLχα

0+ν(ξ , t, ζ ) = λ 2 ⊙ [ν2(ξ , t, ζ )+ν(ξ , t, ζ )ω(ξ , t, ζ )]+λ ⊙ν(ξ , t, ζ ), 0 < α < 1,

S1−α
0+ ν(ξ , 0, ζ ) = ν0.

(18)

The exact solution of Eqn. (18) obtained by Laplace transform is as follows


νr(ξ , t, ζ ) = ν0tη−1Eη , η [λ (λ +1)tη ],

νr(ξ , t, ζ ) = ν0tη−1Eη , η [λ (λ +1)tη ].

(19)

By comparing equations (18) and (19), we have ν0 = [ζ , 3−2ζ ]e−ξ .
If β = 1, then


νr(ξ , t, ζ ) = ζ e−ξ Eη , 1(tη),

νr(ξ , t, ζ ) = (3−2ζ )e−ξ Eη , 1(tη).

(20)

The result (21) is the exact solution of the following Caputo FFDE


Cχα

0+ν(ξ , t, ζ ) = λ 2 ⊙ [ν2(ξ , t, ζ )+ν(ξ , t, ζ )ω(ξ , t, ζ )]+λ ⊙ν(ξ , t, ζ ), 0 < α < 1,

S1−α
0+ ν(ξ , 0, ζ ) = ν0.
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Figure 1. Approximate solution with η = 0.5 and β = 0

The approximate solutions of the numerical analysis at η = 0.5 for various values of β are displayed in Figures 1,
2, and 3. Table 1 presents the approximate solutions of νr and νr for different values of r and β at t = 1. It is evident
that, for β = 0 and β = 1, the numerical analysis solution corresponds exactly with the FFDE exact solution with the
Riemann-Liouville derivative and with the FFDE exact solution with the Caputo derivative.
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Figure 2. Approximate solution with η = 0.5 and β = 0.6

Table 1. Numerical results

β = 0 β = 0.6 β = 1

r νr νr νr νr νr νr

0 0.281363 5.158599 0.815361 5.060214 0.192210 5.158599
0.1 0.426318 4.825493 0.928703 4.831367 0.426318 4.825493
0.2 0.692072 4.503855 0.966194 4.445072 0.559411 4.192918
0.3 0.972971 4.192918 0.974065 4.233204 0.899974 3.891882
0.4 1.048230 3.891882 1.090795 3.894736 1.048230 3.316024
0.5 1.375979 3.599894 1.235263 3.583330 1.289650 3.039228
0.6 1.755496 3.316024 1.277345 3.404944 1.755496 2.501726
0.7 1.968364 3.039228 1.317666 3.132700 1.968364 2.237642
0.8 2.198684 2.768289 2.026657 2.764598 2.320893 1.973442
0.9 2.448082 2.501726 2.362277 2.543553 2.580470 1.426752
1 2.718282 2.237642 2.889703 2.173400 2.718282 1.125453
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Figure 3. Approximate solution with η = 0.5 and β = 1

6. Conclusion
In this paper, the fuzzy sense of Hilfer fractional differential equations is taken into consideration. Additionally,

a fuzzy Hilfer fractional differential equation solving numerical technique based on ADM is proposed. The study’s
results demonstrate that numerical solutions for fuzzy Hilfer fractional differential equations can be developed in various
conditions. The results coincide with the Riemann-Liouville FFDE solutions if β goes to 0, and when β approaches 1, the
outcome coincides Caputo’s FFDE solutions. This study provides a numerical example that demonstrates the efficiency,
accuracy, and ease of application of the ADM for solving fuzzy Hilfer fractional differential equations. In addition,
we’ve used visuals to demonstrate how the approximate and ideal solutions are visually identical. To the finest of our
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understanding, this is the initial occasion that fuzzy Hilfer fractional have been used to solve the gas dynamic equation
within the context of ADM. We aim to apply ADM in the future, to integrate the fuzzy Hilfer fractional derivative into
multiscale models, extend its application to real-world issues, and perform comparison studies to assess the benefits of
each method.
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