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Abstract: Let ¥ = {Y}_on<k<on, ¥ = Y—x be an one dimensional complex sequence of degree at most 2n. In the
present paper we give a necessary condition such that y admits on zZ = 1 an atomic representing measure with a finite
number of atoms. The necessary condition is expressed in terms of “stability” of the Riesz linear non-negative functional,
(ZF+ (1 = 22) NCan[z, Z]) — Y, associated to the given sequence. We also give a necessary and sufficient condition such
that the extended sequence Y= {7} jez, ¥ = ¥_j» % = %, —2n <k < 2nto admit on zz = 1 an unique atomic representing
measure with a finite number of atoms. The “stability” condition of the introduced Riesz functional is an adaption of the
concept “dimension stability” by Vasilescu introduced for solving Hamburger moment problems in [5]. In section 3 of the
present paper, we apply the main existence theorem for determining representing measures with 1, 2, 3 atoms, according to
the rank of the moment matrix. The representing measures of the data of the quadratic moment problem have the support
in the unit circle.

Keywords: full and truncated trigonometric moment problems, liniar unital functional Ly, : CJ, [z, Z)/h, — C positive
on squares, unitary operators, dimensional stability, representing measure
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1. Introduction

The moment problem is one of the most interesting subject in mathematics. It appears as a distinct problem in
functional analysis; it gives information about the continuous medium using discrete data, the moment sequence. The
information are given by setting a duality between the space of moments and spaces of functions belonging to different
domains of science. The duality keeps the “positivity” of both associated terms. The advantage is that the discrete
data are sampled and are input in applications of modeling and simulation, in science and engineering with relevant
applied mathematics and computational approaches.Domains in which the moment sequence is associated with functions
representing wave signals are of great interests. For example seismology, transmissions, to quote only few of them, e.g.
[1].

Remarkable papers on truncated or full real or complex moment problems are those: by Curto and Fialkow [2], by
Putinar [1, 3], by Vasilescu [5]. Complex truncated moment problems are also found in [4]. The problem of finding
atomic representing measures for truncated real Hamburger and Stieltjes moment problems are solved in [2]. The finite
moment sequence ¥ C R is associated with the matrix M, () (the moment matrix). The condition on the existence of the
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representing measure for y is expressed in terms of positivity and extension property of M, (y) to M,11(Y), M,,+1(7y) with
the same rank as M,,(y), “(flat extension)”. By an operator approach, the problem of finding representing atomic measures
for Hamburger truncated moments, in conditions of stability of the Riesz functional induced by the assignment ¥ — 7,
associated with the given moment sequence ¥ C R, in [5] is solved.

Given a finite multi-sequence, ¥ = {¥;}; jend, |i+j1<2n C C> subject on Yoo > 0, %; = ¥ji, the truncated d dimensional
complex moment problem for y entails determining necessary and sufficient conditions for the existing of a positive Borel
measure i on C? such that:

%j:/cﬁzjdu(z, 2), 0 < |i|+j| < 2n. (1)

The measure p is called a representing measure for 7.

In the present paper, whenever n > 1, given a finite complex sequence ¥ = {1 } —2n<k<2n C C, subject on % = ¥, we
prove that if ¥ is non-negative definite and satisfies a “stability condition”, ¥ has an unique positive atomic representing
measure with support in the unit circle. The finite data 7y are the values of a linear non-negative functional introduced by

Calz, 7
(1—22)NCylz, 7
expressed as a stability condition of the associated Riesz functional (Definition 2.1), in the present paper, is an adaption

of the concept “dimensionally stable” by Vasilescu introduced in [5], (Definition 2.2). Such a non-negative functional
is always completely defined by the moments Z¥ — ¥, —2n < k < 2n. The spaces on which the Riesz functional acts
represents one of the novelty of the present paper. This technical essence assures the representing measure of the given
data, in case of existence, to have the support in the unit circle.

The present paper presents also a full trigonometric moment problem. Given a non-negative sequence y =
{Y ez, Y = Y—x, Y admits an unique atomic representing measure on the unit circle if and only if the unique extension

Clz, 7

o) ) ZAk — Y € C, (a kind of classical Riesz functional) is “stable”. In both cases of the
z

the assignment 5297 =y, g € C, (akind of Riesz functional). The stability condition of the data y

of the Riesz functional

truncated and full moment problem solved in this paper, the construction of the spaces on which the Riesz functional

Calz, 7 Clz, 7
(1-22)NCalz, 7 (1-zz)
in Proposition 3.1 in [2] to be obvious.

acts,

, respectively together with the standard form of the moment matrix M(y) make results

In section 3 of the present paper the main theorem in section 2 is applied for the data y of the quadratic moment
problem. By applying the given theorem to find representing measures with 1, 2, 3 atoms for the quadratic moment
data, another direct proof of the same result in [2] is obtained. As a novelty of the paper, the study of the existence of
representing measures on zz = 1 for y proves that: the introduced invariants “rank of the moment matrices” in [2] and
“stable dimension of the Hilbert spaces constructed with help of the moment data” in [5] are the same.

The conclusions of the study of the quadratic moment problem in 3 are stated in the equivalent assertions of theorem
3.1. One of the equivalences is the common value of the main invariants in [2], respectively in [5].

The structure of the present paper is:

Section 1. Introduction.

Sub-section 1.1. Preliminary Notions.

Clz, 7

Section 2. Stability of the L, functional. The unique extension of L,, to a functional on -z
—Z

Section 3. Application. The quadratic moment problem on zz = 1.
Section 4. Conclusions.

1.1 Preliminary notions

Letn > 1andd = 1 be fixed. We denote with C! |z, Z] : = C,[z, Z] the space of polynomials with complex coefficients
in the indeterminates z, 7 € C with total degree at most n. Fori, j €N,z =z- ... -z (i-times),z/ =Z- ... -Z (j-times),
the total degree of z'z/ is i + j. We have: C,z, z] = {z'z/, i+ j<n, i, j € N}. Let I : = (1 — zZ) be the ideal generated
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by (1 —zz) in C|z, Z], the algebra of polynomials in indeterminates z, z, of any total degree. For k € {1, ..., n} let also
Iy = (1 —22) NCy[z, Z] be a subspace in Cy[z, Z]. We consider the quotients spaces Cy[z, Z] /Iy, 0 <k <n;whenk =0, 1, let
Iy = Ci[z, Z)N (1 —zz) = {0}, and the quotients Cy [z, Z] /I = Ci[z, Z]. For the same integers n, d, let L., : Co.nlz, Z)/Ion — C
be a linear functional satisfying the conditions:

~

L2~n(,7) = LZ-n( )7 v fe C2-n[Z7 Z]/12n~ (2)
Lon([f1) 0,V F e Culz, 3/ 3)
Lyn(1)=1. )

~

If Lyn(f) = Lon(f), f € Conlz, 2/hm, we have Ly,(27) = Lou(|7i22~") = Loa(|i227—). Consequently,
Lyn(z/71) = Lo (z7~7) with —2n < j —i < 2n. Such a functional is uniquely determined by the complex moments
Lyn(2P), p € {=2n, ..., 2n}. With aid of L., we introduced on Cy[z, Z]/I; the pre-Hilbert space product:

<J/C\7 §>: L2-n(f/§)v J?a (/g\eck[zv Z]/Ik? ke {07 17 [RX) I’l} (5)

From (5) and L} s properties, the following assertions are true:

() <o fi+0afo, §>=04 < fi, §>+0 < o, 8>, fi, [, §€Cilz. A/

(if) <fi §>=<g fA>, f, g€ Clz, A/h

(iii) <f, f>>0,V f € Cilz, 2|/ Ik, k€ {0, 1, ..., n}.

If the introduced pre-Hilbert space product has (iii), the Cauchy-Schwarz inequality holds:

</ 8> |<<f [>7<8 8>, Vf, g€ Clz, A/l ke {0, 1, ..., n}. (6)

Remark 1.1 If, in place of the functional Ly.,, : Cp.n[z, Z]/l2.n — C with (2-4), we give its values Lz.,,(zA") =%, k€
{-2n, ..., 2n},% = Y_k, we ask for a representing measure of ¥, i.e.

Ye = / Zdu (z),—2n <k <2n. (7
z,|(zz=1)

We obtain, in this way, an authentic truncated trigonometric moment problem.

2. Stability of the Lz, functional. The unique extension of L:. to a functional on
Clz, 2] /(1 - z)

In this section, we present an extension theorem of a linear stable functional with given properties, L;.,, on
Conlz, 2}/, n > 1, to a linear functional with given properties L on C[z, z]/(1 — zZ) and give some applications of
it in solving truncated and full trigonometric moment problems on 7.
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If 0 < k <1< n,wehave Ct[z, Z] C C[z, 7, the subspaces Iy C I; C I, and the quotients Cy[z, Z]/Ix C Ci[z, Z]/I; C
Culz, Z)/I, are vector subspaces in Cy[z, Z]/I,-
~ PO —~2
Let <, > be the pre-Hilbert product in (5). When 0 < k <n, ifwetake T, = {f € Ci[z, 2} /I, < f, f >=La(If] ) =
0}, from Cauchy-Schwarz inequality Ty C Cy[z, Z] /I, are all vector subspaces in the mentioned vector spaces. If Cy |z, Z] /I

L . . Crlz, z|/1 . . . .
are finite dimensional, the quotients Hj, = %, 0 <k < n, are all finite dimensional Hilbert spaces with the scalar
k
product given by:
<f+T 8+ T >=<f, §>=Lau(f3), . §€ Clz, T/, 0<k <. ®)

Now, if [ is another integer, with, 0 < k <[ < n, since Ci[z, Z|/Ix C C/z, }/11, and T, C T;, we have natural al maps
Jis He— Hy S (F+T) = (F+10). 1 Hf+TkH =< F T T4 T >i=< T+ T, [+ 7= Ln(fF) =

HJk I f+ Tk)

Tx >k: LG(ff 2 = HJ]',,( erTj)Hk = H(fAJrTJ)H L J=0, 1all Ji;, Jj with j < k are isometries. We have
Jk, ks J1, 1, Jo, 0 the identity maps of Hy, Hj, respecti\J/er Hy.

For a given linear functional Ly, : Cy.,[2, Z]/h, — C, with properties (2-4), the Hilbert spaces {H;}}_, will be
referred as the Hilbert spaces built via L., the maps J; ; : Hy — H;, 0 < k <[ < n, as the associated isometries. When
I=k+1,0<k<(n—1), we write J; instead J; 1.

Definition 2.1 Let L,., : C2.4[z, 2] /bb.n, — C, n > 1, be a linear functional with properties (2-4), { Hi };_,, the Hilbert
spaces built via Ly.,, <, >, k € {0, ..., n} the scalar products in Hy, Ji : Hyp — Hpy1, 0 < k < n— 1, the associated
isometries. If for some k € {0, ..., n— 1} one has Jy(Hy) = Hy41 we say that L, is dimensionally stable at k.

Remark 2.2 i) It is immediate that the functional L., is stable at (n — 1) ifand only if C,[z, Z] /I, = Cu—1z, 2} /Li—1 +
T, n>1.

Let L: C[z, Z]/(1 — zZ) be a linear, functional with properties (2-4). Similar constructions may be done for the
functional L. Thus, let {H j};":o be the Hilbert spaces constructed via L, forall k, I € N, J; ;, 0 < k <[ be the associated
1sometries.

(f+T1)H =< f+T, f+T >1= HJo,1 f+T) H] = H f+T)

N F+m||, =< 7+ 1 7+

We say that L is dimensionally stable at k if there exists integers k, [ with 0 < k </, such that L|c, 1. 7,1, is stable
at k. The number s = sd(L) = dimHg = dimHy 1 is called the stable dimension of L.

The same constructions and same invariant “stable dimension” was primary introduced in [5] (Remark 2.1, Definition
2.2).

We consider the operators M., M= : C,_1[z, 7] /Is—1 — Cnlz, Z)/I,, defined by M.(f) = zf, M=(f) = (Zf).

Remark 2.3 i) The operators M, Mz : C,_1[z,Z]/I,—1 — Culz, Z)/I, are correctly defined.

Indeed, if zf € I, = INC,[z, 7], we have zf € C,[z, 7], zf € I. Consequently f € C,_1[z, Z], f € I. That is fe
Cu-1[z, Z)/In—1, implying that M, : C,_1[z, Z)/In—1 — Cn[z, Z] /I, is correctly defined. The same for Mz: C,_[z, 2] /-1 —
Culz, 2/ 1.

Remark 2.4 Let <, > the pre- -Hilbert space product on Gy |z, ]/In, Cu-1lz, ]/1,, 1, as in (5), we have:

1. 10<sz, f>= <f, >, <sz, f>= <f, f>=L, (|f\ ), forall f € Cy_1[z, 2 /11

120 <M.f, §>=<f, M:g >, < M:f, §>=<f, M.G>, f, G€ Co1[z, Z)/In-1.

Proposition 2.5 Let <, > be the pre-Hilbert product on C,—1 [z, Z]/I,—1, respectively on Cy [z, z] /I, as in (5) and let
{H }” o be the Hilbert spaces built via L;.,. The linear operators M, : H,_y — H,, Mz : H,_ — H,, M. (f+ T-1) =
2f+ Ty, M= (f+Tn |) =zf +T,, are correctly defined, injective and M. =1, | M| = 1 whenever f+T,_; € H,_.

Proof. Iff € T,,—_1, it follows from remark 2.4 that < M. (f—i—Tn 1), M (f—i—Tn 1) >p=< f, f> (n—1)= 0; the same
< Mz(f—i— T-1), z(f—i— T—1) >p=< f, f >(n—1)=0, implying M; : H,_1 — Hy, Mz: H,—1 — H, are correctly defined.
I£0 =< M,(f+T-1), Mc(f+Tm1) =< Mz(f+Tp1), Me(f+Tpo1) >u=< [, [ >(u_1), it implies f €T, Thatis:

1 N R 1
M and Mz are injective. Whenever [|M,(g+T-1) ||, =< Mo(8+ Th-1), Mo(8+Th-1) >i =<8+ L1, 8+ Tp1 >, =

Volume 5 Issue 4|2024| 5385 Contemporary Mathematics



1
18+ Tu—1ll(4—1), we have [||M|| = 1. The same, ||Mz(g + To1)ll,, =< Mz(g+ T—1), Mz(§+ Th1 >i=<Z+Th-1, g+

1 N )

To-1) >p 1= g+ To-1ll,—y- Thatis [|Mz]| = 1. =
Lemma 2.6 Let L., : Co.[z, Z]/I.n — C be a linear functional with properties (2-4), stable at (n 1) <, > be the

pre-Hilbert product introduced with help of Ly.,. We have M, T, N (Cy[z, Z)/I,) C T, MzT, N (Culz, Z) /1) C

Proof. Let be sz, Zf € Gylz, 7J/I, and f € T,. If Ly, is stable at (n — 1), there exists 7, g € C,—1[z, ]/In_l such
that( zf Z]\)ET,,, ( zf_/r\)ET R

Usmg remark 2.4 and proposition 2.5, we have < sz, Zf >n=< M f, Zf q >nt+ < sz, q>n=< sz, M, f—
q>n + <f, Mzq >,= 0. Moreover, <sz, M f>nf<M f, M f >+ <sz, r>n7<sz, zf T+ <
f, M7 >,=0.

Therefore, when f € T, we have also M.f € T, and Mzf € T, implying M, T, N (Cy[z, Z)/I,) C T,, and MzT, N
(Culz, /1) € T O

Remark 2.7 Let Ly., : Caplz, Z/l.n — C be a linear functional with properties (2-4), stable at (n — 1), <, >, the
scalar product constructed viaitasin (8) and J,_1, , : H,—1 — H, the associated isometry. The operators M, : H,_1 — H,,
M : H,_ | — H,, defined by: Mz(f—i— T—1) = z?+ T,, Mz(f—&— T—1) = Z} + T, are bijective.

Proof. Indeed, if L,.,, is stable at n — 1, dimH,,_| = dimH,,, consequently the injective operators M, Mz are surjective

and bijective too. Setting J : = J,_1, , we may consider on the Hilbert space H,, the linear operators A = M.J -1 B=
M:J~', A, B: H, — H,. Note that, in condition of stability of <, >, at n — 1, A, B are correctly defined, bounded and
bijective. O

Proposition 2.8 The linear operators A : H, — H,, A =M,J -1 B:H,— H,, B=MzJ —Lare unitary.

Proof. As in Remark 2.7, A, B: H, — H,, A=M_.J~', B= M:J"! are correctly defined, linear, bounded, bijective
operators on H,. Let us prove that A, B are unitary ones. Indeed, if J is a bijective isometry, M, as in Proposition
A(F — HMZ(J*I(]?+T,,)) - HJ”(f—i—Tn) = || for all (F+T,) € H,. With

HA f+T) (f+T) (f"’ T,) >n:<A*A(f+ T), (f+ Tp) >p=< (f"' T,), (f+ T,) >, for all (f‘|’ T,) € Hy;

using the polarlzatlon relation for < A*A(x+T,), (y+T,) >,, we obtain A*A(f—i— T,) = f—i— T, for all (f+ T,) € H,, that
is A*A = Idy,. Consequently we have A* = A*oldy, = A*o(AoA™") = (A*A) oA~ = A~!; thus A is unitary. The same
happens for B. O

Proposition 2.9 Let L, : Ca,[z, Z]/In — C be a linear functional with properties (2-4), stable at (n— 1), <, >, the
scalar product constructed via it in (8), {Hl}fzg be the Hilbert spaces built via L, and A, B be the unitary operator in 2.8 .
We have A = B~

Proof. WheneverA =M_.J~', B= M:J"" are the linear, bounded, bijective operators in remark 2.7, for f—i— T, € H,
wehave AL (F+T,) = JM_ (f+ T) = J(g+ T,—1), with property (28 — f) €T,. Wehave also B(f +T;,) = M=J ' (f +
T,) = (h+ Th—1) = zh+ T with property (f — h) € T,. Applying lemma 2.6 for both (g — f), (ffﬁ) € T,, we obtain:

2.5, we have

(zz8—zf) €Ty )

Respectively,

(zf —zh) € T, (10)

From (9), (10) and that T;, is a vector space, we get (g— f+zf — Zﬁ) =(g- Zﬁ) € T, with result: A~' = B on H,,. [J

Proposition 2.10 Letn > 1, Ly., : Co.y[z, Z]/l2.n — C a linear functional with properties (2-4), stable at (n — 1), A, B
the operator in proposition 2.8. We have:

() AY(1+T,) =2+ T, when 0 <k <n.

() A*(1+7T,) = * T, = B*(14T,), forall 0 < k < n.
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(i) AA/ (1 +T,) = 22 + Ty — AIBI(1 +T,), forall 0 < i, j, i+j <n.

Proof. We prove by induction, that for all , k € {0, 1, ..., n}, we have AK(1 +7T;,) = zAk +T,. Fork=0,A°(1+T,) =
Idy, (1+T,) = 1+ T, = ° + T,. Assume the assertion is true for some / € {0, ..., n— 1} and let us get it for (1 +1).
We have A’+1(1 Y T) =AcAl(14+T) = A +T,) = My (Z +T,). Because 0 < [ < (n— 1), 2/ + T,_1 € H,_ and
J- (z +T)) =72+ T, A(; +T,) = MZ(Q +T,-1) = z(l/r]) + T,,. These prove (i) whenever 0 < k < n.

In case —n < k < 0, we have AX(1+T,) = (A~")%(1 +T,) = B*(1+T,). As above, by induction, for all [ €
{0, ..., n}, we have B (1 +T,) = ? +T, :A:\l(l +T,). Consequently, we have (i), (ii) for all k, with —n <k <n.

(iii) Let us prove that A’A=/(1+T;,) = zizJ for all 0 < i, j, i+ j < n. The assertion is true for 0 <i, j, i+j<n-—1
and prove it for 0 < i, j, i+j+1<n Wehave AHIA=T = A(AAT(14T,)) = A(zid) + T,) = M.J (i) +T,) =
M. (ziz) + T, 1) = z+12/ 4+ T,. Thus, we have (iii) forall 0 < i, j, i+ j <n. O

The next result is a substitute of Theorem 2.6 from [5].

Theorem 2.11 Let Ly, : Ca.4[z, Z]/h.n — C be a linear functional with properties (2-4), stable at (n — 1). There
exists an unique extension L : C[z, Z]/I — C of Ly., which is a linear functional with properties (2-4).

Proof. Let Ly, : Caoulz, Z)/I.n — C be a linear functional with properties (2-4) stable at n — 1), <, > be the pre-
Hilbert product associated with it, as in (5), A be the unitary operator in 2.7, {H;}}_, be the Hilbert spaces built via L;.,,

f€Clz 7)/(1 — ) arbitrary, f(z, 7) = Y jaljz';' =Y —i_ jejczf(k)zAk; when a;; : = f(k). We consider the linear
operator f(A) = Y f(k)A* and define L: C[z, z]/(1 —2Z) — C as L(f) =< f(A)(1+T,), (1+T,) >,, with f(A) the
functional calculus of A. The functional L is correctly defined as (1 —AA*) = 0, linear and satisfies (2-4).

Indeed the functional calculus and the scalar product are linear, L(1 ) =<Ildy,(1+T,), 1+T,) >,=||(1+T,) ||ﬁ =

LLF) =< FA) 1+ T), (14 T) >0=< LF QA1+ T), (14 T) >p=< (1+ T, (LAY (1 +T) >,=
< (Y flk ) NA+T,), 1+T,) >, =L(f). If f € Clz, 7/(1 —2), f >0, from Riesz Fejer lemma, f = |g|2. That is

L(F) = L((ql?) =< q@(A) 1+ T), (14 T) >4=< q(A)(1+T,), g(A)(1 +T) >,= [lg(A) (1 + T,)|2 >0
Let us prove that L is an extension of L,.,, extension with properties (2-4) Let p € Canz, Z]/lon, Pz, 2) =

Yi i itj<on a;j7iz/ be arbitrary and consider a representation of p of the form p(z, z) = Yoy pi<n, y+6;<nij [z 2] [£7i2%)].
From L's definition and Proposition 2.10, we have:

L(p) =< pA)(1+Tp), (1+T,) >n=< Z aijAai_BiAy-"_Sj(lJrTn), (1+7T,) >

ai+B;, vj+6;
=< Z a;jiz% P (1+T,), (1 +T,) >,= ): aijLz_n(Zoci—ﬁizBer) =
o+, vj+6; a;+Bi, 1j+96;

=Loa( Y, ay®tzPto) =Ly, (p).
oi+pB;, Yj+3j

Consequently, Lic, 2. /b, = L2n|Cy.nlz, 7)/1.,- Lt Us prove that the extension L with properties (2-4) is unique. Let
Ly, Ly: C[z, z]/(1 —2Z) be extensions of L,., with properties (2-4), {H] }*_, = {%}f}/’k Yoo {H2) = {%kf]/’k 1
the Hilbert spaces built via L, respectively L, Tkl7 Tk2 the null spaces at step k of L; respectively L,. We prove
that for every Z;Z\B €Clz, 7/(1-22), a+B =n+k > (n—1), k arbitrary, there exists p(,_1) € Ciu_1)[z, 2/I(n-1)

such that (z%2P — p(,_1)) € T}, N T2 . When k =0, from Li|c, .. 2/n, = L2lcy, . 2/n, = L2nlcy, [z 2/, @nd from
Lanle, [z, 2/, Stability at (n— 1), the assertion is true. Suppose the statement is true for (n + k) and prove it for

—_—

(n+k+1). Ifa +B =n+k+1, 22178 orand 227 1 € Coklz, 2/T,. N T?, from induction hypothesis, there
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—

exists Gn_1, g, | € Ca_1[z, Z)/I,—1 such that (z“'—lzﬁ/ —qno1) €T NTZ, and or (* '~ g, ) €T NT2 . If
S ~2 ~y
Z=1and Li([f| ) =0, from lemma 2.6, we have also Li(|zf]?) = Li(|z2f|) =0, i = 1, 2; with result

— /\

!_ !
297 —2guo1 € Tyt NI gy O 2 ' ~%, 1 € Tl N Tk (11)

If L is stable at n, there exists p,_1, p;fl € Cy—1[z,7]/11—1 such that

—_——

(2qn1—Pn1) 08 (2q,_; —P,_y) € Tn- (12)

From (11) and (12) itresultson‘ziﬁfp;_1 GTnJrkJr T+k+1+Tn Or@?,ﬂ\l GT,,_H{+ Tn+k+l+T Thus for

n
all a, B € N, there exists p,_1, p:hl € Cy_1z, 7)/I,—1 with property (z%z% — p, 1) € TL NT%, and, (z* zﬁ . 1) €

T\, NT?2,. Consequently, LlA(z“Zﬁ) = Ly(z%%) = Li(pp1) = Lo(pn-1) = Lan(pn_1). Extending (11) and (12) by
linearity to arbitrary functions f € C[z, z]/(1 — zZ), we have L = L; = L,y; the extension is unique. O
Let Ly, : Conlz, Z)/l.n — C be a linear functional with properties (2-4), stable at (n — 1). The unique extension of
LyntoL:Clz, 7)/(1 —2Z) — C like a linear functional with properties (2-4) is called the stable extension of Ly..
Remark 2.12 Let L : C[z, 7]/(1 — zZ) — C be a linear functional with properties (2-4), the stable extension of the
functional L,.,, stable at (n — 1). Then L is stable at any (n+k) > (n—1), k> 0.
Proof. Let {H;};>, the Hilbert spaces built via L, the stable extension of L,.,, J; : Hy — H | the associated isometries.

We prove by induction that J;(H;) = Hy 1, foralll > (n—1 ) The assertion is true for / = n— 1. Assume the assertion is true

o —

for some / aﬂkitus get it for (/+1). We fix an element z% Zﬁ €Ciy2lz, ]/Iz+2, o+ = (l +2). We have z zﬁ =z.720-17P
orz zﬁ =720 a+B -1 —/(tk 1). Fro%ctlon hypothesis, for s lzﬁ orz Zﬁ e Gz, zl]/IZH there exists
f. 8 € Gilz, 2)/1 such that (:92F~1 — @), (2% 12F — f) € Ty IF L(|(z @z g)2) = 0= L(|(z* 1P — HP), w

have also L(|z(z* zﬁ 1—9)%) =0=L(|z(z% lzﬁ F)%. From above, we have J;,1(H;.1) = Hj,». By the recurrence
hypothesis, we get J;(H;) = Hj4; foralll >n—1. O

Remark from remark 2.12 it results: the number sd(L) is unambiguously defined.

Remark 2.13 Let L : C[z, z]/I — C be a linear functional with properties (2-4) extension of the functional Ly.,,
stable at (n—1). Let also {H;};> , the Hilbert spaces built via L and let J; ,, : H; — H,,, m > [ the associated isometries,
Ji, 141 :=J;. If L is stable at all [ > (n— 1), we may construct for all / > n the unitary operators A; : H; — H;, A} =
Mz,Jl_l, B; = Mz,Jl_l. As in propositions 2.8, 2.9, we have Al_1 =B, [ >n.

Whenever f +7j_; € H,_; arbitrary, we have M, J;_ (f—i— 1) = JleU,l)(J?'f‘ 1) = zf + Ty41. Therefore,

M, J_ = JIM7 . Using these equalities, we obtain MZ/MZ(H) (f—i— T(l,l)) = sz?+ T(141)- Moreover, we infer A; oAl(f—i—
Tl) :M( )J(lll)MZ([ 1) 7111 (f+ 7}) :JilMZ/M 71 (f+ TZ) :J[71M21][71MZ1 (f+ Tl) ‘] 1](1_}.1)M I+1) M (f+
T) = Jlf& ) (22f + Tp1»). A recurrence argument leads to the formula:
AS(F+1) = I (FF 4+ Toy) forall [ > n, k>0, F € Gylz, 2/ (13)
The same:
AR+ T) = Jlj}+k(zkf+ Tiox) when I >n, k>0, f € Cylz, 2)/1,. (14)
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O

Remark 2.14 Let L., : Ca.4[z, Z)/12.n — C, be a linear functional with properties (2-4), stable at (n — 1), [ > n, A the
operator in remark 2.7. The assertions are true.

i)Forall f, g€ C, [z, 2/L, fF(A)(G+Th) = JEIZI(?;]+ T»;) with ]/‘5 the usual product in Clz, z]/(1 — zZ) algebra.

i) Iff €T, §€C, [z, 7] /I, arbitrary, we have f(A)(@+T,) = Op,, for all g+ T,,. Consequently f(A) = 0pg,)-

Proof. If [ > n, from (13), A¥(f +Ty) = J | ([ +Tia), k > 0, f € [z, 2)/1. As result, f(A)G+T}) =J; 5, (fq+
Tw), G, f € Cilz, 7)/1; arbitrary.

i) From (i), when f € Ty, § € C,[z, 7] /1, arbitrary, the following occur: f(A)(G+T,) =J, "

n, 2n

(J/CZ] +T»y). Let us prove

that fg € Tp,. Indeed, we have fq € Tb,, equivalently with L(@z) =0.If0 < L(|fq]?) =< (f/qflq)(A)(l +T,), 1+
1) >u=< fA)(1+To), ¢ (A)f(A)a(A) (1 + T) >u< IFA) 1+ T, lg*(A)f(A)g(A) (1 + T, = 0, if when f € T,
we have f(A) = Oy, (from (i)). This imply fgq € T, O

The next result is a substitute for Theorem 2.10 from [5].

Theorem 2.15Let L., : Cay [z, 7] /Ion — C alinear functional with (2-4), stable at (n — 1). Endowed with an equivalent
norm, H, has a structure of a unital commuting C* algebra.

Proof. Let L: C[z, 7] /(1 —zZ) — C be the stable extension of L,.,, {H}7, the Hilbert spaces built via it, J ;, n <
k < [ the associated isometries, A the operator in remark 2.7. Let X = { f(A), f € Clz, Z]/I arbitrary} be a commutative C*
sub-algebra in the C* algebra L(H,,) of the linear operators on H,,. We consider the map « : H, — X, defined by the equation
7(f+T,) = f(A), and check the correctness of the definition. Indeed, if f € T, for all § € C, [z, Z/I,, from remark 2.14,
fA)g+T,) =T, . (]/‘Z]—i— T»,) = Op,, implying fq € Toy, that is f (A) = Op(#,)- The map 7 is linear and injective since
n(er T,) = f(A) = Ory,) implies f(A)(1+T,) =J,- 12n (er D) = f+T, = 0, , with consequence f €T,. Letus prove
that the map 7 is surjective too. In case [ > n, from stability 0fL|C2}1 (2 2)/by, = Lon at (n—1),wecanfindr € C,—i[z, 7] /1,-1
such that —r € Tj. Therefore, f(A)(G+T) = J, , (Fq+ Tuwt) = I (R + Tot) = r(A)(@+T,), G € Calz, 2/
arbitrary; that is 7 is surjective. The map 7 is an isomorphism of vector spaces, implying dim(H,) = dim(X) = s.
Moreover, we prove that the map 7 is an isometry too. Indeed,

1 (74T sy = £ Ay = 590111, [k (Fa+ )

n

= supjgipt || (Fa+ Ton) ’Hz > |f+ Tl (15)

Moreover,

170 (f + T)[| g,y = SUPYg 4731 <1

n

1

—~2 2 1 1
=g (L ([7] ) ) < sopigenic LA 14T, " @rtaga) 1+ T,

. 1 J N 1 N
< (F+ T, supjg i<t 4" @@z 1+ Tl g, < I+ Tl , (16)
If |lg(A)llx <1 when ||g+T,[l; <1, from (15) and (16), it results Hn:(f+ T,) L ‘f+ T,||  when f €
Culz, Z)/1,. If ™ : H, — X is a linear isomorphism and an isometry too, it identifies X with H, obtaining a structure
of commuting C* algebra on H,,. O
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The next result is a substitute for Theorem 2.11 in [5].
Theorem 2.16 Let Ly, : Cou[z, Z]/ln — C, n > 1 be a linear functional with (2-4), stable at (n —1) {Hi};_, the
Hilbert spaces associated with it. There exists an s-atomic measure i on 77, where s=dimH,,, such that

Lz-n(ZAk) = / Fdu(z), forallk € Z, |k| < 2n.
04

Proof. Whenever L;., is stable at (n — 1), from remark 2.7, respectively theorem 2.11, there exists the unitary
operator A on H,, and the unique extension of it, L : C[z, Z]/(1 —zZ) — C such that Lz.n(z )= L(z 7)) =< Al(A*) (14
T,), (14+T,) >pu,, 0<i+j<2n, zz=1.If E is the spectral measure of A, concentrated on the spectrum ¢4 C Tj, with
u(x) =< E(x)(1+T,), (1+T,) >n, we have

Lal@3) = L@H) =< AP+ T), (14 T) >0,= [ 27900, 0< p, g < (p+q) <2m

OA

Let us prove that 64 has s = dimH, points. Indeed, if X = {f(A), f € C[z, Z]/(1 —zZ)} is a commutative unital C*
sub-algebra in L(H,) and, from theorem 2.15, H, = X (are isomorphic), we have dimH, = dimX, consequently X has
s generators, consequently s characters, say {®y, ..., ®;}. We have oy = {(P;(A), ..., D;(A))} C T1. Thus, u(x) is
an s-atomic positive measure with support C o,. Finally we prove that suppu is exactly o,. Indeed, if & € o, is an
arbitrary point of 0, and y¢ is the characteristic function of & related to o4, we may construct the spectral projection
Xe(A), built via the functional calculus of A. We have then, < ¢ (A)(1+T,), (1+T,) >n,= [5, Xe(2)du(z) = n({&}).
Assuming that f1({£}) = 0, we have 2 (A)(f + 1) = x2(A)(F +T) = 2z (A)f(A)(1+T,) =0, forall f € Gy[z, Z)/1,
Consequently, y¢(A) = Og,) which is a contradiction; it follows suppp = o4. O

The next result is an assertion in the spirit of Theorem 2.12 of [5].

Theorem 2.17 Let L : C[z, z]/(1 —zzZ) — C be a linear functional with properties (2-4), {Hy };_, be the Hilbert spaces
constructed via L. There exists an s-atomic, positive representing measure (U on 77 for L, if and only if L is dimensionally
stable at (n — 1) > 0 with s = sd (L) = dimH,.

Proof. Whenever L is stable, with s = sd(L), there exists n > 1 such that L|c,, [ 71, 18 stable at [, 0 <1 < n. Via
theorem 2.16, there exists an s-atomic representing measure with s = dimH; = dimH, = sd(L) such that

L) = /T Xdu(z), ke {=2n, ..., 2n}.

Let be L (Ak) =Jr, ZFdu(z), Vk € Z. We infer L' is a linear functional on C[z, z]/(1 — zZ), with properties (2-4) and

Llesfz. 2/nn = Lyl 2/, Indeed, L'(f) = Jr, f@)du(z) = Jp, f(@)du(z) =L'(f), L (1) = Land L (|f?) > 0. If the
integral is linear, L' is the same. Consequently L' is a linear functional with properties (2-4), extension of L|C2.n[Z, /b

to C[z, 7]/(1 — 2Z). If such an extension is unique, it results L = L', implying L admits on C[z, z]/(1 — zZ) a representing
measure. R

Conversely, we assume that an s-atomic representling measure {1 exists such that L(zF) = I Fdu(z),k € Z. We
prove that L is stable at (n — 1) with s = dimH,. R - R

Ifs =1, [, 2du(z) = &fu({&}), with result T, = {(F=Yl ot z=1, L(f?) =0} = {f = X _ it €
Culz, 2/ Iny | X7_o brEf|? = 0}. Because if n > 1 arbitrary, dim7, =dim((C, [z, Z]/I,) — 1) < dimH, = 1, n > 1. Therefore,
L is stable at n = 1 and sdL=dimH,, = s = 1.

Let be the case s > 2 and 7 = {&;, ..., &} C Ti, such that the representing s-atomic measure is concentrated on
7. Let {Hun ) o = {C"’ > Z]/I”’ }°_, be the Hilbert spaces built via L. We have T, = {f € Culz, 2)/In; L(W) =0} =
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{F €Culz, 2 /I, | Iz, |£|?du(z) = 0}. Let us prove that in case s > 2, we have for all l > (s — 1), dimH; = s. Whenever
t={&, ..., & =supp(u), |&| =1, 1 <k <s, we consider for all k the Lagrange interpolation polynomial

[x]

=o-CT1 le-a T a1

j=1, j# j=1, j#k

Coslz

Clearly, for [ > s — 1 we have {uk}k 1 C d LZ([,L) with main property é;(ij) =&;j, k, jeA{l, .., s}

[

by
Since f € L?(u) can be written on T as f = Zj 1 f (é )E; > {u 7}/Z] is an orthogonal basis in L?(11). Consequently, for all
[> (s—1), for f € Clz, /1, |1(2) — X123 FE);)

)|> = 0 on 7. Moreover,

YNGR WIABE M)

- [1f@PawE) /f 1E)2,) /f FENZ) +Z|fé,|2

It follows, for every [ > s—1, we have: 7; = {FeClz 2/n, [.|f@)Pdui) =0} ={f €z, 2)/Ii, with f|; = 0}.
Thus, foralll >s—1, {ék + Tl} —} is an orthogonal basis in H; and, for all / > s — 1, dimH,; = dimZL?(u) = s. That is L
is stable and sd(L) = s. O

3. Application: The quadratic moment problem on {z,zz=1}

The data of the problem are: y: = {y: = Po=N1:=Y-1LY1:=N0:=%-1, No=Y1:=N, V2:=
%0 :=%-2, 1 0=0 2=}
Let Ly, : =Ly, Cailz, 7|/ 12 : = Calz, Z) /12, Lot Calz, Z)/Io — C, be a linear functional, with properties (2-4) such

that Lo (1) = Lr(Z) = La(2) = .0 =V, 1 = 1.2, L) = La@) = 10,1 =Th, 05 La(22) = La(22) = Y, 2 =P, 0 > 0.
The positivity of L, > 0 is a necessary condition for the existence of a representing measure for y. Thus, we assume
Ly >0.IfI1=(1-22), I 710Ck[z, z], k=0, 1, 2, we have Iy = {0}, I = {0}, L = {a(1 —zZ), @ € C}. The Hilbert
spaces built via L, are: {H M=), Ty = {f e Co[z, 7, Ly(|f2 =0} = {0}, T\ = {f € Ci]z, 7], Lo(|f]?) = 0} = {0},

Colz, Z|/1 ~ Cilz, z)/1 _
Hy = % = Cylz, Z), dimHy=1. H| = 1[ZT1 A/h =Cilz, 7.

Case 1 L, is given. If dimH; = 1, case in which Z, Z are linear dependent of 1, we have dimHy = 1 = dimH],
consequently L is stable at (n — 1) = 0, we find a representing measure for ¥ with s = 1 = sd(L,) atoms (theorem 2.16).
Case 2 L, is given. Let be dimH; = 2. In this case, L is unstable at (n — 1) = 0. We look for the existence of a

functional Ly, : = La, Coa(z, Z)/Is - = Calz, Z)/Is; La = Calz, Z]/Is — C, such that Ls(1) = 1,0 =%,1 =1, L4(f) =
Ly(f), Vf € Cilz, 7)/Lu, L4(|7‘P12 0, Vf € Gz, 7)/b, (respectively properties (2-4) of Ly). We have than: Ly(1) =
Ly(Z)=1= Y.0=T1 If Ly(f) = La(f), Vf € Calz, 7)/Ia, we have: L4(/’\) = L4(2), equivalently with 1 o = 70 1;
moreover L4(z )= L4( ) > 0, equivalently with y» o =7 2 > 0; moreover Ly(3) = L4(zA3)7 equivalently with 13, o :m;

moreover L4(Zz ) = L4(z22) = L4(2), equivalently with 71 2 = 5.1 = 1.1 = T, 0. We have also L4(z4) L4( 4) >0,

equivalently 74 o =754 > 0, Ls(232) = L(232) = La(2) = Ly(22) > 0, equivalently with 15 1 =713 = %. 0 = 76,2 = 0.
A linear functional, with (2-4) always exists.
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Let Ly : C4/14 — C be a linear functional with properties (2-4). The Hilbert spaces built via L4 are: {Hk}fzé. In this

case, Ip = Cplz, Z)N (1 —zz) = {0}, Colz, Z|/Io = Colz, ZI; To—{fECo[z, ]|L4(|f7|:0}:{0}~ Ho :%Oz]/loz
Colz, Z). h =Cilz, ZIN(1 —Z) = {0}, T; :{fe Cilz, Z)/I, L4(|ﬂ2):0}:{0}, H = Cl[Z’Tl]/Il Cilz, ;b =
Cole, AN (1—22) = a(l - 22), 0 €C, T = {F € Calz, 2/ a1 — 2, [La(|FP) =0}, Ho = 2 Z]/T‘Z(l —a)

As previous, the positivity Ly > 0 is a necessary condition for the existence of a representing measure for y. Thus,

we assume Ly > 0. We suppose Ly > 0 on Cy4lz, Z]/Is equivalently with Ls(f) > 0 if f € Culz, Z)/1s, f > O (that is
) BAy) ' ~

f>0,z= 1) From Riesz-Fejer lemma, f > O f= lg| - Consequently Ls(|q|") > 0if § = Y=} a;z, equivalently with

Y jalajL4(z iz7) > 0. From this, Ly(Y jaia;z zf) Ly(Y;, jaiajz z/) Ly(Y; jai a;ziz)). That is Ly(ziz/) = Ly (z'7)) for
alli, j € {0, 1, 2 i+ j < 4}. The functional L4 is completely determined by the moments L4( k), ke{-2, ..., 2}. Ifon

—

N,z=z"" L4(zz1) La(7iz~ f) Yj, i+ =Yi—; and L4(z'z ) Yie j_Lzz(zzJ) ¥;—i- The matrix associated with L4 on
Y,0 0,1 N0

HyissAr=1| no N1 %o | =0.
Yo,1 W,2 N1

We divide the proof according to the values of s = dimH; < 3.

Case I dimH,=1 It implies there exists & € C, # 0 such that7= - 1, that is: Ls(|7— 1)?) =0 = (||(Z— )| ,)*
We have also 7 = @ - 1, and zz = 1. From the construction of the Hilbert spaces associated with of L4, we have
dimHy = 1 = dimH; = 1 = s, implying L4 is stable at (n — 1) = 0. Moreover, if H; = X, the C* algebra X = {f(A), f €
Cilz, 7]/} has s = dimHy = dimH; = 1 characters. From theorem 2.17, there exists an 1-atomic representing measure
U(x) =< Ex(x)(1 4+ Ta), (14 T2) >> 0, u(x) = pd, such that Ly(z*) = [; *du(z), k € {-2, —1, 0, 1, 2}. If
w(w) =p >0, u is a representing measure for y. From theorem 2.11 there exists an unique non-negative extension
Loy : Clz, 2]/ (1 — 2Z) of Ls. Thus, we have for L., an unique representing measure on the compact 7;. Consequently,
the representing measure for L4 is unique. In the same time, the rank of A; is in this case r = 1 (the second and the
third column in A are linear combinations of the first one). Moreover, from theorem 2.11 and remark 2.12, we have also
dimH() = d1mH1 = d1mH2 =5 =1

Case II dimH; = 2 = s. The data that will be interpolated are: y: % : =%o0 =%,1:=%-1, "1 : =
.1, =2 N="1 T =7ya IfdmH =2, we have @, B € C, (a-B) #0 such that 7= ot -1+ -3,
{1, z} are linear independent in H;. That is Ls((ot- 1+ B -Z)(oc- 1+ -2)) = 0 if and only if o = B = 0. Implying
|a|? + |B|* +2Re(atB -, 1) = 0 if and only if & = B = 0. Suppose |, 1| = |11,0| = 1. We have 0 = Ls((ct
1+B-2)(a-1+B-2) = |af’ + B +2Re(aB -10,1) = |al* |0, 11> + IBI* —2|allw, 1118l = (|ellw, 1] - B)* =

Consequently, |a||n, 1] = |B|. If a, B # 0 we have a contradiction. If Ly > 0, {1, Z} are linear independent in H,
if and only if |1, 1| < 1. The matrix Ag = zo‘ 0 ZO’ ! ] is invertible and detAg = 6 > 0. To find @, € C we
1,0 M1
take in H; two equation with two unknown, respectively z = -1+ Bz and 22 = (- 1 + B2)z = (0> + B) - 1 + aBZ;
N,0 %1
Y,0=0aW, 0+ B, 1 and e %o .0
consequentl ’ ’ ’ . IfAg is invertible, we have ¢t = ———>—1,f =
a y{ Bo=aB -1 o+ (0> +B)w o=an o+Bw, o %, 0=1%, 1) B
Y,0 N,o
Y,0 72,0

T PET If {1, Z} are linear independent in Hj, they are linear independent in H, too. We have =01+ B-z
0,0 140, 1

implying 22 = (ot~ 1+ 8 ./\2)%: (a*>+B) -1+ Zand 72 =Z(@-1+B-2) =az+B -1, 2z = 1. The above equalities
are equivalent with Ly(|22 — [Loc2 +B) +aBz)?) =0, L4(|A2 — [(oZ + B] ®

0<<2—[(« 24+ B)+apz], 2 —[(0? +B) + aB?)] ><< 22 —Z(a+2), 22— [(0? + B) + 4Bz > + < Z(a+ B7) —
(02 +B)+ Bz, 2 — [(0? + B) + afT] >=<Z(E— (a+p2)), 2~ [(&? +B) + BT >+ < aZ—pz—a, 2~ [(a? +

2) = 0; equalities that are true. Indeed,
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B)+apZ] ><0. The same < 22— (@5+P), 22— (We+B) >=< 2 (@ +P3), 2 — (@E+) > + < Z(0F+B7) — (@E+
B)), 22— (0+B) >=<2E— (@+P2), 2 - (@+P) >< |2z~ @+ B2 |2 - @+ B) | +11oll |2 - @2+ <o.
Consequently, dimH, = 2 =dimH; and L4 is stable at (n — 1) = 1. From theorem 2.15 the commutative C* algebra
X ={f(A), f € C[z, 7)/I} is isomorphic with H, with result X has two characters and the scalar measure u(x) =<
Es(x)(1+T2), (1+T2) >> 0 has two atoms. From theorem 2.16, L4(ZA") =Jr du(z), ke {-2, 1,0, 1, 2}. That is
() is a representing measure for 7y respectively 1 () = pody, + p1 6w, . If (w;) > 0, the weights p; >0, i € {0, 1}. In
the same time, if Ag is invertible and the third column in A; is linear dependent of the first two, the rank of A; is r = 2.
Case III dimH;=s=3. We have {1, Z, z} are linear independent in H, equivalently Ly((a-1+b-Z+c-

0,0 %1 N0
Z)(a-1+b-7+c¢ 7)) =0ifand onlyifa = b = ¢ = 0. The associated matrix of Ly > OonHy is: Aj = | 1.0 .1 %0
.1 Y.2 N1

Yij = Yiej = L4(z'7/), 0 <i,j < 1. If Ly >, we have A; > 0. If we suppose rankA; = 2, it follows that there exists

%, 0=ay,o+bw, 1
a, b € C, such that we have the system: Y, 0=aY,o+by, 1 . The first equation in the above system is equivalent
N,1=aw, 1+byw, 2
with: Ly(Z—a-1—b-2) =0=< (z—a-1—b2),1 > . Consequently, from second and third equation of the system, we have
also Ly(ZZ—a-1—b-3)) =0, L4(ZE—a-1—b-2)) = 0. If Ly is linear, we have Ly(Z—a-1—b-2)(zZ—a-1—b-z)) =0
forc=1, a-b-c#0. That is a contradiction with {1, Z, 7} are linear independent in Hj.

We suppose rankA; = 1, for example we have 1) %, 1 = a¥, o, 2) N,1=an,o 3) 1,2 = ay, 1, a € C*. Also for
beC*, 1/) 1.0 =">b¥, o, 2/) P.o=bn o 3/) 71,1 =>b%, 1. From 1) and 1/) we have L4(1 —d 7— b/f) = 0; from 2) and
2') we have Ly(Z(1—d -Z—b'Z)) = 0; from 3) and 3) we have L4(Z(1 —a -Z—bZ)) = 0. Consequently, Ls((1 —a -Z—
b -2)(1—d -Z—b-2))=0,d -b #0;thatis a contradiction with {1, Z, 7} are linear independent in H, . R

We have rankA = 3; A; is invertible. Letz> =a- 1 +b-74c-Zthatis4) Ly(z2 — (a-1+b-24c¢-2)) =0, 5) Ly (3(z* —
(a-14b-7+c¢-Z)) =0and 6) Ly(Z(z2 — (a-1+b-Z+c¢-2)) = 0. If A, is invertible, we find the unique solution a, b, ¢ € C,
of the systemA4), 5), 6) with a, b, ¢ not simultaneous 0. In the same way we find o, 8, 6 € C, o, B, 8 not simultaneous
0,suchthatz?Z =a-14+B-2+ 8 .Z. If z = 1, we have dimH, = dimH; = 3, consequently Ly is stable at (n— 1) = 1.
When the C* commuting algebra X is isomorphic with H,, X has three characters, the scalar, positive measure p(*) =<
Es(*)(1+T3), (14 T2) >> 0 has three atoms, respectively (L(x) = poOy, + P16w, + P20w,. If u(w;) > 0, the weights
pi>0,i€{0, 1, 2}, u(x) is a representing atomic measure for y with three atoms. O

We have proved the following:

Theorem 3.1 Let Ly : Cafz, Z)/Is — C be a linear functional with properties (2-4), {H,}X=2 the Hilbert spaces
associated with it, A| the matrix associated with it on H;. For the quadratic moment problem on 7 are equivalent:

i) v has an s = r atomic representing measure with s = sd(L4) =dimH)|, the stable dimension of Ls and r = rankA,.

ii) 7 has a representing measure.

iii) The non-negative functional Ly is stable at (n — 1) = 1. If dimH; = s; = r; = rankA,, the representing measure
has s; =r;, i € {1, 2, 3} atoms. O

4. Conclusions

The present paper presents a truncated and a full trigonometric moment problem. It gives in the main theorems
conditions such that a finite complex sequence and a full complex sequence to admit integral representations as moments
with respect to an atomic, positive defined measures on the unit circle.

The conditions that allow the sequences to be moments of an atomic positive measure on the unit circle are: 1) the
positivity of the given sequences and 2) the stability of the assignment “Riesz functional”. The technical construction of
the spaces on which the Riesz functional acts assures the representing measure to have the support on the unit circle.
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