
Contemporary Mathematics
http://ojs.wiserpub.com/index.php/CM/

Research Article

Exact Time-Dependent Thermodynamic Relationships for a Brownian
Particle Navigating Complex Networks

Mesfin Asfaw Taye

West Los Angeles College, Science Division 9000 Overland Ave, Culver City, CA 90230, USA
E-mail: tayem@wlac.edu

Received: 7 June 2024; Revised: 1 August 2024; Accepted: 6 August 2024

Abstract: The thermodynamic characteristics of systems driven out of equilibrium are examined forM Brownian ratchets
organized in a complex network. The precise time-dependent solution reveals that the entropy S, entropy production
ep(t), and entropy extraction hd(t) of the system in complex networks increase with system size, which is plausible as
these thermodynamic quantities display extensive properties. In other words, as the number of lattice sites increases, the
entropy S, entropy production ep(t), and entropy extraction hd(t) increase, demonstrating that these complex networks
cannot be reduced to the corresponding one-dimensional lattice. Conversely, the rates for thermodynamic quantities such
as velocity V , entropy production rate ėp(t), and entropy extraction rate ḣd(t) become independent of the network size in
the long-term limit. The exact analytic results also indicate that the free energy decreases with system size. The model
system is further analyzed by incorporating heat transfer via kinetic energy. Since heat exchange via kinetic energy does
affect the energy extraction rate, the heat dumped to the cold reservoirs also contributes to internal entropy production.
Consequently, such systems exhibit a higher degree of irreversibility. The thermodynamic features of a system operating
between hot and cold baths are also compared and contrasted with a system functioning in a heat bath where temperature
varies linearly along the reaction coordinate. Regardless of the network arrangements, the entropy, entropy production,
and extraction rates are significantly larger for the linearly varying temperature case than for a system operating between
hot and cold baths.

Keywords: brownian motion, time-dependent thermodynamics, complex networks, stochastic processes, nonequilibrium
system

MSC: 60J65 82C31

1. Introduction
Thermodynamics is an important discipline that has historically began to study how heat and matter exchange

from one system to another system. Since its relevance to science and technology is considerably high, the study
of thermodynamics systems have obtained considerable attention. Particularly, exploring the dependence on entropy
production ep is vital since not only it signifies the degree of irreversibility of a given system but also serves as a
fundamental limit regarding the efficiency of thermodynamic systems. As indicated by the second law of thermodynamics,
ep ≥ 0 signifies that systems always maximize their entropy production during an irreversible process and ep = 0 for
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reversible processes [1, 2]. In the past decades, several frameworks have been developed to tackle how entropy production,
as well as entropy production rates behave. Some pioneering work in this regard includes Onsager’s reciprocity theory
[3, 4] which applies to a system operating near a linear response regime.

Systems that are genuinely far from equilibrium also have obtained considerable attention see for example the
works [5–21]. Some of these studies have explored the dependence of the thermodynamic quantities either by
considering classical systems [22, 23] or systems that operate in the quantum realm [24–26]. Since the Boltzmann-Gibbs
nonequilibrium entropy alongwith the entropy balance equation still remain valid for systems that are far from equilibrium,
exploiting this property, many theoretical studies have been conducted to study the entropy production in terms of the
local probability density and transition probability rate. For discrete systems, employing the master equation approach,
the dependence of entropy production has been studied in the works [5–9]. For continuous systems, via the Fokker-Planck
equation, several thermodynamics relations have been derived [11, 12, 17, 27, 28]. The method of calculating entropy
production and extraction rates at the ensemble level by first analyzing thermodynamic relations at the trajectory level was
introduced in the work [10]. Alternatively, many thermodynamic relations that derived via stochastic thermodynamics
were reconfirmed under time reversal operation [29, 30]. At a single trajectory level, various thermodynamics relations
have been derived via the fluctuation theorem [31–33]. The recent work [34] also indicates that for non-Markovian
systems, the entropy production rate can be negative. All of these studies have explored entropy production based on full
dynamical equations. However, inferring the entropy production for short experimental data is also vital but challenging
since such studies lack a complete picture of the nature of interactions. In this regard, the recent fundamental relation
called the thermodynamic uncertainty relation (TUR) sheds light on obtaining the expression for the entropy production
from a given time series data [35–38]. Recently, TUR has been generalized to study the entropy production for periodically
driven systems [38]. Most recently, considering a single thermal ratchet, the general expressions for free energy, entropy
production, as well as entropy extraction rates, are derived for a system that is genuinely driven out of equilibrium by
time-independent force as well as by spatially varying thermal background [39].

In this work, extending our previous study [39], we further study the thermodynamic features of a single Brownian
particle that walks along M Brownian ratchets arranged in a complex network. Each ratchet potential is either coupled
with the hot and cold reservoirs or a heat bath where its temperature decreases linearly along the reaction coordinate. The
analytical result depicts that the rate for the thermodynamic quantities such as the velocity V, entropy production ėp(t) as
well as entropy extraction ḣd(t) are independent of the network size at steady state as reconfirmed by complex generating
functions. On the contrary, the thermodynamic relations such as the entropy S, entropy production ep(t), and entropy
extraction hd(t) of the system step up with the network size M even at a steady state. We then further, study the system by
including heat transfer via kinetic energy. Since the heat exchange via kinetic energy does affect the energy dissipation
rate, the heat dumped to the cold reservoirs contributes also to the internal entropy production. This implies that such a
system exhibits a higher degree of irreversibility as long as a distinct temperature is retained between the hot and cold
heat baths. The thermodynamic properties of systems that operate between the hot and cold baths are also compared
and contrasted with a system that operates in a heat bath where its temperature varies linearly along with the reaction
coordinate. Regardless of the network size M, the entropy, entropy production, and extraction rates are considerably
larger for the linearly varying temperature case than a system that operates between the hot and cold baths revealing such
systems are inherently irreversible.
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Figure 1. (Color online) (a) Schematic diagram (Side view) for a Brownian particle walking in two discrete ratchet potentials with the load. Sites with
red circles are coupled to the hot reservoir (Th) while sites with blue circles are coupled to the cold reservoir (Tc). Site 1 is labeled explicitly and d is
the lattice spacin; (b) A Brownian particle (top view) walking in two discrete ratchet potentials with a load. Sites with red circles are coupled to the hot
reservoir (Th) while sites with blue circles are coupled to the cold reservoir (Tc)

Themodel system presented in this study is crucial for examining the thermodynamic properties of Brownian particles
within complex networks. For instance, protein-based molecular motors such as kinesin, myosin, and dynein navigate
through complex networks. Additionally, nanorobots, which function as artificial Brownian motors, are engineered to
achieve unidirectional motion on two-dimensional surfaces. Furthermore, numerous physically significant problems, such
as the diffusion of impurities (donors) within semiconductor layers, require comprehensive two-dimensional and three-
dimensional treatment.

We want to emphasize that a higher entropy is observed for a linearly decreasing temperature case than a Brownian
particle that operates between the hot and cold baths. Consequently, systems that operate in a linearly decreasing
temperature heat bath, have very low efficiency but a higher velocity. Thus such a thermal arrangement is beneficial
in designing a device that channels a Brownian particle fast along the reaction coordinate. A Brownian particle that
operates between two heat baths has a higher efficiency but a lower velocity in comparison with a linearly decreasing
temperature case. Thus such a model system is advantageous if the sole purpose is to design an efficient Brownian motor.
For all thermal arrangements, the particle attains a faster velocity whenever the network size M increases. This suggests
that by properly arranging the model ingredient prior to the motor operation, a specific task can be accomplished. Thus
the exactly solvable model presented in this work helps in designing artificial Brownian motors such as nanorobots.

The rest of the paper is organized as follows: in Section II, we present the model. The role of time is explored
for a Brownian particle moving on M Brownian ratchets arranged in a complex network where each ratchet potential is
coupled with the hot and cold baths. The model system is further explored by including heat transfer via kinetic energy.
An alternative derivation for steady-state thermodynamic quantities via complex generating functions is also presented. In
section III, we study the thermodynamic relations for Brownian particle that operates onMBrownian ratchets are arranged
in a complex network. Each ratchet potential is coupled with a heat bath where its temperature decreases linearly along
the reaction coordinate. Section IV deals with the summary and conclusion.

2. Brownian particle operating in a networks that coupled with the hot and cold
reservoirs

2.1 The model

The Brownian particle undergoes a biased random walk along a discrete ratchet potential with load that coupled with
the temperature

Tj =

{
Th, for site j = 0;
Tc, for sites j = 1 and j = 2;

(1)
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as shown in Figure 1a and 1b. The potential barrier height E > 0, f denotes the load and j is an integer. Th and Tc represent
the temperature for the hot and cold reservoirs, respectively. The lattice has spacing d and in one cycle, the particle walks
a net displacement of three lattice sites.as shown in Figure 1. The potential E > 0, f denotes the load and i is an integer
that runs from −∞ to ∞. Th and Tc designate the temperature for the hot and cold reservoirs, respectively. Moreover,
d denotes the lattice spacing d and in one cycle, the particle walks a net displacement of three lattice sites as shown in
Figure 1. The jump probability from site i to i+1 is given by Γe−∆E/kBTi where ∆E =Ui+1 −Ui and Γ is the probability
attempting a jump per unit time. kB designates the Boltzmann constant and hereafter kB, Γ and d are considered to be a
unity. Obeying the metropolis algorithm when ∆E ≤ 0, the jump definitely takes place while ∆E > 0 the jump takes place
with probability exp(−∆E/Ti) [18].

It is also of practical interest to investigate the thermodynamic feature of M ratchet potentials arranged in a lattice
(each potential has a similar arrangement as shown in Figure 2a and 2b. This is because most practical problems such as
neural system, cardiac system as well as impurities (donors) diffusion along the semiconductor layer require 2D and 3D
analysis. As shown in Figure 2a, each ratchet potential shares a common hot bath and a cold bath at the other end. When
a periodic boundary condition is imposed, such arrangements can be mapped into the network depicted in Figure 2b. For
instance, the geometry of the networks shown in Figure 2a and 2b are essentially the same (when M = 4) if one binds the
nodes A, B, C, D of Figure 2a together (when a periodic boundary condition is imposed).

For a Brownian particle that moves in a discrete lattice, its dynamics is governed by the master equation

dPn

dt
= ∑

n̸=n′
(Pnn′ pn′ −Pn′n pn) , n, n′ = 1, 2, 3 (2)

where Pn′n is the transition probability rate at which the system, originally in state n, makes a transition to state n′. Pn′n is
given by the Metropolis rule [22]. Equation (2) can be rewritten as

d p⃗
dt

= Pp⃗. (3)

Note that mathematically, Brownian motion can be described using the Langevin equation, Master equation or the
Fokker-Planck equation. These equations account for the forces acting on a particle and the resulting motion due to
thermal fluctuations. The expression for P can be evaluated for any M. For instance, for a single ratchet potential M = 1,
P is a 3 by 3 matrix which is given by

P =


−µa2−µ2

2a
1
2

1
2

µa
2

−1−νb
2

1
2

µ2

2a
νb
2 −1

 . (4)

For two ratchet potentials (M = 2), P has a form
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P =



−2µa2−2µ2

2a
1
2

1
2

1
2

1
2

µa
2

−1−νb
2 0 1

2 0

µa
2 0 −1−νb

2 0 1
2

µ2

2a
νb
2 0 −1 0

µ2

2a 0 νb
2 0 −1


(5)

while for M = 3 and M = 4 case, one finds

P =



−3µa2−3µ2

2a
1
2

1
2

1
2

1
2

1
2

1
2

µa
2

−1−νb
2 0 0 1

2 0 0

µa
2 0 −1−νb

2 0 0 1
2 0

µa
2 0 0 −1−νb

2 0 0 1
2

µ
2a

νb
2 0 0 −1 0 0

µ2

2a 0 νb
2 0 0 −1 0

µ2

2a 0 0 νb
2 0 0 −1



(6)

and

P =



−4µa2−4µ2

2a
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

µa
2

−1−νb
2 0 0 0 1

2 0 0 0

µa
2 0 −1−νb

2 0 0 0 1
2 0 0

µa
2 0 0 −1−νb

2 0 0 0 1
2 0

µa
2 0 0 0 −1−νb

2 0 0 0 1
2

µ2

2a
νb
2 0 0 0 −1 0 0 0

µ2

2a 0 νb
2 0 0 0 −1 0 0

µ2

2a 0 0 νb
2 0 0 0 −1 0

µ2

2a 0 0 0 νb
2 0 0 0 −1



. (7)

Here µ = e−E/Tc , ν = e−E/Th , a = e− f/Tc and b = e− f/Th . In Appendix A, the expressions for the probability are
presented for the cases M = 1 and M = 2. The escaping rates

Volume 5 Issue 4|2024| 5117 Contemporary Mathematics



P21 =
1

2M
e−(E+ f )/Tc , P12 =

1
2
, P32 =

1
2

e−(E+ f )/Th

P23 =
1
2
, P13 =

1
2
, P31 =

1
2M

e−(2E− f )/Tc (8)

depend on M. While solving the model system, we employ periodic boundary conditions whereby a particle exiting one
side of the network re-enters from the opposite side. It is assumed that the time scale is significantly larger than the
microscopic collision times yet small relative to the timescale of macroscopic changes. Thermal fluctuations are modeled
as random forces acting on the particles, typically following a Gaussian distribution. Additionally, in the presence of an
external force or nonuniform thermal arrangements, a unidirectional current is achieved.

When solving the master equation for both thermal arrangements, idealized conditions are assumed, such as no heat
losses to the surroundings except between the two reservoirs. The assumption of a linear temperature gradient or piecewise
thermal arrangement is a simplification. In a real experimental setup, having such thermal arrangements at a nanoscopic
or microscopic scale is a daunting task.

Figure 2. (Color online) (a) Top view of four thermal ratchets arranged in a lattice. Each ratchet potential has four lattice sites. Sites with red circles
are coupled to the hot reservoir (Th) while sites with blue circles are coupled to the cold reservoir (Tc). The hot bath for the four Brownian ratchets are
located at the center; (b) M ratchet potentials arranged in a loop where each ratchet potentials share a common cold bath and a cold bath at the other
end. Each ratchet potential has four lattice sites as shown in Figure 2. Sites with red circles are coupled to the hot reservoir (Th) while sites with blue
circles are coupled to the cold reservoir (Tc). The hot bath for the M Brownian ratchets are located on the left side. The geometry of networks shown in
Figure 2a and 2b are essentially the same (when M = 4) if one binds the nodes A, B, C, D of Figure 6b together (when a periodic boundary condition is
imposed)

For a Brownian particle that moves along one or two dimensional discrete ratchet potential, the Boltzmann-Gibbs
entropy relation

S[pi(t)] =−
3

∑
i=1

pi ln pi, (9)

remains valid even when the system is far from equilibrium. The entropy extraction rate ḣd(t) can be rewritten in terms
of local probability density and transition probability rate as
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ḣd(t) =
−Q̇h(t)

Th
+

Q̇c(t)
Tc

=∑
i> j

(piPji − p jPi j) ln
(

Pji

Pi j

)

=∑
i> j

(piPji − p jPi j) ln
(

piPji

p jPi j

)
−∑

i> j
(piPji − p jPi j) ln

(
pi

p j

)

=ėp(t)− Ṡ(t) (10)

where

ėp(t) = ∑
i> j

(piPji − p jPi j) ln
(

piPji

p jPi j

)
(11)

and

Ṡ(t) = ∑
i> j

(piPji − p jPi j) ln
(

pi

p j

)
. (12)

Here ėp(t) and Ṡ(t) designate the entropy production rate and the rate of total entropy, respectively while Q̇h(t)
and Q̇c(t) denote the heat per unit time taken from the hot reservoir and the heat per unit time given to cold reservoir,
respectively.

After calculating the expressions for Ṡ(t), ėp(t) and ḣd(t) as a function of t, the analytic expressions for the change
in entropy production, heat dissipation and total entropy can be found analytically via ∆hd(t) =

∫ t
t0

(
ḣd(t)

)
dt, ∆ep(t) =∫ t

t0 (ėp(t))dt, and ∆S(t) =
∫ t

t0

(
Ṡ(t)

)
dt where ∆S(t) = ∆ep(t)−∆hd(t). Once again, in the absence of load f , in the limit

Th → Tc and when E = 0, for both cases, one finds ∆hd(t) = 0,
In terms of local probability density and transition probability, the heat dissipation rate can be given as

Ḣd(t) =∑
i> j

Tj(piPji − p jPi j) ln
(

Pji

Pi j

)

=∑
i> j

Tj(piPji − p jPi j) ln
(

piPji

p jPi j

)
−∑

i> j
Tj(piPji − p jPi j) ln

(
pi

p j

)

=Ėp(t)− ṠT (t) (13)

where
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Ėp(t) = ∑
i> j

Tj(piPji − p jPi j) ln
(

piPji

p jPi j

)
(14)

and

ṠT (t) = ∑
i> j

Tj(piPji − p jPi j) ln
(

pi

p j

)
. (15)

Our next objective is to write the expression for the free energy in terms of Ėp(t) and Ḣd(t) where Ėp(t) and Ḣd(t)
are the terms that are associated with ėp(t) and ḣd(t) except the temperature Tj.

The second law of thermodynamics can be written as ∆ST (t) = ∆Ep(t)−∆Hd(t) where ∆ST (t), ∆Ep(t) and ∆Hd(t)
are very lengthy expressions which can be evaluated via ∆Hd =

∫ t
t0

(
Ḣd(t)

)
dt, ∆Ep(t) =

∫ t
t0

(
Ėp(t)

)
dt and ∆ST (t) =∫ t

t0(Ṡ
T (t))dt. On the other hand, the total internal energyU(t) is the sum of the internal energies

U [pi(t)] =
3

∑
i=1

piui (16)

while the change in the internal energy is given by ∆U(t) = U [pi(t)]−U [pi(0)]. We also verify the first law of
thermodynamics

U̇ [Pi(t)] =−∑
i> j

(piPji − p jPi j)(ui −u j)

=−(Ḣd(t)+ fV (t)) (17)

where the net velocity V (t) at any time t is the difference between the forward V+
i (t) and backward V−

i (t) velocities at
each site i. Next let us find the expression for the free energy dissipation rate Ḟ . For the isothermal case, the free energy
is given by F =U −T S and next we adapt this relationship to nonisothermal case to write

Ḟ(t) = U̇ − ṠT (t). (18)

Substituting Eqs. (10) and (17) in Eq. (18) leads to

Ḟ(t)+ Ėp(t) = U̇(t)+ Ḣd(t) =− fV (t) (19)

which is the second law of thermodynamics. Note that in the absence of load, U̇(t) =−Ḣd(t) and consequently Ėp(t) =
−Ḟ(t). The change in the free energy can be written as
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∆F(t) =−
∫ t

t0

(
fV (t)+ Ėp(t)

)
dt

=
∫ t

t0

(
U̇(t)+ Ḣd(t)− Ėp(t)

)
dt

= ∆U +∆Hd −∆Ep. (20)

2.2 Entropy, entropy production and extraction rates

The net velocity V (t) at any time t is the difference between the forward V+
i (t) and backward V−

i (t) velocities at
each site i. For instance, for M = 2 cases, the velocity can be calculated as

V (t) =
3

∑
i=1

(V+
i (t)−V−

i (t))

=(p1P21 − p2P12)+(p2P32 − p3P23)+

(p3P13 − p1P31)+(p1P′
21 − p′2P′

12)+(p′2P′
32 − p′3P′

23)+(p′3P′
13 − p1P′

31). (21)

Because closed-form expressions for V (t), Ṡ(t), ėp(t) and ḣd(t) as a function of t is obtained, one can explore
the dependence of other physical quantities as a function of time. To increase the readability of this paper, only the
thermodynamic expressions up to M = 4 will be shown in this paper.

Figure 3. (Color online) (a) Particle velocity V as a function of ε is plotted via Eq. (21) for fixed M = 4 and τ = 2.0. The load is fixed as λ = 0,
λ = 0.5, and λ = 1.0 from the top to bottom; (b) Phase space at which the velocity V = 0 is plotted as a function of λ and τ . The potential height is
fixed as ε = 8.0, ε = 6.0, ε = 4.0 and ε = 2.0 from top to bottom

Hereafter, whenever we plot the figures, we use the following dimensionless load λ = f/Tc, barrier height ε = E/Tc

and dimensionless temprature τ = Th/Tc.
The velocity. The dependence of the velocity on model parameters is explored as a function of time. The time t

dictates the magnitude and direction of the velocity. For small t, the net particle flow is in the reverse direction (negative).
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As time increases, the direction ofV is reversed. In Figure 3a, we plot the velocityV as a function of ε . The figure depicts
that the particle manifests a peak velocity at a particular barrier height εmax. At this particular height, the engine operates
with maximum power. Phase space at which the velocityV = 0 is plotted in Fig. 3b as a function of λ and τ . In the figure,
the potential height is fixed as ε = 8.0, ε = 6.0, ε = 4.0, and ε = 2.0 from top to bottom.

The velocity increases as the number of ratchet potentials (M) steps up. At a steady state, the velocity approaches
the same value regardless of the number of ratchet potentials arranged in the lattice. At steady state, for all M, the velocity
approaches

V =

3
(

eE/Tc − e
2 f
Tc +

E
Th

+ f
Th

)
2
(

eE/Tc + e
2 f
Tc + e

2E+ f
Tc

)(
1+2e

E+ f
Th

) . (22)

At stall force

f s =
E(Th

Tc
−1)

( 2Th
Tc

+1)
(23)

the velocity approaches zero.

Figure 4. (Color online) The entropy S(t) as a function of t and τ evaluated analytically via Eq. (9) for a given ε = 2.0 and f = 0.0. In the figure, M is
fixed as M = 4, M = 2, and M = 1 from top to bottom, respectively

At this point, we want to emphasize that the model system not only serves as an important tool to calculate the
velocity for thermally driven motors but also for isothermal motors (protein-based molecular motors) such as Myosins,
Kinesin, and Dynein. When the motor operates in isothermal baths, the engines undergo unidirectional motion by utilizing
chemical energy. For the isothermal case Th = Tc, the load only acts as the symmetry-breaking field. Thus in the presence
of load, the motor attains a unidirectional velocity depending on the magnitude of the load.

The total entropy. The fundamental entropy relation

S[pi(t)] =−
3

∑
i=1

pi ln pi, (24)
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for the system which is far from equilibrium can be derived by substituting Q̇h(t) and Q̇c(t) into Eq. (10). Here care
must be taken that the change in the entropy ∆S = ∆ep −∆hd reflects the system properties while the entropy production
∆ep signifies the spontaneous change that the system undergoes. At this point, it is important to acknowledge Prigogine’s
theory [40], which demonstrates that for a system out of equilibrium, the entropy balance equation is given by dS =

deS + diS where dS represents the total entropy variation, deS is the entropy flow to the surroundings and diS is the
entropy production. Our entropy balance equation ∆S = ∆ep −∆hd is consistent with Prigogine’s formulation. Here,
dS or S denotes the total entropy, while ∆ep or diS indicates the internal entropy production. The entropy extraction is
represented as deS or ∆hd .

The dependence of entropy on the model parameter can be explored via Eq. (9). As shown in Figure 4, the entropy
of the system exhibits an intriguing parameter dependence. For t ̸= 0, S > 0 which indicates that in the presence of
symmetry-breaking fields such as nonuniform temperature or external force, the system is driven out of equilibrium. S(t)
is also considerably larger when four ratchet potentials are arranged ( M = 4) in the network. The entropy decreases as
the number of ratchet potentials (M) decreases which is reasonable since the entropy of the system depends on the number
of acceptable states (lattices).

In the absence of load and at a steady state, the entropy approaches

S =−ξ

eE/Th
(

1+2eE/Tc
)

ln

 eE/Th
(
1+2eE/Tc

)(
1+ eE/Tc + e

2E
Tc

)(
1+2eE/Th

)


+ξ

(1+ eE/Tc + eE/Th
)

ln

 1+ eE/Tc + eE/Th(
1+ eE/Tc + e

2E
Tc

)(
1+2eE/Th

)


−ξ

e
2E
Tc

(
1+2eE/Th

)
ln

 eE/Tc

1+2Cosh
[

E
Tc

]
 , (25)

S =−ξ
((

eE/Th
(

1+2eE/Tc
))( E

Th
+ ln

[
1+2eE/Tc

]
− ln

[
2
(

1+ eE/Tc + e
2E
Tc

)(
1+2eE/Th

)]))

+ξ

(1+ eE/Tc + eE/Th
)

ln

2
(

1+ eE/Tc + e
2E
Tc

)(
1+2eE/Th

)
1+ eE/Tc + eE/Th



−ξ

e
2E
Tc

(
1+2eE/Th

)
ln

 eE/Tc

1+2Cosh
[

E
Tc

]
 , (26)

and
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S =−ξ
(

eE/Th
(

1+2eE/Tc
)( E

Th
+ ln

[
1+2eE/Tc

]
− ln

[
4
(

1+ eE/Tc + e
2E
Tc

)(
1+2eE/Th

)]))

+ξ

(1+ eE/Tc + eE/Th
)

ln

4
(

1+ eE/Tc + e
2E
Tc

)(
1+2eE/Th

)
1+ eE/Tc + eE/Th



−ξ

e
2E
Tc

(
1+2eE/Th

)
ln

 eE/Tc

1+2Cosh
[

E
Tc

]
 (27)

for M = 1, M = 2 and M = 4, respectively. Here ξ =
1(

1+ eE/Tc + e
2E
Tc

)(
1+2eE/Th

) .
Taylor expanding Eqs. (25), (26), and (27) near E = 0 leads to

S = ln[3]+

(
−T 2

c −TcTh −7T 2
h

)
E2

27T 2
c T 2

h
, (28)

S =
1
3
(2ln[2]+3ln[3])− ln[2]E

3Tc
+

(
−2T 2

c −2TcTh −14T 2
h −3T 2

h ln[2]
)

E2

54T 2
c T 2

h
(29)

and

S =
1
3
(4ln[2]+3ln[3])− 2ln[2]E

3Tc
+

(
−T 2

c −TcTh −7T 2
h −3T 2

h ln[2]
)

E2

27T 2
c T 2

h
. (30)

At equilibrium, when E → 0, Eqs. (28), (29), and (30) converge to S = ln[3], S ≈ ln[5] and S ≈ ln[9]which reasonable
since S relies on the lattice size. The system can be driven out of equilibrium as long as it operates at a finite time even
in the absence of potential and load. This can be appreciated by analyzing the general time-dependent entropy S in the
limit f → 0, Th → Tc, and E → 0. Near t = 0, we get S = (1+ ln[2]− ln[t])t for all M and in the limit t → ∞, we recover
S = ln[3], S ≈ ln[5] and S ≈ ln[9] for M = 1, M = 2 and M = 4, respectively.

Entropy production and extraction rates.-In this section, the dependence for the rate of entropy production ėp(t), rate
of entropy Ṡ(t), and rate of entropy extraction ḣd(t) on the system parameters will be explored. Via Eqs. (13), (14), and
(15), the expression for Ṡ(t), ḣd(t) and ėp(t) can be evaluated. Figure 5 shows the plot of Ṡ(t) as a function of function
of t, τ and M. As depicted by the figure, the rate of entropy Ṡ(t) is higher for larger lattice size M. Figure 6 shows the
plot of ėp(t) as a function of t, τ and M. ėp(t) significantly large when M is large. The plot of ḣd(t) as a function of t, τ ,
and M is exhibited in Figure 7. The figure shows that ḣd(t) significantly becomes large as the network size steps up. The
three figures also indicate that ėp(t) and ḣd(t) approach their steady state values ėp = ḣd as time progresses. Our analysis
also confirms that in the presence of symmetry-breaking fields, the entropy production rate ėp steps down in time and at
steady state, ėp = ḣd > 0. However, for an isothermal case and in the absence of load, ėp = ḣd = 0 in a long time limit.

For any M, at steady state we find
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ėp(t) = ḣd(t) =−

(
eE/Tc − e

2 f
Tc +

E+ f
Th

)


ln

[
eE/Tc+e

2 f
Tc +e

2 f
Tc

+
E+ f

lh

2eE/Tc+e
2 f
Tc

]

− ln

 eE/Tc

(
2+e

− E+ f
Th

)

2eE/Tc+e
2 f
Tc

− ln

[
1+e

E−2 f
Tc +e

E+ f
Th

1+2e
E+ f
Th

]


2
(

eE/Tc + e
2 f
Tc + e

2E+ f
Tc

)(
1+2e

E+ f
Th

) . (31)

Analyzing the entropy production is not only vital in describing non-equilibrium systems but also signifies the degree
of irreversibility of a given system. As indicated by Eq. (31), ėp(t) = ḣd(t)>0 as long as f ̸= 0 and when a distinct
temperature between the hot and cold bath is retained Th ̸= Tc. At stall force (in the limit f → f s), ėp(t) = ḣd(t)=0. The
phase space at which the entropy production rate becomes zero is depicted in Figure 8.

In the absence of load f , potential E, and in the limit Th → Tc, the system relaxes to its equilibrium state in the
long time limit. On the contrary, in the short time limit, the system still operates irreversibly. This can be appricated by
analyzing Ṡ(t), ḣd(t) and ėp(t) in the absence of load f , potential E, and in the limit Th → Tc. For M = 1 case, one finds
ḣd(t) = 0 and

ėp(t) = Ṡ(t) =−e
−3t

2 ln

[
−1+ e

3t
2

2+ e
3t
2

]
. (32)

On the other hand, for M = 2 case, we get

ėp(t) =
1
8

e−3t/2

(
−
(
−1+ et) ln

[
− 1+ et/2 −2et

2
(
1+ et/2 + et

)]+ (−1+ et) ln

[
2
(
1+ et/2 + et

)
−1− et/2 +2et

]

− ln

[
5+5et/2 +2et

2
(
1+ et/2 + et

)]+ et ln

[
5+5et/2 +2et

2
(
1+ et/2 + et

)]−4ln
[
−5+3et +2e3t/2

]

− ln

[
2
(
−1+ e3t/2

)
7+3et +2e3t/2

]
− et ln

[
2
(
−1+ e3t/2

)
7+3et +2e3t/2

]
+4ln

[
7+3et +2e3t/2

])
(33)

Ṡ(t) =
1
8

e−3t/2

(
−
(
−1+ et) ln

[
− 1+ et/2 −2et

4
(
1+ et/2 + et

)]+ (−1+ et) ln

[
4
(
1+ et/2 + et

)
−1− et/2 +2et

]

− ln

[
5+5et/2 +2et

4
(
1+ et/2 + et

)]+ et ln

[
5+5et/2 +2et

4
(
1+ et/2 + et

)]−4ln
[
−5+3et +2e3t/2

]
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−3ln

[
4
(
−1+ e3t/2

)
7+3et +2e3t/2

]
− et ln

[
4
(
−1+ e3t/2

)
7+3et +2e3t/2

]
+4ln

[
7+3et +2e3t/2

])
(34)

ḣd(t) =
1
2

e−3t/2 ln [2]. (35)

Once again in a quasistatic limit, regardless of any parameter choice, we find ėp = ḣd(t) = 0. As pointed out by Ge
et al. [41], the vanishing of velocity may not indicate the system is at thermodynamic equilibrium

Figure 5. (Color online) Ṡ(t) versus t is evaluated analytically for fixed ε = 2.0, τ = 2.0 and λ = 0.6. In the figure, M is fixed as M = 4, M = 2,
and M = 1 from top to bottom respectively. As shown in the figure, Ṡ(t) decreases as M and t increase. At a steady state, all of these thermodynamic
quantities approach the same value

Figure 6. (Color online) The entropy production rate ėp(t) as a function of t for fixed ε = 2.0, τ = 2.0 and λ = 0.6. M is fixed as M = 4, M = 2 and
M = 1 from top to bottom, respectively. As shown in the figure, ėp(t) decreases as M and t increase. At a steady state, all of these thermodynamic
quantities approach the same value
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Figure 7. (Color online) The entropy extraction rate ḣd(t) as a function of t evaluated analytically using Eq. (3) for a given value of ε = 2.0, τ = 2.0,
λ = 0.6. In the figure, M is fixed as M = 4, M = 2, and M = 1 from top to bottom respectively. As shown in the figure, Ṡ(t), ḣd(t) and ėp(t) decrease
as M and t increase. At a steady state, all of these thermodynamic quantities approach the same value

Figure 8. (Color online) (a) The Phase space at which the entropy production rate becomes zero for fixed λ = 0.6

The the analytic expressions for the change in entropy production, heat dissipation, and total entropy can be found
analytically via ∆hd(t) =

∫ t
t0

(
ḣd(t)

)
dt, ∆ep(t) =

∫ t
t0 (ėp(t))dt and ∆S(t) =

∫ t
t0

(
Ṡ(t)

)
dt where ∆S(t) = ∆ep(t)−∆hd(t)

and the indexes i = 1, ..., 3 and j = 1, ..., 3.
Unlike the entropy production and extraction rates, the thermodynamic relationship such as ∆S(t) , ∆ep(t) and ∆hd(t)

depend on network size even at steady state. The expressions for ∆hd(t), ∆S(t), and ∆ep(t) are lengthy and will not be
presented in this work. As shown in Figure 9a and 9b, for a system that operates between hot and cold reservoirs, ∆ep(t)
and ∆hd(t) approach a non-equilibrium steady state in the long time limit. As the number of lattice size steps up, ∆ep(t)
and ∆hd(t) increase showing for large M the system exhibits a higher level of irreversibility.
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Figure 9. (Color online) (a) ∆ep(t) as a function of t and τ = 2.0 for fixed ε = 2.0 and λ = 0.0; (b) ∆hd(t) as a function of t and τ = 2.0 for fixed
ε = 2.0 and λ = 0.0. In the figures, M is fixed as M = 4 and M = 1 from top to bottom respectively. As shown in the figures, ∆ep(t) and ∆hd(t) increase
as M steps up and when t increases

Figure 10. (Color online) (a) ∆Ep(t) as a function of t and ε for fixed τ = 2.0 and λ = 0; (b) ∆Hd(t) as a function of t and τ for fixed ε = 2.0 and
λ = 0.6. In the figures, M is fixed as M = 2 and M = 1 from top to bottom respectively. As shown in the figures, ∆Ep(t) and ∆Hd(t) increase as M
steps up and when t increases

The second law of thermodynamics can be also written as ∆ST (t) = ∆Ep(t)−∆Hd(t) where ∆ST (t), ∆Ep(t) and
∆Hd(t) are very lengthy expressions which can be evaluated via ∆Hd =

∫ t
t0

(
Ḣd(t)

)
dt, ∆Ep(t) =

∫ t
t0

(
Ėp(t)

)
dt and

∆ST (t) =
∫ t

t0(Ṡ
T (t))dt.

As discussed before, once the expressions for Ḣd(t), Ėp, ṠT are analyzed, the corresponding entropy balance equation
can be calculated as dST (t)

dt = Ėp − Ḣd . The expressions for these relations are very complicated. In Figure 10a we plot
∆Ep(t) as a function of t and ε for fixed τ = 2.0 and λ = 0 . Figure 10b depicts the plot of ∆Hd(t) as a function of t and τ
for fixed ε = 2.0 and λ = 0.6. In both figures, M is fixed as M = 2 and M = 1 from top to bottom respectively. As shown
in the same figures, ∆Ep(t) and ∆Hd(t) increase as M and t increase.

The free energy.-Next, we explore the dependence of the free energy dissipation rate shown in Eqs. (12) and (13) on
t. In general Ḟ < 0 and approaches zero in the long time limit for both cases (see Figure 11). As depicted in Figure 11,
when the system operates at finite time, the free energy dissipation rate increases as the number of ratchet potentials M
steps up. At a steady state, the free energy rate approaches the same value for allM. This can be appreciated by evaluating
the rate in the long limit. At a steady state, for all M, the free energy rate converges to
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Ḟ =

ξ

3 f −Thln

eE/Tc + e
2 f
Tc + e

2 f
Tc +

E
Th

+ f
Th

2eE/Tc + e
2 f
Tc

+Tcln

eE/Tc

(
2+ e−

E+ f
Th

)
2eE/Tc + e

2 f
Tc

+Tcln

1+ e
E−2 f

Tc + e
E+ f
Th

1+2e
E+ f
Th




2ξ
(

1+2e
E+ f
Th

) (36)

where ξ =

(
−eE/Tc + e

2 f
Tc +

E
Th

+ f
Th

)
. For the isothermal case, in the absence of potential barrier and load, Eq. (37)

approaches zero since the detail balance condition is fulfilled. Moreover ∆U = ∆Hd = 0 and ∆F(t) = −∆Ep. At
equilibrium (t → ∞), we get ∆F =−Tc ln(3) for M = 1.

Figure 11. (Color online) (a) The change in free energy ∆F versus t and τ for f = 0.0 and ε = 2.0 . In the figure, M = 1 and M = 2 from the top to
bottom

When the system operates at a finite time, the system operates irreversibly, in the absence of potential barrier and load.
Taylor expanding the free energy rate near t = 0, one gets Ḟ = −Tc(ln[2]− ln[t]) for M = 1 and Ḟ = −1/8Tc(15ln[2]−
ln[8]− lnLog[t]) for M = 2 case. The change in free energy ∆F versus t and τ is depicted in Fig. 11 for fixed f = 0.0 and
ε = 2.0. In the figure, M = 1 and M = 2 from the top to bottom. from the top to bottom.

2.3 Heat transfer via kinetic energy

So far, the rate of heat loss due to particle recrossing at the boundary between the hot and cold reservoirs is not
included. When the heat exchange via kinetic energy is included, the system becomes irreversible even at the quasistatic
limit, and as a result ėp ̸= 0 or Ėp ̸= 0.

During the biased random walk, the particle absorbs kB(Th −Tc)/2 amount of heat from the hot bath. It then gives
back kB(Th−Tc)/2 amount of heat to the cold bath. As a result, there will be an irreversible heat flow from the hot to cold
baths. The rate of heat transfer from the hot to the cold reservoirs Q̇irr(t) depends on how often the particle jumps from
the cold to the hot heat baths. After some algebra, one gets

Q̇irr(t) = (p1P21 + p3P23)(Th −Tc)/2 (37)
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for M = 1 case and

Q̇irr(t) =(p1P21 + p3P23)(Th −Tc)/2+

(
p1P′

21 + p′3P′
23
)
(Th −Tc)/2 (38)

for M = 2 case. At steady state, for all M we find

Q̇irr =−

(
2eE/Tc + e

2 f
Tc

)(
1+ e

E+ f
Th

)
(Tc −Th)

4
(

eE/Tc + e
2 f
Tc + e

2E+ f
Tc

)(
1+2e

E+ f
Th

) . (39)

For the case where f = 0 and E = 0, one gets

Q̇irr(t) =−1
6

e−3t/2
(

2+ e3t/2
)
(Tc −Th). (40)

Integrating Eq. (41) with respect to time yields

∆Qirr(t) =− 1
18

e−3t/2
(
−4+ e3t/2(4+3t)

)
(Tc −Th) (41)

as long as f = 0 and E = 0.
One can note that the heat transfer through the kinetic energy does not affect Ḣd as the heat taken from the hot

reservoirs goes to the cold reservoir. This also implies that the whole heat dumped to the cold reservoirs contributes to
the internal entropy production and hence for any parameter choice Ėp(t) > 0 as long as Th ̸= Tc. The heat loss due to
particle recrossing contributes to the internal entropy production and we infer the new entropy production rate to be

Ė∗
p(t) = Ėp(t)+ Q̇irr(t). (42)

One can then rewrite the thermodynamic relations derived in the previous section in terms of Ė∗
p(t). Here Ė∗

p = 0
only when Th = Tc.

The rate of free energy depicted in Eq. (19), can be rewritten as

Ḟ(t)+ Ėp(t)+ Q̇irr(t) = U̇(t)+ Ḣd(t) =− fV (t) (43)

The change in the free energy is given by
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∆F(t) =−
∫ t

t0

(
fV (t)+ Ėp(t)+ Q̇irr(t)

)
dt

=
∫ t

t0

(
U̇(t)+ Ḣd(t)− Ėp(t)+ Q̇irr(t)

)
dt

= ∆U +∆Hd −∆Ep −∆Qirr(t). (44)

In the absence of load and potential energy, for all M at steady state, Eq. (44) converges to

Ė∗
p =−Ḟ(t) = Q̇irr(t) =

1
6
(−Tc +Th). (45)

Eq. (46) confirms the second law of thermodynamics in essence that the entropy for a thermally driven heat engine is
greater than zero. In other words, such systems operate irreversibly as long as a distinct temperature difference is retained
between the hot and cold heat baths. For isothermal cases Th → Tc, Q̇irr(t) → 0 as expected. Eq. (46) also reconfirms
Clausius’statement of the second law [1] that “Heat can never pass from a colder to a warmer body without some other
change, connected therewith, occurring at the same time.” In the next section, using complex generating functions, we
show the rate for thermodynamic relations does not depend on the network size M at steady state.

2.4 Alternative derivation of velocity via complex generating functions

In this section, we show why the rate for thermodynamic relations does not depend on the network size M at steady
state, the mathematical approach discussed by Goldhirsch et al. [42, 43] is adapted. Using this mathematical approach,
we also calculated the velocity of the motor in our recent paper [44].

For clarity, first, we revise the mathematical technique developed. Consider a segment with sites 0, 1 ,2, ...., N as
shown in Figure 1b. Let P2,1 be the probability per unit time step for the walker to jump from 1 to 2 while P1, 2 be the
probability to jump from 2 to 1 with a condition P1, 2 +P2, 1 ≤ 1. The probability Pw(n)+ designates the probability for
the walker to start at j = 0 and reach j = N in n steps in the right direction. The mean first passage for the walker to reach
j = N for the first time is given as [44]

⟨
t+
⟩
=

∑n=∞
n=0 nPw(n)+

∑n=∞
n=0 Pw(n)+

. (46)

The corresponding generating function in terms of the ϕ probability for Pw(n)+ is given by

GN(ϕ)+ =
n=∞

∑
n=0

eiϕnPw(n)+ (47)

where in this case 0 < ϕ < 2π . In terms of generating function, the corresponding mean first passage time shown in Eq.
(46) can be written as
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t+ =

d
d(iϕ)GN(ϕ)+

GN(ϕ)+
|ϕ=0 =

d
d(iϕ)

GN(ϕ)+|ϕ=0. (48)

P1, P2, ..., are given by P1eiϕ , P2eiϕ , ..., in terms of ϕ probabilities. The particle has a probability (1−P1)
n to stay

at j = 0 after n consecutive steps. The corresponding generating function is written as

X1−P1,2 =
n=∞

∑
n=0

(1−P1,2)
neiϕn

=
1

1− (1−P1)eiϕ . (49)

Similarly, in terms of generating function, the probability of staying at site j after n consecutive steps is given by

X1−P1, 2−P2, 1 =
n=∞

∑
n=0

(1−P1, 2 −P2, 1)
neiϕn

=
1

1− (1−P1, 2 −P2, 1)eiϕ . (50)

Let us U(n)+ to be the probability for the walker to leave j = 0 and reaches j = N in the right direction without
returning to j = 0. The associated generating function can be expressed as

T+
N =

n=∞

∑
n=0

eiϕnU(n)+. (51)

Similarly, letV (n)+ be the probability for the walker to leave j = 0 in the right direction and returns to j = 0 without
reaching j = N. The corresponding generating function is given by

QN(ϕ)+ =
n=∞

∑
n=0

eiϕnV (n)+. (52)

To reach the point j = N, the particle can stay at the site j = 0 for a number of steps with probability X1−P1, 2 , moves
out, and returns to j = 0 without touching j = N with Q+

N probability then stay at j = 0. These recursive steps are repeated
many times as shown below

R+
1 =X1−P1, 2 +X1−P1, 2Q+

N X1−P1, 2 +X1−P1, 2Q+
N X1−P1, 2Q+

N X1−P1, 2 + ...

=
X1−P1, 2

1−Q+
N X1−P1, 2

. (53)
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The particle finally will reach the site j = N without returning to j = 0 with the ϕ probability of T+
N after several

trials. Thus the generating function GN(ϕ)+ for the first passage time takes a form

GN(ϕ)+ = R+
1 T+

N =
X1−P1, 2T+

N

1−X1−P1, 2Q+
N (ϕ)

(54)

For the Brownian particle moving in complex networks, let us now calculate the generating function for the MFPT
in the right direction (see Figure 2a). To reach the other side of the potential well, the particle can stay at the site where
the hot bath is located for a number of steps with probability X ′

1−P1, 2
, moves out and returns to the hot bath using one of

the M possible paths with ϕ probability (Q+
1 + ...+Q+

M). The particle then stays in the hot bath. The particle repeats these
recursive steps many times as shown below

R+
1 =X ′

1−P1
+X ′

1−P1, 2
(Q+

1 + ...+Q+
M)X ′

1−P1, 2
+X ′

1−P1, 2
(Q+

1 + ...+Q+
M)X ′

1−P1, 2
(Q+

1 + ...+Q+
M)X ′

1−P1
+ ...

=
X ′

1−P1, 2

1− (Q+
1 + ...+Q+

M)X ′
1−P1, 2

(55)

where Q+
j = P1, 2eiϕ P2, 1eiϕ , { j = 1, ..., M}is defined as the ϕ probability for the walker to leave the hot bath and returns

back to the hot bath without touching the other side of the potential well. After several trials, the particle finally will be
able to reach the other side of the potential without returning to the hot bath using one of the possible M paths with ϕ
probability (T+

1 + ...+T+
M ). Here T+

j = P1, 2eiϕ P3, 1eiϕ , { j = 1, ..., M} is the ϕ probability (for the jth ratchet potential)
for the walker to leave the hot bath and reach the other side of the potential well in the right direction without returning
to the hot bath. The generating function for the MFPT towards the right direction is given by

GM(ϕ)+ =R+
1 (T

+
1 + ...+T+

M )

=
X ′

1−P1
(T+

1 + ....+T+
M )

1−X ′
1−P1

(Q+
1 + ....+Q+

M)
. (56)

Figure 12. (Color online) (a) Particle velocity V as a function of τ and λ is plotted via Eq. (21) for fixed ε = 2.0; (b) Particle velocity V as a function
of τ and λ is plotted via Eq. (59) for fixed ε = 2.0

Volume 5 Issue 4|2024| 5133 Contemporary Mathematics



Following the above steps, the generating function for the MFPT to the left direction can be also given as

GM(ϕ)− =
X ′

1−P3,1
(T−

1 + ....+T−
M )

1−X ′
1−P3.1

(Q−
1 + ....+Q−

M)
(57)

where T−
j = P3, 1eiϕ P2eiϕ , { j = 1, ..., M}is the ϕ probability (for the jth ratchet potential) for the walker to leave the

cold bath (left potential well) and to reach the other side of the potential well in the left direction without returning to
the cold bath while Q−

j = P4eiϕ P3eiϕ , { j = 1, ..., M}is defined as the ϕ probability for the walker to leave the cold bath
(towards the left direction) and return to the cold bath without touching the other side of the potential well. For clarity let us
write X ′

1−P1, 2
= 1

1−(1−MP1, 2)eiϕ and X ′
1−P3, 1

= 1
1−(1−MP3, 1)eiϕ . Care must be taken that now P1, 2 =

1
M e−(E+d f )/Th , P2, 1 =

1
2 , P3, 1 = 1

2 and P1, 3 = 1
M e−(E−d f )/Tc . Since we have M identical potentials, the net average velocity (independent of

lattice size M) is simplified to

V =(V+−V−)

=3
e

2E
Tc + e f/Tc − e

f
Tc +

E+ f
Th

(
1+ e

E+ f
Tc

)
2
(

e
2E
Tc + e f/Tc

)(
1+ e

E+ f
Tc

)(
1+2e

E+ f
Th

) (58)

The approximated velocity in Eq. (59) is approximately the same as the velocity shown in Eq. (21). This can be
appreciated by plotting V as a function of time t in Figure 12a and 12b.

3. Brownian particle operating in a heat bath where its temperature linearly
decreases along with the reaction coordinate
Let us now consider M ratchet potentials arranged in a lattice (see Figure 13) where each ratchet potential is coupled

with a linearly decreasing temperature

Ti = Th +
(i−1)(Tc −Th)

3
(59)

as shown in Figure 14. Once again, the rate equation for the model is given by d p⃗
dt = P p⃗ where the expression for P can

be evaluated for any M. For instance, for a single ratchet potential M = 1, P is a 3 by 3 matrix which is given by

P =


−µ1a1

2 − µ2
2

2a2
1
2

1
2

µ1a1
2

−1−νb
2

1
2

µ2
2

2a2
νb
2 −1

 . (60)

For two ratchet potentials (M = 2), P has a form
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P =



−2µ1a1
2 − 2µ2

2
2a2

1
2

1
2

1
2

1
2

µ1a1
2

−1−νb
2 0 1

2 0

µ1a1
2 0 −1−νb

2 0 1
2

µ2
2

2a2
νb
2 0 −1 0

µ2
2

2a2
0 νb

2 0 −1


(61)

while for M = 3 and M = 4 cases, one gets

P =



−3µ1a1
2 − 3µ2

2
2a2

1
2

1
2

1
2

1
2

1
2

1
2

µ1a1
2

−1−νb
2 0 0 1

2 0 0

µ1a1
2 0 −1−νb

2 0 0 1
2 0

µ1a1
2 0 0 −1−νb

2 0 0 1
2

µ2
2

2a2
νb
2 0 0 −1 0 0

µ2
2

2a2
0 νb

2 0 0 −1 0

µ2
2

2a2
0 0 νb

2 0 0 −1



(62)

and

P =



−4µ1a1
2 − 4µ2

2
2a2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

µ1a1
2

−1−νb
2 0 0 0 1

2 0 0 0

µ1a1
2 0 −1−νb

2 0 0 0 1
2 0 0

µ1a1
2 0 0 −1−νb

2 0 0 0 1
2 0

µ1a1
2 0 0 0 −1−νb

2 0 0 0 1
2

µ2
2

2a2
νb
2 0 0 0 −1 0 0 0

µ2
2

2a2
0 νb

2 0 0 0 −1 0 0

µ2
2

2a2
0 0 νb

2 0 0 0 −1 0

µ2
2

2a2
0 0 0 νb

2 0 0 0 −1



. (63)

Here µ1 = e−E/T1 , ν = e−(E+ f )/T2 , a1 = e− f/T1 , µ2 = e−E/T4 and a2 = e− f/T4 .
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Figure 13. (Color online) (a) Four thermal ratchets are arranged in a lattice where in each ratchet potential the temperature is arranged to decrease
linearly from the hotter bath (Th) to the colder bath (Tc). The hotter bath for the four Brownian ratchets are located at the center; (b) A schematic
diagram is plotted by imposing a periodic boundary condition (when one binds the nodes A, B, C, D of Figure 13a together). Figure 13a and 13b are
the same (when M = 4)

Figure 14. (Color online) The schematic diagram for a Brownian particle that walks in a discrete ratchet potential coupled with a linearly decreasing
temperature heat bath. The temperature for the heat bath decreases from Th to Tc according to Eq. (60)

Since the temperature linearly decreases, the parameter T1 = Th, T2 = Th +(Tc −Th)/3, T3 = Th +2(Tc −Th)/3 and
T4 = Tc. The sum of each column of the matrix P is zero, ∑m Pmn = 0 which reveals that the total probability is conserved:
(d/dt)∑n pn = d/dt(1T · p) = 1T · (Pp⃗) = 0. It is important to note that via the expressions p1(t), p2(t) and p3(t) that are
shown in Appendix A2 and using the rates,

P21 =
1
2

e−(E+ f )/T1 P12 =
1
2
, P32 =

1
2

e−(E+ f )/T2

P23 =
1
2
, P13 =

1
2
, P31 =

1
2

e−(2E− f )/T4 (64)

the thermodynamic quantities which are under investigation can be evaluated.
Once again, the velocityV (t) at any time t is the difference between the forwardV+

i (t) and backwardV−
i (t) velocities

at each site i
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V (t) =
3

∑
i=1

(V+
i (t)−V−

i (t))

=(p1P21 − p2P12)+(p2P32 − p3P23)+(p3P13 − p1P31). (65)

Similar to the previous section, as the number of network sizes increases, the entropy S of the system steps up. On
the other hand, the velocityV , the entropy production ėp(t) as well as entropy extraction ḣd(t) rates increase with network
sizes. At steady state V , ėp(t) and ḣd(t) become independent of the network size. For all M, at steady the velocity
converges to

V =

3

(
e

2E
Tc − e

ETc(Tc+5Th)+ f(T 2
c +6TcTh+2T 2

h )
TcTh(Tc+2Th)

)

2
(

1+2e
3(E+ f )
Tc+2Th

)(
e

2E
Tc + e

2E
Tc +

E
Th

+ f
Th + e

ETc+ f (Tc+Th)
TcTh

) . (66)

The energetics of the system that operates between the hot and cold baths are also compared and contrasted with a
system that operates in a heat bath where its temperature linearly decreases along the reaction coordinate. We show that a
system that operates between the hot and cold baths has significantly lower velocity but a higher efficiency in comparison
with a linearly decreasing case as shown in Figure 15. In the figure the ratio of velocity for a linearly decreasing case over
the velocity for two heat baths cases is plotted as a function of t and τ for a given ε = 2.0, M = 4 and f = 0.3.

Figure 15. (Color online) The ratio of velocity for linearly decreasing case over the velocity for two heat baths case is plotted as a function of t and τ
for a given ε = 2.0 and f = 0.3. In the figure, M is fixed as M = 4
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Figure 16. (Color online) The ratio of entropy for linearly decreasing case over the velocity for two heat baths case as a function of t and τ for a given
ε = 2.0 and f = 0.3. In the figure, M is fixed as M = 4

The entropy for the linearly decreasing case is considerably larger than the entropy for two heat bath cases as shown
in Figure 16.

Figure 17. (Color online) (a)The ratio of entropy production rate for linearly decreasing case over the entropy production rate for two heat baths case
as a function of t and τ; (b) The ratio of free energy rate for linearly decreasing case over the free energy rate for two heat baths cases as a function of t
and τ . In the figures, the parameters are fixed as M = 4, ε = 2.0, and f = 0.3

As depicted in Figure 17a, a system that operates between the hot and cold baths has a significantly lower entropy
production rate than a linearly decreasing temperature case. Moreover, in Figure 17b, we compare the ratio of the free
energy rate of a linearly decreasing case with a system that operates in two heat bath cases. The figure depicts that the
free energy rate is considerably large for a linearly decreasing case. Our analysis also indicates that the change in free
energy becomes minimal at a steady state. However, for a system that operates in a heat bath where its temperature varies
linearly in space, the change in free energy varies linearly in space.

The fact that the entropy, entropy production, and extraction rates are considerably larger for a a linearly decreasing
temperature case than a Brownian particle that operates between the hot and cold baths indicates that systems exposed to
a linearly decreasing temperature case are inherently irreversible and as a result, such systems have very low efficiency.
On the contrary, the particle moving in a linearly decreasing thermal arrangement has a higher velocity. Thus such kind
of thermal arrangement is beneficial, to designing a device that can transport a Brownian particle fast along the reaction
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coordinate. A Brownian particle that operates between two heat baths has a higher efficiency but a lower velocity in
comparison with a linearly decreasing temperature case. Thus such a model system is advantageous if the sole purpose is
to design an efficient Brownian motor.

Experimentally, care must be taken when arranging the ratchets within the networks. As the number of Brownian
ratchets increases, the interactions between them can result in complex dynamics. This complexity can lead to emergent
behaviors that are difficult to predict and comprehend. The nonlinear and emergent nature of large networks of Brownian
ratchets poses significant challenges for predictability and control. Understanding and managing these behaviors requires
advanced modeling techniques and experimental setups capable of capturing the complicated dynamics of the system.

Experimental techniques to achieve directed motion require sophisticated setups that allow precise control over
environmental conditions and the forces acting on particles. Optical tweezers, for instance, use tightly focused laser beams
to manipulate particles with high precision. Realizing and controlling a network of Brownian ratchets experimentally is
particularly challenging. Accurate measurement of thermodynamic variables, such as temperature, is difficult due to the
small scales involved and the system’s sensitivity to environmental fluctuations. Additionally, experimental setups are
prone to measurement errors and noise, complicating the validation of theoretical models and simulations. In other words,
environmental factors and the noise from the instruments can affect the system’s experimental results and, as a result, it
will be challenging to draw accurate conclusions.

4. Summary and conclusion
Most of the previous works have focused on exploring the thermodynamics feature of systems that operate in a

single thermal ratchet. On the contrary, molecular motors such as kinesin, myosin, and dynein walk in microtubule
networks. Most Biologically important problems such as impurities (donors) diffuse along the semiconductor layer and
consequently, they require 2D and 3D analysis. Nanorobots are artificial Brownianmotors and they are designed to achieve
a unidirectional motion on complex networks. To address such important physical problems, an exactly solvable model is
presented. The long-time, as well as the short-time behavior of the system, is explored by obtaining exact time-dependent
solutions.

To comprehend the thermodynamic features of systems beyond a linear response and steady-state the regime, the
thermodynamic features of a single Brownian particle that hops alongM Brownian ratchets arranged in complex networks
are studied. Each ratchet potential is either coupled with hot and cold reservoirs or a heat bath where its temperature
decreases linearly along the reaction coordinate. Often the thermodynamic quantities such as entropy S(t), entropy
production ep(t), and entropy extraction hd(t) serve as an indicator of irreversibly that the system sustains. Whenever
our system obeys a detail balance condition, ep = 0. Conversely, when the system operates for a finite time or when it is
exposed to symmetry-breaking fields, the entropy of the system may exceed zero, indicated by ep > 0.

The main analytical results of this paper indicate that the rates of thermodynamic quantities such as velocity, entropy
production rate, and entropy extraction rate are independent of network size at steady state. Conversely, thermodynamic
relations such as entropy, entropy production, and entropy extraction increase with network size even at a steady state.
The thermodynamic properties of systems operating between hot and cold baths are also compared and contrasted with
those of a system operating in a heat bath where the temperature varies linearly along the reaction coordinate. Regardless
of network size, the entropy, entropy production, and extraction rates are significantly larger for the linearly varying
temperature case compared to systems operating between hot and cold baths, indicating that the degree of irreversibility
is higher for the system that operates in a heat bath where its temperature decreases linearly along with the reaction
coordinate. These results are essential for examining the thermodynamics of Brownian particles in complex networks.
Protein-based molecular motors like kinesin, myosin, and dynein operate within these networks. Similarly, nanorobots,
as artificial Brownian motors, achieve unidirectional motion on two-dimensional surfaces. Additionally, the diffusion of
impurities in semiconductor layers requires thorough two-dimensional and three-dimensional analysis.

The exactly solvable model presented in this paper serves as a tool to explore the thermodynamic features of two-
dimensional systems. When the Brownian particle is exposed to a network coupled with two heat baths, the particle
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(motor) exhibits a higher efficiency but it achieves its task steadily. When the particle is exposed to a heat bath where its
temperature decreases linearly, it moves faster but has lower efficiency. For all thermal arrangements, the particle attains
a faster velocity whenever the network M increases. This indicates that by properly arranging the model ingredient prior
to the motor operation, the motor can accomplish a specific task. Thus the exactly solvable model presented in this work
not only advances the nonequilibrium statistical mechanics but also helps in designing artificial Brownian motors.
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Appendix A
In this Appendix we will give the expressions for p1(t), p2(t) and p3(t) as well as V (t) for a Brownian particle

that operates between the hot and cold baths. For the particle which is initially situated at site i = 2, the time dependent
normalized probability distributions after solving the rate equation d p⃗

dt = P p⃗ are calculated as

p1(t) =c1
a(2+νb)

µ (µ +(a2 +µ)νb)
+ c2e−

(a+a2µ+µ2)t
2a

(
−1+

a(−1+aµ)
−µ2 +aνb

)
, (67)

p2(t) =− c3e
1
2 t(−2−νb)− c2

a e−
(a+a2µ+µ2)t

2a (−1+aµ)
−µ2 +aνb

+ c1

(
2a2 +µ

)
µ +(a2 +µ)νb

, (68)

p3(t) =c1 + c2e−
(a+a2µ+µ2)t

2a + c3e
1
2 t(−2−νb) (69)

where

c1 =
µ
(
µ +

(
a2 +µ

)
νb
)

(a+a2µ +µ2)(2+νb)
, (70)

c2 =− a

(a+a2µ +µ2)
(
−1+ a(−1+aµ)

−µ2+aνb

) , (71)

c3 =−
µ
(
µ +a2νb+µνb

)
(a+a2µ +µ2)(2+νb)

+
a

(a+a2µ +µ2)
(
−1+ a(−1+aµ)

−µ2+aνb

) . (72)

Here∑3
i=1 pi(t) = 1 revealing the probability distribution is normalized. In the limit of t →∞, we recapture the steady

state probability distributions

ps
1 =

a
a+a2µ +µ2 , (73)

ps
2 =

µ
(
2a2 +µ

)
(a+a2µ +µ2)(2+bν)

, (74)

ps
3 =

µ
(
µ +b

(
a2 +µ

)
ν
)

(a+a2µ +µ2)(2+bν)
. (75)

The velocity V (t) at any time t is the difference between the forward V+
i (t) and backward V−

i (t) velocities at each
site i
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V (t) =
3

∑
i=1

(V+
i (t)−V−

i (t))

=(p1P21 − p2P12)+(p2P32 − p3P23)+(p3P13 − p1P31). (76)

Exploiting Eq. (63), one can see that the particle attains a unidirectional current when f = 0 and Th > Tc. For
isothermal case Th = Tc, the system sustains a non-zero velocity in the presence of load f ̸= 0 as expected. Moreover,
when t → ∞, the velocity V (t) increases with t and approaches the steady state velocity

V s = 3
µ
(
baν − µ

a

)
2(2+νb)

(
1+aµ + µ2

a

) . (77)
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Appendix B
The expressions for p1(t), p2(t) and p3(t) as well asV (t) are derived considering a Brownian particle that operates in

a heat bath where its temperature decreases linearly along with the reaction coordinate. For the particle which is initially
situated at site i = 2, the time-dependent normalized probability distributions after solving the rate equation d p⃗

dt = Pp⃗ are
given as

p1 =
a2(2+ν)

µ2
2 +a1a2µ1ν +µ2

2 ν
c1 +

(
−1+

−a2 +a1a2µ1

−µ2
2 +a2ν

)
e

[
t
(

−a2−a1a2µ1−µ2
2

2a2

)]
c2 (78)

p2 =− −2a1a2µ1 −µ2
2

µ2
2 +a1a2µ1ν +µ2

2 ν
c1 −

−a2 +a1a2µ1

−µ2
2 +a2ν

e

[
t
(

−a2−a1a2µ1−µ2
2

2a2

)]
c2 − e[t

1
2 (−2−ν)]c3 (79)

p3 =c1 + e

[
t
(

−a2−a1a2µ1−µ2
2

2a2

)]
c2 + e[

1
2 (−2−ν)t]c3 (80)

where

c1 =− −µ2
2 −a1a2µ1ν −µ2

2 ν(
a2 +a1a2µ1 +µ2

2

)
(2+ν)

(81)

c2 =−
a2
(
−µ2

2 +a2ν
)(

a2 +a1a2µ1 +µ2
2

)(
−a2 +a1a2µ1 +µ2

2 −a2ν
) (82)

c3 =
µ2

2 −2a2ν +a1a2µ1ν +µ2
2 ν −a2ν2

(2+ν)
(
a12 −a1a2µ1 −µ2

2 +a2ν
) . (83)

Once again, ∑3
i=1 pi(t) = 1 revealing the probability distribution is normalized. When t → ∞, the steady state

probability distributions converge to

ps
1 =

a2

(a2 +a1a2µ1 +µ2
2 )

, (84)

ps
2 =

(2a1a2µ1 +µ2
2 )

((a2 +a1a2µ1 +µ2
2 )(2+ν))

, (85)

ps
3 =

(a1a2µ1ν +µ2
2 (1+ν))

((a2 +a1a2µ1 +µ2
2 )(2+ν))

. (86)

The velocity V (t) at any time t is the difference between the forward V+
i (t) and backward V−

i (t) velocities at each
site i
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V (t) =
3

∑
i=1

(V+
i (t)−V−

i (t))

=(p1P21 − p2P12)+(p2P32 − p3P23)+(p3P13 − p1P31). (87)

In the limit t → ∞, the velocity V (t) increases with t and approaches to steady state velocity

V s =
(3(−µ2

2 +a1a2µ1ν))
(2(a2 +a1a2µ1 +µ2

2 )(2+ν))
. (88)

Volume 5 Issue 4|2024| 5145 Contemporary Mathematics



Appendix C
The expressions for p1(t), p2(t), p3(t), p4(t) and p5(t) as well as V (t) are derived considering a Brownian particle

that operates in a cold and hot heat baths along with two dimensional lattice. For the particle which is initially situated at
site i = 2, the time-dependent normalized probability distributions after solving the rate equation d p⃗

dt = P p⃗ are given as

p1 =
a(2+νb)

a2µνb+µ2(1+νb)
c1 +

(
−2+

2a(−1+2aµ)
−2µ2 +aνb

)
Exp

[
t
(
−1

2
−aµ − µ2

a

)]
c3 (89)

P2 =
2a2µ +µ2

a2µvb+µ2(1+ vb)
c1 +

(
− 1

vb

)
Exp

[
−1

2
t
]

c2 +

(
a−2a2µ

−2µ2 +avb

)

Exp
[

t
(
−1

2
−aµ − µ2

a

)]
c3 −Exp

[
t
(
−1− vb

2

)]
c5 (90)

p′2 =
2a2µ +µ2

a2µvb+µ2(1+ vb)
c1 +

(
1
vb

)
Exp

[
−1

2
t
]

c2 +

(
a−2a2µ

−2µ2 +avb

)

Exp
[

t
(
−1

2
−aµ − µ2

a

)]
c3 −Exp

[
t
(
−1− vb

2

)]
c4 (91)

p3 =c1 −Exp
[
−1

2
t
]

c2 +Exp
[

t
(
−1

2
−aµ − µ2

a

)]
c3 +Exp

[
t
(
−1− νb

2

)]
c5 (92)

p′3 =c1 +Exp
[
−1

2
t
]

c2 +Exp
[

t
(
−1

2
−aµ − µ2

a

)]
c3 +Exp

[
t
(
−1− νb

2

)]
c4 (93)

where

c1 =− −µ2 −a2µνb−µ2νb
(a+2a2µ +2µ2)(2+νb)

(94)

c2 =− νb
2(1+νb)

(95)

c3 =−
a
(
−2µ2 +aνb

)
2(a+2a2µ +2µ2)(−a+2a2µ +2µ2 −aνb)

(96)

c4 =− −µ2 +a2µνb
(1+νb)(2+νb)(a−2a2µ −2µ2 +aνb)

(97)

c5 =
µ2 −2aνb+3a2µνb+4µ2νb−3aν2b2 +2a2µ2νb2 +2µ2νb2 −aν3b3

(1+νb)(2+νb)(a−2a2µ −2µ2 +aνb)
(98)
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Once again, ∑3
i=1 pi(t) = 1 revealing the probability distribution is normalized. When t → ∞, the steady state

probability distributions converge to

ps
1 =

a2

(a2 +a1a2µ1 +µ2
2 )

, (99)

ps
2 =

(2a1a2µ1 +µ2
2 )

((a2 +a1a2µ1 +µ2
2 )(2+ν))

, (100)

ps
3 =

(a1a2µ1ν +µ2
2 (1+ν))

((a2 +a1a2µ1 +µ2
2 )(2+ν))

. (101)

The velocity V (t) at any time t is the difference between the forward V+
i (t) and backward V−

i (t) velocities at each
site i

V (t) =
3

∑
i=1

(V+
i (t)−V−

i (t))

=(p1P21 − p2P12)+(p2P32 − p3P23)+

(p3P13 − p1P31)+(p1P′
21 − p′2P′

12)+(p′2P′
32 − p′3P′

23)(p′3P′
13 − p1P′

31) (102)

In the limit t → ∞, the velocity V (t) increases with t and approaches to steady state velocity

V s =
(3(−µ2

2 +a1a2µ1ν))
(2(a2 +a1a2µ1 +µ2

2 )(2+ν))
. (103)
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Appendix D
The expressions for p1(t), p2(t), p3(t), p4(t) and p5(t) as well as V (t) are derived considering a Brownian particle

that operates in a linearly decreasing heat baths along with two dimensional lattice.
For the particle which is initially situated at site i = 2, the time-dependent normalized probability distributions after

solving the rate equation d p⃗
dt = Pp⃗ are given as

p1 =
a2(2+νb)

a1a2µ1νb+µ22(1+νb)
c1 +

(
−2+

2a2(−1+2a1µ)
−2µ22 +a2νb

)
Exp

[
t
(
−1

2
−a1µ1 −

µ2
2

a2

)]
c3 (104)

P2 =
2a1a2µ1 +µ2

2

a1a21vb+µ2
2 (1+ vb)

c1 +

(
− 1

vb

)
Exp

[
−1

2
t
]

c2 +

(
a2 −2a1a2µ1

−2µ2
2 +a2vb

)

Exp
[

t
(
−1

2
−a1µ1 −

µ2
2

a2

)]
c3 −Exp

[
t
(
−1− vb

2

)]
c5 (105)

p′2 =
2a1a2µ+µ2

2

a1a2µ1vb+µ2
2 (1+ vb)

c1 +

(
1
vb

)
Exp

[
−1

2
t
]

c2 +

(
a2 −2a1a2µ
−2µ2

2 +a2vb

)

Exp
[

t
(
−1

2
−a1µ1 −

µ2
2

a2

)]
c3 −Exp

[
t
(
−1− vb

2

)]
c4 (106)

p3 =c1 −Exp
[
−1

2
t
]

c2 +Exp
[

t
(
−1

2
−a1µ1 −

µ2
2

a2

)]
c3 +Exp

[
t
(
−1− νb

2

)]
c5 (107)

p′3 =c1 +Exp
[
−1

2
t
]

c2 +Exp
[

t
(
−1

2
−a1µ1 −

µ2
2

a2

)]
c3 +Exp

[
t
(
−1− νb

2

)]
c4 (108)

where

c1 =− −µ2
2 −a1a2µ1νb−µ2

2 νb(
a2 +2a1a2µ1 +2µ2

2

)
(2+νb)

(109)

c2 =− νb
2(1+νb)

(110)

c3 =−
a2
(
−2µ2

2 +a2νb
)

2
(
a2 +2a1a2µ1 +2µ2

2

)(
−a2 +2a1a2µ1 +2µ2

2 −a2νb
) (111)

c4 =− −µ2
2 +a1a2µ1νb

(1+νb)(2+νb)
(
a2 −2a1a2µ1 −2µ2

2 +a2νb
) (112)
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c5 =
µ2

2 −2a2νb+3a1a2µ1νb+4µ2
2 νb−3a2ν2b2 +2a1a2µ2

2 νb2 +2µ2νb2 −a2ν3b3

(1+νb)(2+νb)
(
a2 −2a1a2µ1 −2µ2

2 +a2νb
) (113)

Once again, ∑3
i=1 pi(t) = 1 revealing the probability distribution is normalized. When t → ∞, the steady state

probability distributions converge to

ps
1 =

a2

(a2 +a1a2µ1 +µ2
2 )

, (114)

ps
2 =

(2a1a2µ1 +µ2
2 )

((a2 +a1a2µ1 +µ2
2 )(2+ν))

, (115)

ps
3 =

(a1a2µ1ν +µ2
2 (1+ν))

((a2 +a1a2µ1 +µ2
2 )(2+ν))

. (116)

The velocity V (t) at any time t is the difference between the forward V+
i (t) and backward V−

i (t) velocities at each
site i

V (t) =
3

∑
i=1

(V+
i (t)−V−

i (t))

=(p1P21 − p2P12)+(p2P32 − p3P23)+

(p3P13 − p1P31)+(p1P′
21 − p′2P′

12)+(p′2P′
32 − p′3P′

23)

(p′3P′
13 − p1P′

31) (117)

In the limit t → ∞, the velocity V (t) increases with t and approaches to steady state velocity

V s =
(3(−µ2

2 +a1a2µ1ν))
(2(a2 +a1a2µ1 +µ2

2 )(2+ν))
. (118)
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