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Abstract: The tensile strength of Carbon fibers was investigated. Tested EEWD distribution ability to fit with data
and observed the skewness of data. The T-R{.} framework has been recently used to generalize various distributions,
but the viability of using Dagum distribution has not been investigated. Three distributions are combined in the T-R{.},
through one serving as a baseline distribution. The combined potency of each distribution, which is a weighted hazard
function of the baseline distribution, would have more parameters but would also be highly flexible in handling bimodality
in datasets. Thus, this paper used the quantile function of the Weibull distribution to generalize the Dagum distribution.
In this present research work a novel generalized 6P (six parameter) model called Exponentiated Exponential Weibull
Dagum Distribution (EEWD) has been introduced. Appropriate distributions including PDF, CDF, moments, Moment
Generating Function (MGF) of EEWD distribution, stochastic ordering, Cumulant Generating Function (CGF) of EEWD
distribution, mean, mean deviations and their sub-models have been given. Further EEWD model has been applied in the
real-time data admissible.
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1. Introduction
Carbon fibers are made by pyrolyzing a suitable precursor fiber and contain at least 90% carbon by weight. Graphite

is one kind of carbon. Graphite has sp2 hybridized carbon atoms in two-dimensional hexagonal planes. Carbon atoms bind
differently in-plane and out-of-plane, making graphitic planes extremely anisotropic [1]. The elastic modulus is larger
in planes than perpendicular to them. Graphitic planes have Van der Waals bonding, allowing them to glide against one
another. Graphitic planes aligned parallel to the fiber axis exhibit high tensile modulus, as well as electrical and thermal
conductivity [2–4]. The present work focuses on a new deduction of the DGM (Dagum distribution), called T-DGM
with family Y of members, and the six-parameter Dagum Weibull (EEWD) exponential distribution has been proposed.
The quality of statistical model outputs is significantly influenced by the reliability of the probability distribution that
is pretended to be present in the data. Many probabilistic distribution families and the associated statistical techniques
have thus been created with great effort. But there are a lot of serious, real-world issues, especially in the fields of
engineering, finance, and medicine, were current standards or newly developed distributions. In the model of income
and wealth distribution ere data is not well accommodated by current standards or newly developed distributions. In the
model of income and wealth distribution, the DGM [5] distribution holds great significance, particularly when examining
the distribution of personal income. This proposed distribution will consider not only the high tolerance of the shapes and
the scale parameters, tail variation, kurtosis, and skewness (right and left) and may be consistent for various parameter
values. The motivation for this work is to claim the DGM which can be better and appropriate distributions for income
and wealth modelling. The T-R. [6] structure allows for generalization. The T-R. structure associates the three different
distributions T, R, and Y, with the QntF (quantile function) of Y serving as a framework for maintaining R’s cdf generated
by T, and the parameters of the entire distribution manipulating the newly framed distribution. One of the most significant
benefits of contributing a new framed distribution through the quantification event, the new distribution is more flexible
in dealing with datasets; it can be a WHF (Weighted Hazard Function) of the ordinary spread, which is the DGM. Each
distribution’s parameters influence the newly framed distribution. Although this is usually the most suitable, there are
other three- parameter distributions that are also used to simulate the distribution of income. Beta-DGM distribution [7],
Mc-DGM distribution [8], weighted DGM distribution [9], gamma DGM distribution [10], exponentiated Kumaraswamy
DGM distribution [11] and extended DGM distribution [12] were the intended DGM distributions. They said that for
the most part, using our parameter distributions was adequate and that, to model real data, at least three parameters were
required. However, they doubted that adding the fifth or sixth parameter would result in meaningful improvement. But we
were inspired by the work [13], so we dispersed the six parameters. Compared to its sub-models with fewer parameters, the
distribution of its six parameters was superior. Additionally, other authors proved Johnson [14] et al. wrong demonstrating
that a sub-model with fewer parameters has less flexibility in survival data and less model reliability than the one withmore
parameters. [15] Their claims were untrue. Despite the reality that the Dagum distribution is among the most significant
and suitable distributions for modeling wealth and income, there is another reason for this work. The three distributions
T, R and Y are combined to form the T-R. framework. R’s CDF is generated by T and the parameters of each distribution
influence a newly designed distribution. The quantile function of Y is used as a framework for maintaining R. A new
distribution is provided through the quantification function of the existing distribution, and two of its main advantages are
that it can handle bimodality in datasets and that it is a weighted hazard function of the baseline distribution in this case,
the DGM distribution.

2. T-DGM {Y} class
Nicholas Eugene, Carl Lee and Felix Famoye in [16] generated the beta family and expressed [17] the T-X{.} family

and it was generalized in a novel technique for generating domestic continuous distributions by Ayman Alzaatreh [18].
Felix Famoye. Carl Lee. [19] to the T-X{ф} family further expanded in [5] to the T-X{ф} by defining ϕ {FX (x)} as a
QntF of an RV (Random Variable) Y and described as the T-X{.} domestic [20].
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GG(x) =
∫ QY F(x)

a
r(t)dt = R{QY [F(x)]} . (1)

T-X{ф} [5] determined by Alzaatreh et al. They defined the T-R{.} domestic. The CDF of the T-R{.} group is
expressed as:

FX (x) =
∫ QY F(x)

a
f (t)dt = R{Qy(F(x))}= FT {QY [FR(x)]} . (2)

The PDF of the RV. T is denoted by fT (t) and FR(x) is the CDF of the RV. R, then the RV. Y has the quantile function
QY [FR(x)] can be distinguished and monotonically increased. It is required that fT (t) and fR(x) have the identical sustain.
The pdf of EEWD distribution related to the cdf of EEWD distribution and the hazard function of EEWD distribution is
determined by:

fX (x) = fR(x)
fT {QY [FR(x)]}
fY {QY [FR(x)]}

,

hX (x) = hR(x)
hT {QY [FR(x)]}
hY {QY [FR(x)]}

. (3)

Let R be a RV that complies DGM with three parameters then CDF of DGM is derived by:

FR(x) =
(

1+λx−δ
)−β

. (4)

Here the scale parameter λ > 0, the location parameter δ > 0 shape parameter β > 0. T-DGM{Y}.
Family is established by applying eqn. (4) in (2) then The CDF defined of T-DGM{Y}:

FX (x) = FT

{
QY

(
1+λx−δ

)−β
}
. (5)

Equation (5) is the CDF of proposed T-DGM{Y} class distribution.
Let the dagum probability density function (DPDF):

fR(x) = βλδx−(δ+1)
(

1+λx−δ
)−β+1

. (6)

From equation (3) the PDF of proposed class distribution defined by:

fX (x) = βλδx−(δ+1)
(

1+λx−δ
)−β+1 fT

{
QY

[(
1+λx−δ )−β]}

fY
{

QY

[(
1+λx−δ

)−β
]} . (7)
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Remark 1 Let X be a RV follows T-DGM{.} class of distributions provided by [21]. Eq. (2), then it can be observed
that:

(i) Xd = b
{
[FY (T )]

1/s −1
}−1/t

;

(ii) QntX (s) = b
{

FY (QntX (s)}−1/s
)
−1−1/t ;

(iii) If T d = Y then Xd = Exponential(b,s, t); and
(iv) If Y d = Exponential(b, s, t) then Xd = T .
The T-E {Y} class in Eq. (5) can generate many different extended exponential families. Some generalized

exponential families using some QntY (.) are defined. Many authors including Alzatraah et al. [5, 22]; Nasir et al. [21, 23];
Jamal et al. [24, 25]; Aljarrah et al. [5]; Jamal et al. [26]; Famoye et al. [16, 17, 25–32]; and Jamal and Nasir [27] have
developed probability distributions using this framework [33–37]. None of these authors have applied this framework to
a generalization of the Dagum distribution.

Let Y be an RV with WPDF (Weibull Probability Density Function) derived by:

fY (x) =
κ

λ κ xκ−1e−(x/λ )κ
, (8)

where λ > 0, κ > 0 are the scale parameter, shape parameter, respectively.
Weibull Cumulative Distribution Function (WCDF) given by:

FY (x) = 1− e−(x/λ )κ
. (9)

The Weibull Distribution Quantile Function (WQF) is given by:

QY (p, κ, λ ) = λ (− ln(1− p))1/κ , (10)

where λ > 0, κ > 0 are the scale and the shape parameter, respectively.
From equation (5) and (7),

FX (x) = FT

{
QY

(
1+λx−δ

)−β
}
, (11)

FX (x) = FT

{
λ
(
− ln

[
1−
(

1+λx−δ
)−β

])1/k
}
, (12)

fX (x) = βλδx−(δ+1)
(

1+λx−δ
)−β+1

fT

{
λ
(
− ln

[
1−
(
1+λx−δ )−β])1/k

}
fY

{
λ
(
− ln

[
1−
(
1+λx−δ

)−β
])1/κ

} . (13)

The Weibull quantile function is used to define the CDF for the T-DGM (Weibull) class of distributions in (12). A
novel method of generalizing the Dagum distribution is by using equation (13). Therefore, T supported by any [0, ∞)

univariate probability distribution.
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3. Properties
Some properties of T-D {Weibull} class of distribution. Some general properties of the T-D {Weibull} class are

discussed in this section.
Lemma 1 Given any random variable T with pdf fT (x), then the random variable.

QntX (.) =
{

b
[
1− (1+ Qnt X (p)/θ)−γ]−1/p

}−1/q
follows T-Dagum {Weibull} distribution in equation.

Proof. The result of Remark 1(i) can be easily seen. Lemma 1 shows the relationship between the random variables
X and T . The random variable X can be generated by using these relationships from the random variable T . For example,
if a random variable T is a standard random variable with a known quantile function, it can simulate the random variable
X by first simulating the T value.

Lemma 2 The Quantile function for the T-D {Weibull} distribution is given by:

X =

b

{
1−
(

1+
QT (P)

θ

)−γ
}− 1

p

−1

−1/q

.

The result of Remark 1 (ii) can easily be seen.
Claude E. Shannon invented the concept of entropy, a measure of Uncertainity, in the context of information theory.

Entropy, which deals with the collection of events and self-entropy, which is connected to a single event, are two related
quantities that can be distinguished in this context. There is no Uncertainty surrounding the event, so the entropy of the
system is zero. The Shannon entropy is given by ′HX (x) =−∑n

i=1 pi · ln pi.
Theorem 1 T-DGM {Weibull} distribution Shannon’s entropy (ShEn) can be stated as:

ηx = ηT +E {ln [ fY (T )]}+ lnβ + lnλ + lnδ − (δ +1)E{lnx}− (β +1)E
{

ln
(

1+λx−δ
)}

.

Proof. Since Lemma 1 (i) Xd = b
{
[FY (T )]

1/p −1
}−1/q

.
It follows that t = QY (FR(x)).

Hence, based on the PDF in the equation fX (x) = fR(x)
fT {QY (FR(x)}
fY {QY (FR(x)}

.

This implies that ηx = ηT +E {ln [ fY (T )]}+E {ln [( fR(x)]} ,

ηx = ηT +E {ln [ fY (T )]}+ lnβ + lnλ + lnδ − (δ +1)E{lnx}− (β +1)E
{

ln
(

1+λx−δ
)}

,

Thus, the ShEn of the newly framed T-DGM {Weibull} class of distribution.

4. EEWDexponentiated exponential weibull dagumdistributionwith six parameter
4.1 CDF of EEWD distribution (EEWDCDF)

The PDF of an exponential distribution was described by Gupta and Kundu [28] as:

fT (x) = θλe−ηx (1− e−ηx)θ−1
. (14)
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FT (x) =
(
1− e−ηx)θ

. (15)

Substituting equations (14) and (15) in (12) to have

FX (x) =

{
1− exp

{
ηλ

{
ln
(

1−
[
1+λx−δ

]−(β )
) 1

κ
}}}θ

, (16)

FX (x) =

{
1−
(

1−
[
1+λx−δ

]−(β )
) α

κ
}θ

. (17)

Thus, eqn. (17) is the CDF of the novel framed probability distribution function which is entitled the EEWD
Distribution, here α, β , κ, λ , δ and θ are non negative parameters; with the shape parameters β , κ > 0, α defines
such as (skewness, kurtosis, and mode), and the scale parameter λ which states the extend of the distribution, δ > 0 is a
location parameter and the tail variation parameter θ .

4.2 PDF of EEWD distribution (EEWDPDF)

Equation (17) can be differentiated with esteem to x. To obtain EEWDPDF (the PDF of the new EEWD distribution),
or it can be solved by directly substituting (8) and (14) into equation (10),

fX (x) =
αβθλδ

κ
x−(δ+1)

[
1+λx−δ

]−(β+1)
(

1−
[
1+λx−δ

]−(β )
) α

κ 1
{

1−
(

1−
[
1+λx−δ

]−(β )
) α

κ
}θ−1

. (18)

Thus eqn. (18) is the PDF of the innovative framed probability distribution EEWD, called EEWDPDF. Any survival
rate, environmental hazard, and failure time data parameters will be well-modeled by the sixparameter distribution. Here
ηλ is constant which can be replaced by α without loss of generality, apply the series expansion,

(1−ϕ)τ−1 =
∞

∑
j=0

(−1) jr(τ)
r(τ − j) j!

ϕ j, for τ > 0 and /ϕ/ < 1, (19)

fX (x) =
∞

∑
i=0

∞

∑
j=0

∞

∑
r=0

w(i, j, r)x−(δ+1)
[
1+λx−δ

]−β ( j+r+1)−1
, (20)

where w(i, j, r) =
αβθλδ

κ ∑∞
i=0 ∑∞

j=0 ∑∞
r=0

(−1)i+ jΓ
(α

κ
+ r−1

)
r
(α

κ

)
r(θ)

r
(α

κ
− i
)

r(θ − j) j!r!
here the shape parameters β , κ , the scale

parameter λ and θ the tail variation parameter.
If
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1−
[
1+λx−δ

]−β
= ω, (21)

in eqn. (18) then,

fX (x) =
αβθλδ

κ
x−(δ+1)ω

α
k̄
−1
(

1−ω
α
κ
)θ−1

(1−ω)

(
1+ 1

β

)
. (22)

Then the CDF of EEWD function is

FX (x) =

1− (ω)

α
κ


θ

, (23)

where ω is a function of x.
Figure 1 indicates the Probability density function of EEWDdistribution for diverse parameters and indicates how the

distribution may be stable, skewed positively or negatively. The Cumulative distribution function of EEWD distribution is
depicted in Figure 2 as being normal, unimodal, or bimodal, positively skewed or negatively skewed. Any data containing
environmental hazards or having a high degree of variability benefits from the behavior of the EEWD model.

Figure 1. (a) PDF of EEWD distribution (WDPDF) with different parameter (b) CDF of EEWD distribution (WDCDF) with different parameter

Figure 2. (a) Survival Function of EEWD distribution with various parameters (b) Hazard Function of EEWD distribution with various parameter
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4.3 Stochastic ordering theorem of EEWD distribution

Definition Let X and Y be univariate RV over the distributives F1 and F2, survival functions F1 and F2, density

functions f1 and f2; and hazard rates rF1

(
=

f1

F1

)
and rF2

(
=

f2

F2

)
respectively [29]. X is said to be stochastically

smaller thanY denoted by (X ≤Y ) is
(
F1(x)≤ F2(x)

)
∀x. This is equivalent to saying that E(X)≤E(Y ) for any increasing

function for which expectations exist [29–31].

4.4 EEWDGoS (general order statistics of EEWD) distribution

Theorem 1 The EEWDGoS distribution with PDF fXr(x) is obtained by [31],

fXr(x) =
n!αβθλδ

(r−1)!(n− r)!κ


(

ω
ηλ
κ −1

)(
1−
(

ω
ηλ
κ −1

)θr−1
)][

1−
(

1−
(

ω
ηλ
κ −1

)θ
)]n−r

x(δ+1)

 .

Proof. Let X1, X2, X3, . . . . . .Xr be a continuous RS which follows the EEWD distribution, with FX (x) and fX (x)
[31]. Then the PDF Xr is

fXr(x) =
n!

(r−1)!(n− r)!
fX (x) [FX (x)]

r−1 [1−FX (x)]
n−r , (24)

fXr(x) =
n!αβθλδ

(r−1)!(n− r)!k


[(

ω
α
k̄
−1
)(

1−ω
α
k̄
−1
)−(θr+1)

(1−ω)

(
1+ 1

β

)][
1−
(

1−ω
α
k̄

)θ
]n−r

x(δ+1)

 , (25)

fXr(x) =
n!αβθλδ

(r−1)!(n− r)!κ


[(

ω
α
k̄
−1
)
(1−ω)

(
1+ 1

β

)][
1−
(

1−ω
α
k̄

)θ
]n−r

x(δ+1)
(

1−ω
α
k̄
−1
)(θr+1)

 . (26)

Eqn. (26) completes the proof of EEWDGoS with PDF. Let X and Y be two RV which follows EEWD distribution.
X < Y if P(X > x)≤ P(Y > y), ∀x ∈ (−∞, ∞), where P(.) represents the probability function.

Theorem 2 Let Y1 and Y2 be a RV’s which follows the EEWD distribution. If Y1 ≤ Y2 and E (Y1) = E (Y2), then
Y d ≤ Y [31].

Proof. The PDF of the EEWDGoS is derived by eqn. (26) set r = 1 to get the first order statistics is given by:

fY1(x) =
nαβθλδ

κ


[(

ω
α
k̄
−1
)
(1−ω)

(
1+ 1

β

)][
1−
(

1−ω
α
k̄

)θ
]n−1

x(δ+1)
(

1−ω
α
k̄
−1
)(θ+1)

 , (27)

also set r = 2 to get second order statistics given by:
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fY1(x) =
n(n−1)αβθλδ

κ


[(

ω
α
k̄
−1
)
(1−ω)

(
1+ 1

β

)][
1−
(

1−ω
α
k̄

)θ
]n−2

x(δ+1)
(

1−ω
α
k̄
−1
)(2θ+1)

 . (28)

Y1 ≤Y2 show that E (Y1) = E (Y2): using series expansion (1−Z)b−1 = ∑∞
j=0

(−1)kr(b)
r(b− k)k!

Zk, for b > 0 and |Z|< 1 the

above inequality expanded as:

∞

∑
i, k=0

(−1)i+k
(

n−1
i

)(
θ i+θ −1

k

)(
ω

α
k

)k+1
≤

∞

∑
i, k=0

(−1)i+k
(

n−2
i

)(
θ i+2θ −1

k

)(
ω

α
k

)k+1
, (29)

take expectation on both sides to have:

E

[
∞

∑
i, k=0

(−1)i+k
(

n−1
i

)(
θ i+θ −1

k

)]
≤ E

[
∞

∑
i, k=0

(−1)i+k
(

n−2
i

)(
θ i+2θ −1

k

)]
. (30)

E(c) = c, (constant) test the equality i = k = 0 to get

E

[
∞

∑
i, k=0

(−1)i+k
(

n−1
i

)(
θ i+θ −1

k

)]
= 1 and E

[
∞

∑
i, k=0

(−1)i+k
(

n−2
i

)(
θ i+2θ −1

k

)]
= 1. (31)

Eqn. (31) completes the proof as a result Y1 and Y2 are random samples drawn from the EEWD distribution.

5. Moments of EEWD distribution
The moments of EEWD distributions are one of the valuable properties in describing a distribution. It can be used to

derive the mean of EEWD distribution, the variance of EEWD distribution, the standard deviation of EEWD distribution,
a measure of skewness, kurtosis of EEWD distribution and other parametric measures that specified the distribution.

Let

h =
[
1+λx−δ

]−1
, (32)

E
(

xh
)
=
∫ ∞

0
xh fx(x)dx,

E
(

xh
)
=

∞

∑
i=0

∞

∑
j=0

∞

∑
r=0

w(i, j, r)
∫ ∞

0
xh−δ−1)

[
1+λx−δ

]−β ( j+r+1)−1
dx. (33)

By using Beta function transformation formula
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B(p, q) =
∫ ∞

0

x(q−1)

(1+ x)p+q dx,

E
(

xh
)
=

∞

∑
i=0

∞

∑
j=0

∞

∑
r=0

w(i, j, r)B
(

β (r+ j+1)−1+
h−1

δ
, 2+

1−h
δ

)
, h < δ ,

(i.e.) w(i, j, r) =
αβθδ

κ
(λ )

h−1
δ

(−1)i+ jΓ
(α

k + r−1
)

r
(α

k

)
r(θ)

r
(α

κ − i
)

r(θ − j) j!r!
. (34)

6. MGF of EEWD distribution
The EEWDMGF (Moment Generating Function of EEWD) distribution is provided by

Mx(g) = E (egx) =
∫ ∞

0
egx fx(x)dx, (35)

Mx(g) =
∞

∑
i=0

∞

∑
j=0

∞

∑
r=0

∞

∑
k=0

w(i, j, r, k)
tk

k!
B
(

β ( j+ r+1)−1+
g−1

δ
, 2+

1−g
δ

)
, k < δ ,

where

w(i, j, r) =
αβθδ

κ
(λ )

g−1
δ

(−1)i+ jΓ
(α

κ + r−1
)

Γ
(α

κ
)

Γ(θ)
Γ
(α

κ − i
)

Γ(θ − j) j!r!
. (36)

7. Mean deviation and median deviations of EEWD distribution
Let X be a RV, which follows the EEWD distribution, then the MD (Mean Deviation) with the mean µw = E(x) and

the MDD (Median Deviation) with the median µw from δ1 =
∫ ∞

0 ̸ x−µw/ fx(x)dx and δ2 =
∫ ∞

0 ̸ x−Mw/ fx(x)dx can be
derived respectively. The mean µw can be obtained from E (xt) with t = 1 and the median Mw is given by the equation of

Quantile function with p =
1
2
, where Qntx(p) = λ 1/δ

[{(
1− p1/θ)κ/α −1

}−1/β
−1
]−1/δ

.

8. Cumulant generating function of EEWD distribution
The CGF of EEWD distribution is defined by

Kx(t) = lnMx(t), (37)

Kx(t) = ln

{
∞

∑
i=0

∞

∑
j=0

∞

∑
r=0

∞

∑
k=0

w(i, j, r, k)
tk

k!
B
(

β (r+ j+1)−1+
g−1

δ
, 2+

1−g
δ

)}
, k < δ ,
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where

w(i, j, r, k) =
αβθδ

κ
(λ )

s−1
δ −1 (−1)i+ jΓ

(α
k + r−1

)
r
(α

κ
)

r(θ)
r
(α

K i
)

r(θ − j) j!r!
. (38)

9. Central moment of EEWD distribution
Let δ > 0 then, the δ th moment αδ of the EEWD distribution is derived by,

αδ = E
(

Xδ
)
=
∫ ∞

γ
xδ fX (x)dx, (39)

αδ =
∫ ∞

γ
xδ αβθλδ

κ
x−(δ+1)

[
1+λx−δ

]−(β+1)
(

1−
[
1+λx−δ

]−(β )
) α

κ −1

,

{
1−
(

1−
[
1+λx−δ

]−(β )
) α

κ
}θ−1

dx.

Let

x =
{

1
λ

[
(1−ω)−1/β −1

]}−1/δ
, (40)

1−
[
1+λx−δ

]−(β )
= ω, (41)

dx =

(
x(δ+1)

)
dω

(−βλδ )
[
1+λx−δ

]−(β+1) , (42)

αδ = E
(

Xδ
)
=
∫ ∞

γ
xδ αβθλδ

κ
x−(δ+1)ω

α
κ −1

(
1−ω

α
κ
)θ−1

(1−ω)

(
1
β +1

) (
x(δ+1)

)
dω

(−βλδ )[1−ω]

(
1
β +1

) . (43)

Using binomial expansion,

αδ = E
(

xδ
)
=

∞

∑
i=0

∞

∑
j=0

∞

∑
r=0

w(i, j, r)B
(

β ( j+ r+1)−1+
δ −1

δ
, 2+

1−δ
δ

)
, k < δ . (44)
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where w(i, j, r) =
αβθλδ

κ
(λ )

 (δ −1)
δ

−1

 (−1)i+ jΓ
(α

κ
+ r−1

)
Γ
(α

K

)
Γ(θ)

Γ
(α

κ
− i
)

Γ(θ − j) j!r!
, α, β , θ , λ , δ > 0 and 0 ≤ r ≤ δ , δ >

0,

α1 = E
(

Xδ
)
with δ = 1.

9.1 δ th central moment

The δ th central moment of EEWD distribution can be easily derived as follows.

βδ = E[X −E(x)]δ =
∫ ∞

r

[
E[X −E(x)]δ

]
fX (x)dx,

βδ =
δ

∑
t=0

(−1)t
(

δ
t

)
E(X)tE(X)δ−t , (45)

where E(X)t and E(X)δ−t can be attained from the equation (44).

9.2 Mean, variance, coefficient of skewness and kurtosis of EEWD distribution

Mean: set δ = 1 in (44) then mean = α1 = E(X) can be easily attained.
Variance: set δ = 2 in (45) then,

β2 = E[X −E(X)]2 =
∫ ∞

γ
[X −E(X)]2 fX (x)dx = E(X)2 − [E(X)]2. (46)

9.3 Coefficient of skewness and kurtosis of EEWD distribution

By set δ = 3 and δ = 4 in (45) can be obtained central moments of 3rd and 4th respectively [16, 17, 32].
That is

β3 = E[X −E(X)]3 =
3

∑
t=0

(−1)t
(

3
t

)
E(X)tE(X)3−t , (47)

β4 = E[X −E(X)]4 =
4

∑
t=0

(−1)t
(

4
t

)
E(X)4E(X)4−t . (48)

Using (47) and (48) the measures of skewness γ1 and kurtosis γ2 are respectively given by
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γ1 =
∑3

t=0(−1)t
(3

t

)
E(X)tE(X)3−t

(E(X)2 − [E(X)]2)3/2 ; γ1 =
β3

(β2)
3/2 , (49)

γ2 =
∑4

t=0(−1)t
(4

t

)
E(X)tE(X)4−t

(E(X)2 − [E(X)]2)2 ; γ2 =
β4

(β2)
2 . (50)

The infinite series equation (44) is convergent for all α > 0, β > 0, θ > 0, λ > 0, δ > 0 and 0 ≤ r ≤ δ , δ > 0, x > 0.

10. Survival function of EEWD distribution (SFEEWD)
If X follows an EEWD distribution and FX (x) be the probability that any given device of interest will survive to

a given point in time x, such that x ∈ X that is, P(X ≤ x), then the survival function SX (x) is a function that gives the
probability which surviving beyond x. Suppose that FX (x) is the cdf of EEWD distribution defined on the interval [0, ∞),
then the survival function of EEWD is given by:

SX (x) = P(X > x) = 1−

[
1−
(

1−
[
1+λx−δ

]−β
)α/k

]θ

. (51)

In terms ω , equation (51) becomes,

SX (x) = P(X > x) = 1−
[
1− (ω)α/k

]θ
. (52)

11. Hazard function of EEWD (HFEEWD) distribution
Let X be a RV that follows an EEWD distribution with SF and PDF stated in (2) and (12) respectively, then HF of

EEWD distribution is obtained by hX (x) =
fX (x)
SX (x)

.

hX (x) =
αβθλδ

κ
x−(δ+1)

[
1+λx−δ

]−(β+1)
(

1−
[
1+λx−δ

]−(β )
) α

α −1

{
1−
(

1−
[
1+λx−δ

]−(β )
) α

κ
}θ−1

1−

[
1−
(

1−
[
1+λx−δ

]−β
)α/k

]θ


−1

.

(53)

If

1−
[
1+λx−δ

]−β
= ω, (54)
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hX (x) =
αβθλδ

κ
x−(δ+1)ω

α
κ −1(1−ω)

1+ 1
β

(
1−
(

1−ω
α
κ
)−1

. (55)

12. The sub-models of EEWD distribution
The EEWD distribution model subsist of some significant sub- models which are extensively used in lifetime

modelling.
1. When θ = 1, k = 1, This EEWD distribution attains Kumaraswamy-Dagum distribution with cdf:

FX (x) = 1−
(

1−
[
1+λx−δ

]−β
)α

for α > 0, β > 0, λ > 0, δ > 0 and x > 0.

2. When α = 1, θ = 1, k = 1, This EEWD distribution attains Dagum distribution with cdf:

FX (x) =
[
1+λx−δ

]−β
for β > 0, λ > 0, δ > 0 and x > 0.

3. When λ = 1, k = 1, it attains Exponentiated Kumaraswamy-Burr III distribution with cdf:

FX (x) =
{

1−
(

1−
[
1+ x−δ

]−β
)α}θ

for α > 0, β > 0, δ > 0, θ > 0 and x > 0.

4. When λ = 1, k = 1, θ = 1, it attains Kumaraswamy-Burr III distribution with cdf :

FX (x) = 1−
(

1−
[
1+ x−δ

]−β
)α

for β > 0, δ > 0, α > 0 and x > 0.

5. When α = 1, λ = 1, k = 1, θ = 1, it attains Burr III distribution with cdf:

FX (x) =
([

1+ x−δ
]−β

)
for β > 0, δ > 0 and x > 0.

6. When β = 1, k = 1, it attains EKF (Exponentiated Kumaraswamy Fisk) or KLoL (Kumaraswamy-Log-Logistic)
distribution with cdf:

FX (x) =
{

1−
(

1−
[
1+λx−δ

]−1
)α}θ

for α > 0, δ > 0, θ > 0, λ > 0 and x > 0.

7. When β = 1, k = 1, θ = 1, it attains Kumaraswamy Fisk distribution with cdf:
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FX (x) = 1−
(

1−
[
1+λx−δ

]−1
)α

for α > 0, β > 0, δ > 0 and x > 0.

8. When β = 1, α = 1, θ = 1, k = 1, it attains Dagum distribution with cdf:

FX (x) =
[
1+λx−δ

]−1
for λ > 0, δ > 0 and x > 0.

13. Parameter estimation
Mathematical Formulation for MLE of EEWD distribution
The moment of EEWD distribution and resultant the log-likelihood function (LLHF). The MLEs of the unknown

parameter for the EEWD distribution are determined based on whole samples. Let X1, X2, X3 . . . . . . . . . . . . . . .Xt be a RS
of size t as of this distribution through vector parameters E = (α, β , λ , δ , θ , κ)T . The corresponding LHF is

l = ln{L(E)}= t ln

{
t

∏
i=1

αβθλδ
κ

x−(δ+1)
i

(
1+λx−(δ )

i

)−(β+1)
(

1−
[
1+λx−δ

]−(β )
) α

k −1

{(
1−
(

1−
(

1+λx−(δ )
i

)−(β ) α
κ
}θ−1

}
.

(56)

Now differentiating in terms of corresponding parameters and equal to zero, we attain the corresponding ML
estimates, respectively.

dl
dα

=
t
α
+

β
κ

t

∑
i=1

ln
(

1+λx−(δ )
i

)
− θ −1

κ

t

∑
i=1

β ln
(

1+λxi
−(δ )

)
.

(i)

dl
dα

= 0 then
t
α

=
β (θ −2)

κ

t

∑
i=1

ln(Zi) ; (57)

(ii)

dl
dβ

= 0 then
t
β

=
2[1−α(θ −1)]

κ

t

∑
i=1

ln(Zi) ; (58)

(iii)
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dl
dθ

= 0 then
t
θ
=

αβ
κ

n

∑
i=1

ln(Zi) ; (59)

(iv)

dl
dλ

= 0 then
t
λ

= 1+
αβθ

κ

t

∑
i=1

xi − (δ )
zi

; (60)

(v)

dl
dδ

= 0 then
t
δ
=

t

∑
i=1

ln(xi)+

[
1+

αβθ
κ

] t

∑
i=1

yi logxi

zi
; (61)

(vi)

dl
dκ

= 0 then κ = (αβθ)
1
t

t

∑
i=1

lnZi. (62)

13.1 Simulation study

Simulation studies are conducted to study the performance of estimators. The standard estimate error (SE), average
absolute bias (AAB), and average square root error (RMSE) of the maximum probability estimator of EEWD parameter
parameters were investigated [33–37]. The result shows that, when the sample size approaches infinity, the AAB and
RMSE are progressively reduced to zero and demonstrate their consistency. It is consistent in the sense that, as the
number of observations increases and the error reduces to zero, it converges to the real parameter value. Further study
about simulations will discuss the future.

14. Application
The data from the following example of 100 carbon fibres’ tensile strength, as testified by Nichols and Padgett [30],

are shown in Table 1. The data provided details the tensile strength of 100 individual carbon fibers, expressed in units
likely to be gigapascals (GPa) or megapascals (MPa), as measured by Nichols and Padgett. Tensile strength indicates how
much pulling or tension a fibre can withstand before breaking
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Table 1. Tensile strength of 100 carbon fibers data [30, 32]

Tensile Strength of 100 Carbon fibers (Gba)

(1)
3.7

(11)
2.74

(21)
2.73

(31)
2.5

(41)
3.6

(51)
3.11

(61)
3.27

(71)
2.87

(81)
1.47

(91)
3.11

(2)
4.42

(12)
2.41

(22)
3.19

(32)
3.22

(42)
1.69

(52)
3.28

(62)
3.09

(72)
1.89

(82)
3.15

(92)
4.9

(3)
3.75

(13)
2.43

(23)
2.95

(33)
2.97

(43)
3.39

(53)
2.96

(63)
2.53

(73)
2.67

(83)
2.93

(93)
3.22

(4)
3.39

(14)
2.81

(24)
4.2

(34)
3.33

(44)
2.25

(54)
3.31

(64)
3.31

(74)
2.85

(84)
2.56

(94)
3.56

(5)
3.15

(15)
2.35

(25)
2.55

(35)
2.59

(45)
2.38

(55)
2.81

(65)
2.77

(75)
2.17

(85)
2.83

(95)
1.92

(6)
1.41

(16)
3.68

(26)
2.97

(36)
1.36

(46)
0.98

(56)
2.76

(66)
4.91

(76)
3.68

(86)
1.84

(96)
1.59

(7)
3.19

(17)
1.57

(27)
0.81

(37)
5.56

(47)
1.73

(57)
1.59

(67)
2

(77)
1.22

(87)
1.12

(97)
1.71

(8)
2.17

(18)
1.17

(28)
5.08

(38)
2.48

(48)
1.18

(58)
3.51

(68)
2.17

(78)
1.69

(88)
1.25

(98)
4.38

(9)
1.84

(19)
0.39

(29)
3.68

(39)
2.48

(49)
0.85

(59)
1.61

(69)
2.79

(79)
4.7

(89)
2.03

(99)
1.8

(10)
1.57

(20)
1.08

(30)
2.03

(40)
1.61

(50)
2.12

(60)
1.89

(70)
2.88

(80)
2.82

(90)
2.05

(100)
3.65

14.1 Histogram, PDF, Q-Q plot of EEWD distribution fitted with carbon fibers data

Figure 3. (a) Histogram for tensile strength of 100 carbon fibers data (b) Normal Q-Q plot of carbon fibers
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Table 2. The tensile strength of 100 carbon fibers of descriptive statistics values

Descriptives Statistic Std. Error (SE)

Mean (α) 2.6186 0.10144

Carbon fibers

95% Confidence interval for mean Lower bound 2.4173
Upper bound 2.8199

5% Trimmed mean 2.5844  
Median 2.7000  
Variance 1.029  

Std. Deviation (σ ) 1.01440  
Minimum 0.39  
Maximum 5.56  
Range 5.17  

Interquartile range 1.38
  Skewness 0.381 0.241

Kurtosis 0.171 0.478

The PDF of EEWD distribution has been overlaid on the histogram of Carbon fibers data, given by Figure 3. We draw
Quantile-Quantile plot which is linear with EEWD distribution and its detailed theoretically EEWD is a better suitable
model.

These statistics provide a summary of the distribution and variability of tensile strength within a sample of 100 carbon
fibers. The mean tensile strength of 2.6186 represents the average value, while the standard deviation of 1.01440 reflects
the variation of values around this mean.  The confidence interval offers an estimate of the range in which the true mean for
the population of carbon fibers is likely to fall. Additionally, the skewness and kurtosis values suggest a minor asymmetry
and indicate that the distribution is relatively normal.

14.2 Estimation of confidence interval and test hypothesis

We observed that from Figures 3 and 4 (Q-Q plot) the shape of tensile strength of carbon fibers data is positively
skewed such as the observation of skewness (0.381), kurtosis (0.171). We estimate 95% of confidence interval (CI) mean,
SD and Variance of the above data as follows.

Figure 4. PDF and CDF fitted to Carbon Fibers Data
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Table 3. Test of hypotheses

95% CI for mean 95% CI for SD 95% CI for Variance

2.42 < mean < 2.823 0.89 < SD < 1.18 0.80 < Variance < 1.39

The table 3 provide presents 95% confident intervals for the mean, standard deviation and variance of the carbon
fibers data set. The above intervals of mean, standard deviation and variance shows consideration of sample variability,
individual measurement, idea of dispersion of data respectively.

14.3 CI analysis for skewness
Observed from the estimation of parameters skewness is positively skewed and kurtosis > 3, indicates that EEWD

is heavily tailed. Therefore, we compute skewness and kurtosis for the sample by using Cramer [31] and Joanes and Gill
[32, 38–40] formula,

Sample skewness

SSK =

[√
n(n−1)
n−2

]
∗ γ1,heren = 100, γ1 = 0.56

So that SSK = 0.5685.
Standard sample Error of Skewness

SESK =

√
6n(n−1)

(n−2)(n+1)(n+3)
≈ 0.2414

Test statistic for skewness

ZSK =
SSK

SESK
≈ 2.3551.

Since Z > 2, it is positively skewed.
CI for skewness at 95 % is defined by
SSK ± 2 SESK, we estimate 95 % CI of Skewness (0.0857, 1.0513).

14.4 CI analysis for kurtosis
We compute excess kurtosis for sample by using Cramer [31] and Joanes and Gill [32] formula,

SK = γ2 −3 = 1.782.

Then excess Kurtosis for tensile strength of Carbon data

Contemporary Mathematics 5080 | Vidya P, et al.



ESK =

[
n−1

(n−2)(n−3)

]
[(n+1)Sk+6]≈ 1.938.

The standard error of Kurtosis

SEK = 2× (SESK)×

√
(n2 −1)

(n−3)(n+5)
≈ 0.4784

ZSK =
ESK
SEK

≈ 4.051

(63)

ZSK > 2 therefore, the sample has positively excess Kurtosis. CI for Kurtosis at 95 % obtained by ESK±2SEK. we
obtained 95 % CI of Kurtosis as (0.9814, 2.8948) .

Table 4. test statistics

One sample T-Test
  95% CI for Location difference

Test Statistic Degrees of freedom p Location difference Lower Upper

Carbon fiber Student -0.014 99 0.989 -0.001 -0.203 0.2
Z -0.014 0.989 -0.001 -0.2 0.197

Note.  For the student t-test and Z-test, location difference estimate is given by the sample mean difference d

There is no significant difference between population mean (2.6192) and Sample mean (2.6186), (Table 2, 4 and 5)
the alternative hypothesis specifies (Table 3) that the mean is different from 2.62. So accepted null hypothesis.

The p-value of 0.989 is significantly higher than the common significance threshold (e.g., 0.05), suggesting that there
is no statistically significant difference between the sample mean and the hypothesized population mean. Additionally, the
confidence intervals for both the Student’s T -test and the Z-test encompass zero, reinforcing the finding that the difference
is not statistically significant. The test statistics, which are very near zero indicateminimal deviation from the hypothesized
mean.

Table 5. The tensile strength of 100 carbon fibers of descriptive statistics values

Test of normality
(shapiro-wilk) Descriptives

W p N Mean SD SE Coefficient of variation
Carbon fiber 0.982 0.193 100 2.6192 1.014 10.101 0.387

Note.  Significant results suggest a deviation from normality

The proposed distribution was compared to the Fisk model after the EEWD distribution was fitted to the data set
using MLE. In the model selection procedure, the AIC (Akaike information criterion), the BIC (Bayesian information
criterion), the CAIC (Consistent Akaike information criterion), and the HQIC (Hannan- Quinn information criterion) are
all employed.

Where,
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AIC =−2l(ϑ)+2m

BIC =−2l(ϑ)+m log(N)

HQIC =−2l(ϑ)+2m log(log(N))

CAIC =−2l(ϑ)+
2mN

N −m−1
, where m is the numeral of parameters, N is the size of sample.

Where l(ϑ) denotes the LLHF estimated at the MLE, the above-mentioned information criterion with lowest value
is elected as the finest fit model to the data.

An ordered RS X1, X2, X3, X4 . . . . . . . Xt from EEWD with 6 parameters, the Kolmogorov-Smirnov ks, Cramer-von
Mises CrM test statistics are computed and which is given below.

ks = max
i

[
1
t
−F (xi, ϑ)− i−1

t

]

CrM =
1

12t
+

t

∑
i=1

[
F (xi, ϑ)− 2i−1

2t

]2

Table 6. AIC, BIC, HQIC, CAIC, Kolmogorov-Smirnov ks, Cramer-von Mises CrM test statistics

Statistics Measures

Models ks CrM   AIC BIC HQIC CAIC
EEWD 0.0738 0.0634 289.18 297.43 290.23 287.231
FISK 0.0916 0.1579   296.42 301.63 298.53 296.55

This outcome proves the test statistics yield the least value for the data set further down the EEWD distribution. Thus,
the EEWD distribution model is an alternative model to the Fisk model.

15. Results and discussion
Tested the EEWD distribution’s ability to fit the data on 100 carbon fibers’ tensile strength. A distribution ability to

fit the data observed can be evaluated, the PDF of the EEWD distribution has been overlaid along the histogram of the
tensile strength of 100 carbon fibers data as shown in Figure 3 and 4. It is easy to plot the CDF of EEWD values against
the data for the tensile strength of 100 carbon fibers. It has also been confirmed that the data’s skewness and kurtosis
indicate that the tensile strength of 100 is not normally distributed. Thus, observed that it is skewed.

Result 1: Obtained PDF and CDF of EEWD.
Result 2: Obtained Moments, survival, failure rate functions and some properties.
Result 3: Estimated descriptive Statistics of the real time Data.
Result 4: Estimated AIC, BIC, CAIC, HQIC for EEWD (Table 6) using MLE and compared with Fisk Model.
Result 5: Fitted the real time data to the PDF and CDF curve of EEWD model.
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16. Conclusion
The EEWD distribution which is a new class of distribution introduced and examined with this sub-model. Some

properties of this class distributions together with the series expansions with PDF of EEWD distribution, CDF of EEWD
distribution, Moments and EEWDMGF distribution, stochastic ordering, Cumulant Generating Function (CGF) of EEWD
distribution, Mean, deviations of EEWD distribution that are provided. The EEWDmodel is motivated by the widespread
application of the Dagum distribution in practice. In this section, the MLEs of the EEWD distribution were presented and
their presentation in relation to sample size t (10, 20, 50 and 100) was examined. Future work includes Quantile Function
of EEWD distribution, Survival Function of EEWD distribution, HFEEWD distribution (Hazard Function), InFEEWD
distribution (Inverse Hazard Function), CHFEEWD (Cumulative Hazard Function) distribution, Asymptotes of EEWD
distribution, Residual life Functions of EEWD distribution, Shannon Entropy, Estimation of Parameters with Applications.
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Appendix
R Codes
EEWD CDF

EEWD_CDF < -function ((x, alpha, lambda, beta, theta, delta, kappa)) {
A < -(1 + (lambda*x∧(-delta)))∧(-beta)
B < -(1-A) ∧(alpha/kappa)
C < -(1-B) ∧(theta)
fxn < -(C)
return (fxn)
}

EEWD PDF

EEWD_PDF < -function (x, alpha, lambda, beta, theta, delta, kappa) {
A < -(1 + (lambda*x∧(-delta)))∧(-beta)
B < -(1 + (lambda*x∧(-delta)))∧(-(beta + 1))
C < -(alpha*beta*theta*lambda*delta)/(kappa)
D < -x∧(-(delta + 1))
E < -(1-A)∧((alpha/kappa)-1)
F < -(1-(1-(A∧(alpha/kappa)))) ∧ (theta-1)
fxn < -(C*D*B*E*F)
return (fxn)
}

EEWD_QF

EEWD_QF < -function (p, alpha, lambda, beta, delta, kappa) {
A < -(1- p ∧(1/theta))∧(kappa/alpha)
B < -(A-1) ∧(-1/beta)
C < -(lambda∧1/delta)*(B-1)∧(-1/delta)
fxn < -(C)
return (fxn)
}

Hazard function HF EEWD

EEWD_HF < -function (x, alpha, lambda, beta, theta, delta, kappa) {
A < -(1 + (lambda*x∧(-delta)))∧(-beta)
B < -(1 + (lambda*x∧(-delta)))∧(-(beta + 1))
C < -(alpha*beta*theta*lambda*delta)/(kappa)
D < -x∧(-(delta + 1))
E < -(1-A)∧((alpha/kappa)-1)
F < -(1-(1-(A∧(alpha/kappa)))) ∧(theta-1)
G < -(1 + (lambda*x∧(-delta))) ∧ (-beta)
H < -(1-G) ∧ (alpha/kappa)
I < -(1-H) ∧ (theta)
fxn < -(C*D*B*E*F*I)
return (fxn)
}
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EEWD SF

EEWD_SF < -function (x, alpha, lambda, beta, theta, delta, kappa) {
A < -(1 + (lambda*x ∧ (-delta))) ∧ (-beta)
B < -(1-A) ∧ (alpha/kappa)
C < -(1-B) ∧ (theta)
D < -(1-C)
fxn < -(D)
return (fxn)
}
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